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Abstract 
Fractional calculus has been used in many fields, such as engineering, popula-
tion, medicine, fluid mechanics and different fields of chemistry and physics. 
These fields were found to be best described using fractional differential equ-
ations (FDEs) to model their processes and equations. One of the well-known 
methods for solving fractional differential equations is the Shifted Legendre 
operational matrix (LOM) method. In this article, I proposed a numerical 
method based on Shifted Legendre polynomials for solving a class of frac-
tional differential equations. A fractional order operational matrix of Legen-
dre polynomials is also derived where the fractional derivatives are described 
by the Caputo derivative sense. By using the operational matrix, the initial 
and boundary equations are transformed into the products of several matrix-
es and by scattering the coefficients and the products of matrixes. I got a sys-
tem of linear equations. Results obtained by using the proposed method 
(LOM) presented here show that the numerical method is very effective and 
appropriate for solving initial and boundary value problems of fractional or-
dinary differential equations. Moreover, some numerical examples are pro-
vided and the comparison is presented between the obtained results and those 
analytical results achieved that have proved the method’s validity. 
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1. Introduction 

Fractional calculus, the theory of differentiation and integration to non-integer 
order, is very useful for the description of various physical phenomena, such as 
damping laws, diffusion process, etc. Fractional differential equations extend 
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prominent tools that are perfectly representing many engineering and physical 
problems. However, solving fractional differential equations are a challenging 
and stimulating area of research in mathematics and engineering since these 
fractional equations do not have exact and analytic solutions and that is the 
main reason made accurate numerical techniques preferable for solving frac-
tional differential equations. 

Many applications of shifted Legendre polynomials have been exemplified in 
research [1] [2] [3] [4]. In this article, an application of Legendre polynomials to 
solve fractional differential equations is provided. The main aim is to generalize 
Legendre operational matrix to fractional calculus and based on using the opera-
tional matrix of an orthogonal function for solving differential equations. In the 
last decade or so, extensive research has been done in the numerical develop-
ment methods that are numerically stable for both linear and nonlinear fraction-
al differential equations [5]-[13]. Orthogonal functions and polynomial series 
have received appreciable attention in dealing with various problems of dynamic 
systems. Legendre polynomials are well known family of orthogonal polyno-
mials on the interval [−1, 1] that have many applications [14]. They are widely 
used because of their good properties in the approximation of functions. 

The proposed method is to obtain the numerical solution for FDE of the form 
[15] presented in Equation (I)-(III) based on the shifted Legendre method: 

( ) ( ) ( ) ( ) ( ) ( )2 1
1 2 3 4 5 A D y x A D y x A D y x A D y x A y x f xα β+ + + + =     (I) 

subject to the conditions 

( ) ( ) 10 , 0y yδ δ′= =                      (II) 

or the boundary conditions 

( ) ( )0 10 ,y y Rγ γ= =                      (III) 

where 1 2 3 4 5 0 1 0 1, , , , , , , , A A A A A δ δ γ γ  are constants. 
1 ,m mα β− < <  and f(x) are the source terms. 

The fractional derivatives are defined in the Caputo sense. The main idea in 
the current work is to apply the shifted Legendre polynomials and the opera-
tional matrix of fractional derivative together to discretize Equation (1) to get a 
satisfactory result. Figures 1-3 and results in next sections show the effectiveness 
of the proposed method in comparison with the analytical results. 

The remainder of the article is organized as follows. In the next section, some 
mathematical preliminaries of the fractional calculus theory are introduced in 
addition to some relevant properties of the Legendre polynomials. Section 3 
summarizes the application of the shifted Legendre method to the solution of 
problems (I)-(III). As a result, a system of algebraic equations is obtained and 
the solution of the considered problem is given. Section 4 illustrates applying the 
Legendre operational matrix of fractional derivative for solving multi-order frac-
tional differential equation. In Section 5, the proposed method is applied to sev-
eral examples. Finally, conclusion is given in Section 6. The numerical results are 
all computed using Mathematica Development Environment. 
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Figure 1. Comparison of y(x) Analytical and Approximate for m = 3. 

 

 
Figure 2. Comparison of y(x) Analytical and Approximate for m = 5. 

 

 
Figure 3. Comparison of y(x) Analytical and Approximate for m = 3. 

2. LOM Preliminaries and Notations 

In this section, some basic definitions and properties of fractional calculus 
theory are given that are further used in this article. 
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2.1. The Fractional Derivative in the Caputo Sense 

The fractional calculus is a name for the theory of integrals and derivatives of 
arbitrary order, which unifies and generalizes the notions of integer-order diffe-
rentiation and n-fold integration [16] [17]. There are various definitions of frac-
tional integration and differentiation, such as Grunwald_Letnikov’s definition 
and Riemann_Liouville’s definition. In the present work, the fractional deriva-
tives are considered in the Caputo sense. The reason for adopting the Caputo 
definition, as pointed by [18], is as follows: to solve differential equations (both 
classical and fractional), I need to specify additional conditions in order to pro-
duce a unique solution. For the case of the Caputo fractional differential equa-
tions, these additional conditions are just the traditional conditions, which are 
akin to those of classical differential equations, and are therefore familiar to us. 
In contrast, for the Riemann_Liouville fractional differential equations, these 
additional conditions constitute certain fractional derivatives (and/or integrals) 
of the unknown solution at the initial point x = 0, which are functions of x. For 
more details see [19]. 

Definition 2.1. The Caputo definition of the fractional-order derivative is de-
fined as 

( ) ( )

( ) ( )
( ) 10

1 d , 1 , ,
n

x

n

f t
D f x t n n n N

n x t
α

α α
α + −= − < ≤ ∈

Γ − −
∫       (1) 

where,   0α >  is the order of the derivative and n is the smallest integer greater 
than α  For the Caputo derivative I have [20] 

0D Cα =  (C is a constant),              (2) 

( )
( )

0

0

0, for and
  1

for and or an
1

, d

N
D x

x N N
α β

β α

β β α
β

β β α β β α
β α

−

∈ <
= Γ + ∈ ≥ ∉ >Γ + −

 (3) 

I use the ceiling function, α    to denote the smallest integer greater than or 
equal to α , and the floor function α    to denote the largest integer less than 
or equal to α . Also { }1,2,N =   and { }0 0,1, 2,N =  . Recall that for  Nα ∈ , 
the Caputo differential operator coincides with the usual differential operator of 
an integer order. 

2.2. Properties of Shifted Legendre Polynomials 

The well-known Legendre polynomials are defined on the interval [ ]1,1−  and 
can be determined with the aid of the following recurrence formulae: 

( ) ( ) ( )1 1
2 1 , 1,2,

1 1i i i
i iL z zL z L z i

i i+ −
+

= − =
+ +

  

where ( )0 1L z =  and ( )1L z z= . In order to use these polynomials on the in-
terval [ ]0,1x∈  I define the so-called shifted Legendre polynomials by intro-
ducing the change of variable. 

2 1z x= − . Let the shifted Legendre polynomials ( )2 1iL x −  be denoted by 
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( )iP x . Then ( )iP x  can be obtained as follows: 

( ) ( )( ) ( ) ( )1 1

2 1 2 1
, 1,2, ,

1 1i i i

i x iP x P x P x i
i i+ −

+ −
= − =

+ +
       (5) 

where ( )0 1P x =  and ( )1 2 1P x x= − . The analytic form of the shifted Legendre 
polynomial ( )iP x  of degree i given by 

( ) ( ) ( )
( ) ( )2

0

1 !

! !

i ki
k

i
k

i k
P x x

i k k

+

=

− +
=

−
∑                      (6) 

Note that ( ) ( )0 1 i
iP = −  and ( )1 1iP =  The orthogonality condition is 

( ) ( )1

0

1 for
d 2 1

0 for
i j

i j
p x p x x i

i j

 == +
 ≠

∫                  (7) 

A function ( )y x , square integrable in [ ]0,1 , may be expressed in terms of 
shifted Legendre polynomials as 

( ) ( )0 j jjy x c P x∞

=
= ∑ , 

where jc  the coefficients are given by ( )jP x  

( ) ( ) ( )1

0
2 1 d , 1,2,j jc j y x p x x j= + =∫   

In practice, only the first ( )1m + - terms shifted Legendre polynomials are 
considered. Then I have 

( ) ( ) ( )T

0
,

m

j j
j

y x c P x C xφ
=

= =∑  

where the shifted Legendre coefficient vector C and the shifted Legendre vector 
( )  xφ  are given by 

[ ]T
0 , , mC c c=  , 

( ) ( ) ( ) ( ) T
0 1, , , mx P x P x P xφ =                     (8) 

The derivative of the vector ( )  xφ  can be expressed by 
( ) ( ) ( )1d

d
x

D x
x

φ
φ= ,                      (9) 

where ( )1D  is the ( ) ( )1 1m m+ × +  operational matrix of derivative given by 

( ) ( )(1)

1,3, , , if odd
2 2 1 , for ,

1,3, , 1, if even
0, otherwise,

ij

k m m
j j i k

D d k m m
 =

+ = − = = = − 





  

for example for even m I had 

( )1

0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 3 0 0 0 0 0

 2 1 0 5 0 0 0 0

1 0 5 0 2 3 0 0
0 3 0 7 0 2 1 0

D

m
m

 
 
 
 
 

=  
 
 

− 
 − 









       




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3. Generalized Legendre Operational Matrix to Fractional 
Calculus 

By using Equation (9), it is clear that 

( ) ( )( ) ( )1d
d

n n

n

x
D x

x
φ

φ= ,                      (10) 

where  n N∈  and the superscript, in ( )1D , denotes matrix powers. Thus 

( ) ( )( )1 , 1, 2,
nnD D n= =                      (11) 

Lemma 1. Let ( )iP x  be a shifted Legendre polynomial then 
( ) ( ) 0, 0,1, , 1, 0iD P x iα α α= = − >                (12) 

Proof. Using Equations (2), (3) in Equation (6) the lemma can be proved. 
In the following theorem I generalize the operational matrix of derivative of 

shifted Legendre polynomials given in (9) for fractional derivative. 
Theorem 1. Let ( )xφ  be shifted Legendre vector defined in (8) and also 

suppose,   0α >  then 

( ) ( ) ( )D x D xααφ φ                      (13) 

where ( )D α  is the ( ) ( )1 1m m+ × +  operational matrix of fractional derivative 
of order α  in the Caputo sense and is defined as follows: 

( )
,0, ,1, , ,

,0, ,1, , ,

,0, ,1, , ,

0 0 0

0 0 0

k k m kk k k

i i i
i k i k i m kk k k

m m m
m k m k m m kk k k

D

α α α
α α αα α α

α

α α α

α α α

θ θ θ

θ θ θ

θ θ θ

          
     = = =               

= = =          

= = =          







= 







∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑



   





   



   



 
















      (14) 

where , ,i j kθ  is given by 

( ) ( ) ( ) ( )
( ) ( ) ( )( ) ( ) ( ), , 20

1 ! !
2 1

! ! Γ  1 ! ! 1

i j k l
j

i j k i

i k l j
j

i k k k j l l k l
θ

α α

+ + +

=

− + +
+

− − + − + − +
= ∑    (15) 

Note that in ( )D α  the first α    rows, are all zero. 
Proof. Using Equations (3), (4) and (6) I have 

( ) ( ) ( )
( ) ( )

( )

( ) ( )
( ) ( ) ( )

20

1 !
 

! !

1 !
, , ,

! ! Γ  1

i k
i k

i k

i k
i k
k

i k
D p x D x

i k k

i k
x i m

i k k k

α α

α
α α

α

+

=

+
−

=  

− +
=

−

− +
= =   − − +

∑

∑ 

    (16) 

Now, approximate kx α−  by ( )1m +  terms of shifted Legendre series, I have 

( ),0
mk

k j jjx b P xα−
=∑ ,                    (17) 
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where 

( ) ( )

( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( ) ( )

1

,
0

1

2
0 0

2
0

2 1 d

1 !
2 1 d

! !

1 !
2 1

! ! 1

k
k j j

j lj
k l

l

j lj

l

b j x p x x

j l
j x x

j l l

j l
j

j l l k l

α

α

α

−

+
+ −

=

+

=

= +

− +
= +

−

− +
= +

− + − +

∫

∑ ∫

∑

            (18) 

Employing Equations (16)-(18) I get 

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )

,
0

, ,0

1 !
! ! 1

, , ,

i ki m

i k j j
k j

m i
i j k jj k

i k
D P x b P x

i k k k

P x i m

α

α

α

α

θ α

+

= =  

= =  

− +
≈

− Γ − +

= =   

∑ ∑

∑ ∑ 

       (19) 

where , ,i j kθ  is given in Equation (15). Rewrite Equation (19) as a vector form I 
have 

( ) ( ) ( ),0, ,1, , ,, , , , , ,i i i
i i k i k i m kk k kD P x x i mα

α α αθ θ θ φ α
= = =          

  =    ∑ ∑ ∑   (20) 

Also according to Lemma 1, I can write 
( ) ( ) [ ] ( )0,0, ,0 , 0,1, , 1iD P x x iα φ α= = −              (21) 

A combination of Eqs. (20) and (21) leads to the desired result. 
Remark. If n Nα = ∈  Then Theorem 1 gives the same result as Equation 

(11). 

4. Applications of the Operational Matrix of Fractional  
Derivative 

Operational matrix of fractional derivative is applied to solve multi-order frac-
tional differential equation. The existence and uniqueness and continuous de-
pendence of the solution to this problem are discussed in [21]. 

4.1. Linear Multi-Order Fractional Differential Equation [22] 

Consider the linear multi-order fractional differential equation 

( ) ( ) ( ) ( ) ( )1
1 1 2

k
k k kD y x a D y x a D y x a y x a g xββα

+ += + + + −       (22) 

with initial conditions 
( ) ( ) ,,0 0 ,i

iy d i n= =                       (23) 

where 1, , 2j k= +  are real constant coefficients and also 1n nα< ≤ + , 

1 20 kβ β β α< < < < <  and Dα  denotes the Caputo fractional derivative of 
order α  

To solve problem (22) and (23) I approximate ( )y x  and ( )g x  by the 
shifted Legendre polynomials as 

( ) ( ) ( )T
0

m
i iiy x c P x C xφ

=
=∑                     (24) 
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( ) ( ) ( )T
0

m
i iig x g P x G xφ

=
=∑                 (25) 

where vector [ ]T0 , ,? mG g g=   is known but [ ]T0 , , mC c c=   is an unknown 
vector. By using Equations (13) and (24) I have 

( ) ( ) ( ) ( )T TD y x c D x c D xαα αφ φ                (26) 

( ) ( ) ( ) ( )T T  , 1, ,jj jD y x c D x c D x j kββ β φ φ =           (27) 

Employing Equations (24)-(27) the residual ( )mR x  for Equation (22) can be 
written as 

( ) ( ) ( )( ) ( )T T T T
1 21

k j
m j k kiR x c D c a D c a G a xα β φ+ +=

− − −∑       (28) 

As in a typical tau method [23] I generate m − n linear equations by applying 

( ) ( ) ( ) ( )1

0
, d 0, 0,1, , 1m j m jR x P x R x P x x j m n= = = − −∫       (29) 

Also, by substituting Equations (11) and (24) in Equation (23) I get 

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

T
0

1 1T
1

T

0 0

0 0

0 0n n
n

y c d

y c D d

y c D d

φ

φ

φ

= =

= =

= =



                   (30) 

Equations (29) and (30) generate m − n and n +1 set of linear equations, re-
spectively. These linear equations can be solved for unknown coefficients of the 
vector C. Consequently, y(x) given in Equation (24) can be calculated. 

4.2. Treatment of Nonhomogeneous Boundary Conditions 

To solve Equation (22) with respect to the following boundary conditions (for n 
is even), 

( ) ( ) ( ) ( )0 , , 0,1, , 1
2

i i
i i

nu a u L b i= = = −             (31) 

The same technique described in Section 4.1 was applied, but the (n) set of li-
near equations resulting from (31) is changed to be obtained from 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T0 0 , , 0,1, , 1
2

i i i i
i i

nu c D a u L c D L b iφ φ= = = = = −    (32) 

Equations (29) and (31) generate (N + 1) system of linear equations. This sys-
tem can be solved to determine the unknown coefficients of the vector C. 

4.3. Nonlinear Multi-Order Fractional Differential Equation 
4.3.1. Consider the Nonlinear Multi-Order Fractional Differential  

Equation 

( ) ( ) ( ) ( )( )1, , , , kD y x F x y x D y x D y xββα =  ,          (33) 

with initial conditions 
( ) ( )0 , 0, ,iy di i n= =                     (34) 
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where 1 21,0 kn nα β β β α< ≤ + < < < < <  and Dα  denotes the Caputo 
fractional derivative of order α . It should be noted that F can be nonlinear in 
general. 

In order to use shifted Legendre polynomials for this problem, I first approx-
imate ( ) ( ),y x D y xα and ( )jD y xβ  for   0, ,j k=   as Equations (24), (26) 
and (27) respectively. By substituting these equations in Equation (33) I get 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )1T T T T, , , , kC D x F x C x C D x C D xβα βϕ ϕ ϕ ϕ≈        (35) 

Also, by substituting Equations (11) and (24) in Equation (34) I obtain 

( ) ( )T
00 ,0y c dφ= =  

( ) ( ) ( ) ( )T0 0 , 1,2, ,i i
iy c D d i nφ= = =                 (36) 

To find the solution y(x), I first collocate Equation (35) at m − n points. For 
suitable collocation points I use the first (m-n) shifted Legendre roots of 

( )1mP x+ . These equations together with Equation (36) generate a system of (.m 
+ 1) nonlinear equations which can be solved using Newton’s iterative method. 
Consequently y(x) given in Equation (24) can be calculated. 

4.3.2. Boundary Value Problem 
Consider the nonlinear FDE (33) with boundary conditions (31). I apply the 
same technique described in Section 4.3.1, but Equation (36) shall be changed to 
be (32)., I have a system of (N + 1) nonlinear algebraic equations, which can be 
solved using Newton’s iterative method. 

5. Numerical Results 

The presented method in the previous two sections has been applied to solve 
some examples. In this section, the results for the examples are shown along 
with their figures and a comparison with the analytical results was also presented 
in order to show the effectiveness of the technique. 

Example 1. [24] Consider the linear fractional-order IVP: 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 1 0.1379 0.01593 2 5 , 0,1 ,y x y x y x y x y x f x x+ + + + = ∈ (37) 

Subject to the initial conditions 

( ) ( )0 1, 0 0y y′= =                      (38) 

where f(x) is chosen such that the exact solution of (37) is ( )
2

1
2
xy x = +  

By applying the technique described in Section 4.1 with m = 3, solution ap-
proximated as 

( ) ( ) ( ) ( ) ( ) ( )T
0 0 1 1 2 2 3 3  y x c p x c p x c p x c p x c xϕ= + + + =  

Here, I have 

( )1

0 0 0 0
2 0 0 0
 
0 6 0 0
2 0 10 0

D

 
 
 =
 
 
 

 ( )2

0 0 0 0
0 0 0 0

12 0 0 0
0 60 0 0

D

 
 
 =
 
 
 
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( )1.379

0 0 0 0
1.1313681331 1.0223463203 0.0608397666 0.0199340611
1.0223463203 0.36356929917 1.196322451 0.093190361

1.07052836676 0.17397613077 0.3074747759 1.2963937228

D

 
 − =
 − −
 

−   

( )0.0159

0 0 0 0
1.01472967373 1.0039162279 0.00667748802491 0.00190548426

1.0039162279 0.03644683 1.0231320558 0.00944784045
1.0080521857 0.01921582796 0.02742824636 1.03280174727

D

 
 − =
 − −
 

−   
9.2199297
4.10949395
0.918660451
0.03295167

G

 
 
 =
 
 
 

 

Therefore using Equation (29) I obtain 

0 1 2 39.2199297 5 9.2774659 8.95139113 9.1491089 0c c c c− + + + + =   (39) 

1 2 34.1094939 8.04860886 18.763585 59.6328319 0c c c− + + + =     (40) 

Now, by applying Equation (30) I have 

0 1 2 31 0c c c c− + − + − =                    (41) 

1 2 32 6 12 0c c c− + =                     (42) 

Finally by solving Equations (39)-(42) I got 

0 1.17436533c = ; 1 0.2662085c = ; 2 0.09495018c = ; 3 0.003107c =  

Thus I can write 

( ) ( )

2

2 3

2

1.17436533 0.2662085 0.09495018 0.003107

1
1 2

1 6 6
1 12 30 20

1
2

y x

x
x x

x x x

=

 
 − + ×
 − +
 
− + − + 

= +
x

 

which is the exact solution. 
Example 2. Consider the boundary value problem 

( ) ( )
3

5 4 3.5 2.52 128 64     
7 π 5 π

D y x y x x x x x+ = − + −  

subject to boundary conditions (43) 

( ) ( )0 0, 1 0y y= =  

where the exact solution of this problem is ( ) ( )4 1y x x x= − . 
This fractional boundary value problem is solved by applying the method de-

scribed in Section 4.2 by using shifted Legendre expansion and its operational 
matrices of derivatives with m = 5. Using (43) four linear equations obtained, 
and by applying boundary condition I had two linear equations. By solving this 
linear system I got the unknown vector C. By substituting this vector in Equa-
tion (43), I had the exact solution. 
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( ) ( )
5

0
  i i
i

y x xc p
=

=∑  

Then, the 6 unknown coefficients will be in the form 

0 0.033333c = − ; 1 0.042857c = − ; 2 0.0119047c = ; 3 0.0388888c = ;  

4 0.02142857c = ; 5 0.00396825c =  

Therefore, I can write 

( ) ( )

( )

2

2 3

2 3 4

2 3 4 5

4

0.033333 0.042857 0.0119047 0.0388888 0.02142857 0.00396825
1

1 2
1 6 6

1 12 30 20
1 20 90 140 70

1 30 210 560 630 252
1

y x

x
x x

x x x
x x x x

x x x x x
x x

= − −
 
 − +
 

− + × − + − +
 − + − +  − + − + − + 

= −

 

Numerical results will not be presented since the exact solution is obtained. 
Example 3. [25] Consider the equation 

( ) ( ) ( )
3 9

2 34 41286
115
4

D u x D u x u x x x x+ + = + +
 Γ 
 

            (44) 

Subject to initial conditions ( ) ( )0 0, 0 0u u′= =  
where the exact solution of this problem is ( ) 3u x x=  

By applying the technique described in Section 4.1 with m = 3, the approx-
imate solution and the right hand side may be written in the form 

( ) ( ) ( )3 T
 1 i iiu x c p x c xφ

=
=∑  

( ) ( ) ( )3 T
1  i ii xg x g p G xφ
=

=∑  

Here, I have 

( )2

0 0 0 0
0 0 0 0

12 0 0 0
0 60 0 0

D

 
 
 =
 
 
 

 

13 512
14 195Gamma
4

23 15363
120 1105Gamma
4

1 5125
120 1547Gamma
4

1 5127
1140 38675Gamma
4

G

 +      
      +         
 =   

  
 + 
        

 
  
  
 + 
   
      
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( )3 4

0 0 0 0
8 8 8 392
5 15 39 3315
8 216 56 88

15 65 51 195
272 48 1264 5488
195 85 273 3315

D

 
 
 −
 
 =
 − −
 
 

− 
 

 

Therefore, using Equation (4.8) I obtain 

31 2
0

2728 172 13 512 0
15 15 195 4 195Gamma
4

cc c c+ + − − + =
 
  

          (45) 

31 2
1

50528 216 153 22016 0
115 65 85 20 3315Gamma
4

cc c c + + − − + =    
  

        (46) 

Now, by applying Equation (4.9), I have 

( )T
0 1 2 30 0c c c c cϕ = − + − =                 (47) 

( ) ( )1T
1 2 30 2 6 12 0c D c c cϕ = − + =               (48) 

Finally, by solving linear system of four Equations (45)-(48), I obtained 

( ) ( ) 3
2

2 3

1
1 2

0.25 0.45 0.25 0.05
1 6 6

1 12 30 20

x
u x x

x x
x x x

 
 − + = =
 − +
 
− + − + 

 

which is the exact solution. 
It is clear that in Examples 1 - 3 the present method can be considered as an 

efficient method. 

6. Conclusion 

Shifted Legendre approximation method for solving higher order fractional dif-
ferential equations has been presented. These equations are transformed to a 
system of algebraic equations to provide a matrix representation. The solution is 
expressed as a truncated Legendre series, and so it can be easily evaluated for ar-
bitrary values by using computer program. From illustrative examples, it can be 
seen that this matrix approach can obtain very accurate and satisfactory results. 
The solution obtained is in very excellent agreement with the already existing 
ones and shows that this approach can solve the problems effectively. Compari-
sons between approximate solutions and analytical solutions illustrate the valid-
ity and the great potential of the technique. 
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