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Abstract 
Pollution of the biosphere by heavy metals is a global hazard that has acceler-
ated since the beginning of the industrial revolution. Toxic heavy metals are 
harmful to living organisms even at low concentrations whereas heavy metals 
that are essential trace elements are required by plants at low concentrations 
but can become toxic at high concentrations. Heavy metals released from dif-
ferent sources accumulate in soil and, where bioavailability is high enough; 
can adversely affect soil biological functioning and other properties, leading 
to the loss of soil and ecosystem fertility and health. It is important that heavy 
metal contaminated sites are remediated as heavy metals do not decompose 
into less harmful substances like organic contaminants, and thus are retained 
in the soil. In this review, we survey and analysis our current knowledge and 
understanding of the abundance of heavy metals in soil, their phytoavailabil-
ity, their toxicity, their uptake and transport, role of rhizobia and other mi-
crobes and overall rhizosphere processes. 
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1. Introduction 

Soil is an important resource that produces food and other raw materials for 
humans. However, soil is often a sink for wastes, including heavy metals [1], 
from a variety of human activities. In a risk based approach, soil can be classified 
as contaminated if the bioavailable concentrations of heavy metals is high 
enough to cause harm directly or indirectly to humans, animals, plants, water 
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quality, the wider ecosystem, buildings and or construction materials [2] [3]. 
Some heavy metals are essential for living organisms at lower concentrations 

e.g. Co, Cu, Cr, Mn and Zn and are known as trace elements or micronutrients 
[1] [4]. The term toxic heavy metalloids include those elements that are nones-
sential and include heavy metals such as Cd, Pb, Ba, Hg, Sb, Tl, As and U [1] [2] 
[5]. 

Heavy metals are emitted into the soil environment through anthropogenic 
and geogenic processes [6]. In nature, heavy metals commonly occur in soil 
parent materials [1] [7] and the main natural source of metals and metalloids in 
the soil environment is the weathering of parent material [1] [8].  

2. Heavy Metals and Metalloids in Soils 
2.1. Arsenic 

Arsenic has a crustal average of 1.5 - 2 ppm [9]. The background concentration 
range of As in soil is 1 - 40 mg/kg [10] with an average As concentrations in soils 
of approximately 5 ppm. In natural soils, high As concentrations are often re-
lated to sulfide deposits and their weathering to produce local mineralised soils 
[9]. Anthropogenic sources of As contamination in soil include sulfide mining, 
fossil fuels combustion, smelting, use of As containing pesticides and copper 
chrome arsenate used as a wood preservative [9] [11]. In addition, groundwater 
has been found to be contaminated with As in more than 20 countries including 
the United States of America, China, India and Bangladesh [11] and using this 
water to irrigate soils can create As contamination issues such as leaving risks of 
soil accumulation of the toxic element and possible exposure of As contamina-
tion to the food chain through plant uptake and animal consumption [12]. In 
Australia, a large source of Ascontamination comes from arsenic-based cattle 
dips. Arsenical dip solutions were used in the past for cattle tick and sheep lice 
control [13].  

2.2. Zinc 

Zinc has a crustal average of 70 mg/kg [14] and a background concentration 
range in soil of 10 - 300 mg/kg. Industrial activities such as mining and smelting 
[15] and the long-term application of biosolids to agricultural land [16] are the 
primary sources of anthropogenic Zn in soils. Pollution of alkaline sandy soils, 
which are low in organic matter and clay, with Zn is likely to result in soils with 
high Zn phytoavailability and therefore a high risk of plants developing Zn tox-
icity at relatively low total Zn concentrations [17]. Zinc toxicity in plants how-
ever has been far less wide spread than cases of Zn deficiencies [18] [19].  

2.3. Nickel 

Nickel has a crustal abundance range of 37 - 72 mg/kg [20] and background 
concentration of 16.1 - 30.7 mg/kg [21]. Smelting, ore refining, mining, combus-
tion of fossil fuels and the long-time application of biosolids to agricultural land 

https://doi.org/10.4236/ajps.2018.913191


F. Seraj, T. Rahman 
 

 

DOI: 10.4236/ajps.2018.913191 2628 American Journal of Plant Sciences 
 

results in excess Ni being present in soil [22]. Among various industrial opera-
tions manufacturing of alkaline storage batteries have resulted in an increase in 
the extent of nickel in the environment [23]. Natural sources of Ni include ser-
pentine areas in Venezuela, Australia and New Caledonia [24]. 

3. Bioavailability of Heavy Metals in Soils 

The bioavailable fraction of a heavy metal is defined as that proportion of the 
total pool of heavy metals in a soil that are extractable in a chemical regent and 
can potentially be absorbed by plants [25]. Heavy metals generally have low 
solubility and so are mainly in forms that are unavailable for plant uptake [26]. 
Thus, in natural undisturbed environments, heavy metals are rarely present in 
high enough bioavailable concentrations to cause significant toxicity to plants.  

Heavy metal bioavailability in soil is related to the solubility of contaminant in 
that soil [15] [27]. However, there is debate as to which fraction of heavy metals 
in soil corresponds to the bioavailable pool [27]. Bioavailability has been associ-
ated with heavy metal ion activity in the soil solution and the exchangeable 
heavy metal fraction [26] [27]. Nevertheless, there is yet no general consensus 
among researchers on how to measure bioavailability of heavy metals in soil. 

Heavy metal bioavailability, rather than total concentration, is important 
when accurately assessing the risk associated with soil contamination. Heavy 
metals that are present in soils occur in several fractions such as the soil solution, 
exchangeable, organically and colloidally bound, residual and within primary 
phase of minerals [28]. Soil organisms and plants are not able to access the entire 
heavy metal pool in the soil. Among these heavy metal fractions, the most avail-
able heavy metals and potentially phytotoxic are present in soil solution and ab-
sorbed to inorganic soil constituents at ion exchange sites, with the other heavy 
metal fractions being not/less available for plant uptake [29].  

A significant amount is known about the soil factors that affect the bioavail-
ability of heavy metals to plants. Menzies et al concludes on the extractants that 
most accurately estimate the phytoavailability of metals in soils [30]. Thus, a se-
ries of soil properties and processes control bioavailability and mobility of heavy 
metals in the soils with organic matter, soil pH, redox potential, clay and oxide 
content [31] [32].  

3.1. Organic Matter 

A fundamental component of soil is the organic matter which has originated 
from plants and animals and been set down within the earth’s structural com-
ponents [28] [33]. Organic materials can affect the solubility, bioavailability and 
mobility of heavy metals in soil [14]. Organic matter is involved in the release 
and retention of heavy metals via cation exchange and adsorption to organic 
compounds [28]. Studies show that adding organic materials to soil can reduce 
heavy metal bioavailability and mobility [34]. Generally, stable soluble organic 
heavy metal complexes are not available for plant uptake and heavy metals, es-
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pecially Cu, may be available in lower amounts as a result of complexing with 
dissolved organic carbon (DOC) in soil solutions [35] [36]. 

Humic substances are an important component of soil organic matter that can 
differ in molecular weight, composition, cation exchange capacity and solubility 
[28]. Humic substances are often divided into three major fractions: humic acid, 
fulvic acid and humin based upon solubility in water adjusted to different pH 
states [37] [38]. Humic and fulvic acids play an important role in the solubility 
and binding of heavy metals [39]. Fulvic acid is known to increase the ability of 
soil solutions to complex heavy metals such as Cu [40] [41] and Ni [38]. Nickel 
ions make strong coordinating complexes with organic matter due to its high 
electronegativity which is second to Cu in the soil environment [28]. Studies that 
show the effects of organic matter on heavy metal solubility and bioavailability 
revealed that heavy metal availability to plants and mobility in soil increase be-
cause of DOC complexation [40]. For example, organic matter affects Zn solu-
bility by the formation of complexes, although Zn competes less strongly than 
Ca, Cu and Ni for binding sites [42].  

3.2. Soil pH 

Soil pH is a fundamental variable that controls dissolution, precipitation, ion 
exchange adsorption, redox and other complex reactions within the soil [28]. In 
the soil solution, pH is involved in the equilibrium between metal speciation, 
solubility, adsorption on colloids and sites available for heavy metal exchange 
and binding [28] [43].  

Soil pH has been found to be a major factor that controls Cd and Zn bioavail-
ability [44]. Nickel solubility and toxicity in soils has been positively identified as 
related to soil pH and total Ni content [45]. Generally as the pH decreases, the 
solubility and bioavailability of heavy metals increase [46] [47]. It has been 
found in some studies where CaCl2 extractable Cu method was used, that there 
was little relationship between pH and Cu availability [41]. The reason for this 
lack of response to pH was that Cu has a strong affinity for organic matter, 
which dominates Cu bioavailability in most soils [48] [49]. Thus, dissolved or-
ganic matter is often a more important determinant of Cu bioavailability and 
solubility than pH [35] [50].  

The soil pH has a significant effect on the bioavailability of As. Arsenic 
bioavailability is mostly controlled by adsorption and desorption reactions in 
soil [28]. The effect of pH on As adsorption reactions is relatively well under-
stood with acid and alkaline soils having less As adsorption to soil colloids and 
thus greater As solubility than more neutral soils [51]. With As adsorption the 
variable pH-dependent charges develop on the soil particle surfaces [52] and in-
fluence As desorption over extended periods of time [53]. 

3.3. Redox Conditions 

The reduction and oxidation conditions together are referred to as redox condi-
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tions. Redox reactions are simultaneous processes involving electron transfer 
from a reductant (electron donor) to an oxidant (electron acceptor). Redox con-
ditions in a soil have strong effects on the solubility and speciation of heavy met-
als in solution [54]. However, redox conditions are not uniform in soils as mi-
crobial processes, oxygen concentration, organic matter and pH influence redox 
conditions. In particular, redox conditions are known to have significant im-
pacts on Mn, Fe, Cr, Sb and As speciation as these elements change their redox 
state depending on the environmental conditions [55] [56]. Many of these ele-
ments are more toxic and mobile in their most reduced form e.g. As(III) and 
Mn(II) while others are more toxic in their oxidised form e.g. Cr(VI) [57]. Iron 
and Mn are the most common oxides in soils and they become increasingly 
soluble under reducing conditions. Zinc, Ni, Cd and Cu however are mostly 
present in the divalent form in soils; as the monovalent forms are greatly unsta-
ble and so these metals are not significantly reduced under low redox conditions 
[58]. Hence, redox conditions are considered to play a smaller role in the solu-
bility and bioavailability of Zn, Ni, Cd and Cu compared to heavy metals with 
multiple redox states such as As, Mn and Cr [59]. 

3.4. Clays and Oxides 

Clays and oxides are accepted as an important mechanism for controlling the 
solubility of trace metals [42]. Clays and oxides control metal availability by spe-
cific adsorption to hydroxyl groups [60], non-specific adsorption to a large 
number of available binding sites [61], co-precipitation [62] and precipitation 
[62]. The clay fraction is typically the most influential for cation adsorption re-
actions, due to the high concentrations of clays in many soils, high surface area 
and hydroxyl groups present on clay surfaces [28]. Adsorption in soil commonly 
takes place on the surfaces of clays and oxides. Increasing clays and oxides in soil 
therefore supplies more sites for adsorption of heavy metals and so reduces the 
bioavailability of heavy metals [63] [64]. 

4. Rhizosphere Processes 

The rhizosphere is the volume of soil that is affected by the presence of roots 
from growing plants and generally extends out 1 - 2 mm from the surface of 
roots [65]. The rhizosphere has physical, biological and chemical properties that 
are different to the bulk soil. Due to the microenvironment that the plant root 
creates, the rhizosphere has a range of different characteristics to the bulk soil 
for example larger microbial biomass, altered pH, higher dissolved organic car-
bon from root exudates [66] [67]. Much of the research on the rhizosphere has 
focused on the nutrition of plants and macronutrients including N, P and C cy-
cling [65] [68]. However, there has also been significant recent rhizosphere re-
search on heavy metals and pollution [69]. 

Compared to the bulk soil, the rhizosphere is relatively rich in nutrients due 
to the loss of up to 40% of plant photosynthates from roots into the surrounding 
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soil medium [70]. The importance of rhizosphere microbial populations for 
maintaining root health, nutrient uptake and tolerating environmental stress is 
now recognized [71] [72]. The rhizosphere has many characteristics.  

In the rhizosphere, plant roots release a broad range of organic compounds 
such as phytosiderophores, which are mostly non-protein amino acids [73] [74]. 
Siderophores are mainly synthesized by some microorganisms to solubilize iron 
under iron deficient conditions [75] [76] also to solubilize other metals (Zn, Cu, 
Cd) [77] [78] [79]. By a specific receptor, the bacteria incorporate the iron 
siderophore complex [80]. Phytosiderophores released into the soil augment the 
ability of plants to develop under Fe limiting conditions [73].  

Phytohormones are synthesized by both plants and microorganisms in the 
rhizosphere and result in larger biomass of roots in plants [81]. Phytohormones 
cover a wide range of chemicals including, auxin, cytokinin, indole-acetic acid, 
and gibberellin. Among them, auxins are the most common phytohormones that 
are known to be involved in the stimulation of roots and enhancement of plant 
growth [82].  

4.1. Rhizosphere pH Changes 

The pH of the rhizosphere can vary from the bulk soil by up to 2.5 units de-
pending upon plant species and the buffering capacity of the soil [47]. The pH of 
the rhizosphere is different to the bulk soil due to the excretion of hydrogen, bi-
carbonate salts and organic acids by plant roots to balance the internal charge 
difference in plants from cation and anion uptake by roots and due to CO2 pro-
duction from microbial activity [68]. 

4.2. Role of Rhizobia and Other Microbes 

Rhizobia are bacteria that form symbiotic associations with legumes and are re-
sponsible for the fixation of N from the atmosphere into forms accessible by 
plant roots e.g. 4NH+  [33]. Consequently, legumes absorb more cations than 
anions and, thus, acidify the surrounding rhizosphere [65]. Nitrogen assimila-
tion by rhizobia results in changes of pH and increases heavy metal solubility 
and bioavailability where the symbionts exist [83] [84]. 

Research was carried out in the rhizosphere of Ni accumulating plants and 
plants grown on serpentine soils [85] [86] [87]. The findings were that the 
rhizosphere bacteria increased plant availability of Ni by increasing Ni accumu-
lation via the production of siderophores. The siderophores induced the dissolu-
tion of minerals carrying Ni and thus promoted shoot and root biomass indi-
rectly [87] [88].  

Among other microbes in the rhizosphere, mycorrhiza is mutualistic associa-
tions between certain soil fungi and the roots of most plant species [89]. Re-
search has found that mycorrhiza assist in nutrient uptake at lower concentra-
tions of metals [90]. Also mycorrhiza is able to reduce metal uptake and in some 
cases increase plant metal tolerance under conditions of metal contamination 
[91]. For instance, mycorrhizal Trifolium pratense (red clover) plants grown in 
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acid soils with high Mn bioavailability had less Mn in the roots and the shoots 
than non-mycorrhizal plants [92]. Also mycorrhizae are able to make plants 
more tolerant of metals when grown in soils containing high heavy metals con-
centrations (such as Zn, Cu, Mn, Ni, Cr) [93] [94] [95]. Possible mechanisms by 
which mycorrhizae deal with excess metals include the immobilisation of metals 
in the fungal hyphae or in root tissue [96]. 

5. Heavy Metal Uptake and Transport 

Heavy metals (such as Fe, Cu, Mn, Zn and Ni) are absorbed passively by plant 
roots via ion channels [97]. The mechanism for uptake is largely defined by the 
electrochemical gradients that apply to the transport of a specific nutrient [76] 
[98].  

A number of selective transport pathways for heavy metals into plants are now 
being discovered. For instance, iron bound to phytosiderophores can be trans-
ported by Yellow stripe1 (YS1) across the plasma membrane [99]. Yellow stripe1 
gene synthesizes Fe(III)-Phytosiderophore (Fe-III-PS) transporter in maize (Zea 
mays). Also YS1-like (YSL) family of transporters can mobilize Zn and Cu from 
plant leaves and seeds [100]. 

Non-selective channels transport Ca2+ across the root membrane, and it is 
understood that the uptake of other metals at normal soil solution concentra-
tions occur via this pathway [101]. Competition between cations at the surface of 
the root shows that non-selective channels facilitate the absorption of essential 
and non-essential metals [76]. As a result, under conditions of elevated heavy 
metals, competition for the transport sites leads to favouring the absorption of 
heavy metals over macronutrients, thus inducing or exacerbating deficiencies of 
nutrient cations [102].  

Plants that have Fe deficiency are sometimes found to have higher Zn and Mn 
concentrations as well [103]. In Arabidopsis, root membrane protein IRT1, a 
general cation transporter, enhances Zn and Mn uptake [104]. A number of 
transporters are responsible for Fe uptake from soil. This involves transporting 
from the roots to shoots, transporting to generative parts of plant, xylem 
unloading, mobilization when seed germination occurs and loading-unloading 
of Fe from vacuoles. The Fe transporters ZmYS1 and OsYSL15 are able to move 
additional metals other than Fe such as Cu, Zn and Ni [103]. 

There are two strategies that plants use for Fe uptake: strategy I and strategy II 
(Figure 1). Strategy I plants utilize acidification & reduction reactions to im-
prove Fe solubility and most of these plants belong to the non-grasses. Secreting 
protons into the rhizosphere lowers the soil pH, and thus, increases Fe solubility. 
The strategy I mechanism also effects co-suspension of As from Fe oxides or hy-
droxides. This makes As more soluble and available to plants [105]. Strategy II 
plants excrete phytosiderophores (PS) which solubilise and bind soil Fe [106]. 
Strategy II, is utilised by grasses to obtain Fe from soil [103]. Strategy II plants 
utilizes a chelation mechanism that is utilised by several bacteria and fungi [103]. 
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An example of a phytosiderophore is mugineic acid which is secreted by Fe defi-
cient graminaceous plants [107]. In addition to Fe, phytosiderophores have been 
shown to mobilize and increase uptake of Zn and Cd in the rhizosphere of 
graminaceous plants [9]. This strategy takes place to adapt to alkaline soils 
wherever rhizosphere acidification becomes hard to happen. The phyto-
siderophores are strong Fe chelators. These are amalgamated by the plant and 
secreted into the rhizosphere and there they bind with Fe [103].  

6. Heavy Metal Toxicity in Plants 

The most common evidence of heavy metal toxicity is a decrease in plant growth 
as metal toxicity increases. However, as various heavy metals have diverse sites 
of action within plant, the visual toxic response differs among heavy metals and 
plant species. From Table 1 it can be seen that the critical tissue concentrations 
for toxicity vary considerably across metal, species, and the plant tissue being 
measured. 
 

 
Figure 1. Iron uptake systems of plant roots. Grass and non-grass species acquire iron 
from the soil through the plasma membrane (PM) of their root by two different strategies 
(Strategy I and Strategy II, respectively). Strategy I plants reduce Fe(III) to Fe(II), which is 
then transported across the plasma membrane by the Iron-regulated transporter 1 
(IRT1). Strategy II plants release Fe(III) chelating siderophores and then transport 
Fe(III)-siderophore complexes across the plasma membrane using Yellow stripe 1 (YS1) 
transporter (partially adapted from [108]). 
 
Table 1. Critical concentrations for for As, Zn, Ni toxicity in soybean and sunflower. 

Heavy Metal Species Plant part 
Critical toxicity  

(mg·kg−1) 
Reference 

As 
Glycine max (soybean) Shoot 299 [109] 

Helianthus annus (sunflower) Shoot 100 [110] 

Zn 
Glycine max (soybean) Leaves 229 [111] 

Helianthus annus (sunflower) Leaves 190 [112] 

Ni 
Glycine max (soybean) Shoot 52 [113] 

Helianthus annus (sunflower) Leaves 40 [114] 
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6.1. Arsenic Toxicity  

Arsenic is not essential for plants and appears not to be involved in specific 
metabolic reactions when supplied at low concentrations [115] [116]. Naturally, 
As may be present in four oxidation states −3, 0, +3 and +5 [117]. The major 
forms of As in the soils are arsenate (As(V)) and arsenite (As(III)) [9] with the 
latter having greater toxicity to most species including plants [118]. The symp-
toms of As toxicity in plants frequently include poor seed germination and re-
ductions in root growth [119]. These effects may relate to rapid disruption of 
plasma membrane structure, including fluidisation [120]. At higher concentra-
tions As has been reported to interfere with metabolic processes and sometimes 
lead to plant death [121]. Where plants survive high As exposure, they may show 
reduced growth, nutrient deficiencies and chlorosis, resulting from reduced 
chlorophyll biosynthesis [122] [123], as well as reduced photosynthetic oxygen 
evolution [124]. Critical concentrations of As in shoot tissue range from ap-
proximately 21 to 325 µg/g depending on the species and cultivar [125]. 

6.2. Zinc Toxicity 

Symptoms of Zn toxicity include a general chlorosis of younger leaves where Zn 
is present in toxic concentrations in the soils [126] and an overall decrease in 
leaf size compared to the plants which are unaffected [19]. Chlorosis is the first 
typical symptom of Zn toxicity [126]. Under further exposure to toxic Zn levels 
plant symptoms develop into reddened leaves and in severe cases Zn toxicity can 
lead to necrosis of the tip of the leaf [73]. Reduction in the growth of main, lat-
eral roots and yellowing of the root is how Zn toxicity is manifested in roots 
[19]. Critical toxicity concentrations of Zn in crop leaves are between 100 µg/g 
to >300 µg/g depending on the species [73].  

6.3. Nickel Toxicity 

Moderate concentrations of Ni can severely limit the growth of plants such as 
Indian mustard (Brassica juncea) and canola (Brassica napus) [127]. Critical 
toxicity levels of Ni are in range of 10 µg/g to >50 µg/g in crops of moderately 
tolerant species [73]. In soil, excess Ni affects root growth with severe inhibition 
in species that are sensitive to Ni at concentrations < 5 µM in solution culture 
[73]. The most frequent effect of Ni toxicity is foliar chlorosis and in some cases 
decreased growth of root [128] [129].  

7. Concluding Remarks 

Metal contamination issues in plants and soils are becoming progressively 
shared throughout the world. Metal toxicities are often accompanying with a 
range of symptoms and an overall decline in plant growth [130] [131] [132]. 
Contextual knowledge of available different strategies and possible risks of heavy 
metals is required for the selection of appropriate remedial options. The growth 
promoting properties of rhizobia to an array of heavy metals for the remediation 
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and stabilisation of contaminated land is an area of research that requires to be 
further explored.  
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