
Low Carbon Economy, 2018, 9, 81-100 
http://www.scirp.org/journal/lce 

ISSN Online: 2158-7019 
ISSN Print: 2158-7000 

 

DOI: 10.4236/lce.2018.94007  Dec. 14, 2018 81 Low Carbon Economy 
 

 
 
 

A Study on the Law of Cyclical Fluctuation of 
Carbon Price—Empirical Evidence from EU ETS 

Xing Yang1,2, Hanfeng Liao1 

1School of Economics, Jinan University, Guangzhou, China  
2School of Economics, Guangzhou College of South China University of Technology, Guangzhou, China 

 
 
 

Abstract 
Based on the trading data of the Bluenext and the European Climate Ex-
change (ECX), this paper analyzes the cyclic price fluctuations of the EU car-
bon emission rights by means of the maximum entropy spectrum and wavelet 
variance. The results show that: 1) there are obvious cyclical price fluctuations 
in the EU carbon trading market, with the longest cycle being 33 months and 
the shortest 5.7; 2) researches on the factors that affect the cyclical price fluc-
tuations of carbon emission rights manifest that power prices (POWER) exert 
the greatest implication on the prices of carbon emission rights, followed by 
coal prices (COAL). For every 1% change in POWER, the price of carbon 
emission rights changes 10.95% towards the same direction. For every 1% 
change in COAL, the price of carbon emissions changes 9.28% towards the 
opposite; 3) research based on variance decomposition demonstrates that 
electricity prices contribute the most to the changes of the price of carbon 
emissions, and the variance contribution rate is 13% at a lag cycle of 30 days. 
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1. Introduction 

The EU-ETS market has been running for 12 years. The price of carbon emis-
sion rights has undergone severe fluctuations in the past 12 years. For example, 
the EUA spot price once rose to €30/ton, and its bottom price was as low as 
€0.01/ton. These fluctuations stem from a wide range of factors, such as seasonal 
factors, cyclical factors, external economic shocks and changes in a country’s po-
litical systems and policies. There are at least three problems to be considered to 
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study the cyclical price fluctuations of carbon emission rights: First, is there a 
typical cyclical change in the price fluctuation of carbon emission rights? Is such 
a cycle strict or probabilistic? Second, if there is a cycle, how long is it? How 
should its authenticity be verified? Third, what are the factors that cause the cyc-
lical fluctuations of carbon market prices, and what are the main factors among 
them? This paper aims to seek answers to the aforementioned questions through 
research. 

There are few studies specifically focusing on the cyclical price changes of 
carbon emission rights. Influential studies include: Zhu and Fang [1] tested the 
volatility of carbon emissions by constructing a dynamic stochastic general equi-
librium model including the fluctuation of energy prices, which showed the 
fluctuations of carbon emissions were obviously pro-cyclical. Liu [2] held that 
there was an average cycle of 225-day in the second stage of EUA futures price 
by using the multiplicative variance V/S analysis. Zhu [3] utilized EMD algo-
rithm to decompose the price data of carbon futures of EU ETS from 2005 to 
2011 into seven IMF and a residual term. He calculated the average cycle of each 
sequence by using the number of peaks and troughs of each sequence. He be-
lieved the average cycle of the high-frequency component was eight days, while 
that of the low-frequency component was 96 days. Sartor [4] discovered cyclical 
fluctuations in EUA prices through the HP filter. 

Nevertheless, in the field of other financial assets, research on cyclicity ab-
ounds. Liow [5], based on monthly data, used HP filter to analyze the business 
cycle and stock market cycle of the United States, the United Kingdom and other 
countries. It was found that there was a long cycle of over eight years and a tra-
ditional cycle of 1.5 - 8 years. Fidrmuc [6] employed wavelet spectrum analysis 
to study the business cycle of China and other G7 countries. It was concluded 
that there were 23 quarterly cycles in China. Strohsal [7] studied financial cycles 
of the United States, Britain and Germany by combining the ARMA model with 
the spectral estimation. It was discovered there were 6.5, 6.6 and 7.6 short cycles 
and 14.4, 12.7 and 11.7 long cycles in the United States, Britain and Germany, 
respectively. Golosony [8], based on the BP method, analyzed the cycles and se-
cular trends of metal price fluctuations over the past century. He calculated the 
maximum and minimum amplitudes of boomcycle and recession cycle, arguing 
there were five super cycles; Parker [9] used Kalman filter to measure the cycle 
and amplitude of German hog price fluctuations. The results showed there was a 
significant fluctuation cycle of four years in the price. Castro [10] used Markov 
transformation model in his study on measuring the Portuguese stock market 
cycle from 1989 to 2012. It was proved that there were six bear and bull market 
alterations in thirteen years. Naccache [11] identified the cycle of oil price 
change by wavelet analysis and found that the cycle of oil price change was 20 - 
40 years. 

Moreover, researches on the driving factors of the carbon price have been 
popular over the past decade. Deeney et al. [12] used the event study method to 
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analyze the price impact, finding that decisions of the European Parliament had 
influences on the fluctuations of EUA. Ortas [13] applied wavelet correlation 
graph and cross spectrum to analyze the correlation between the prices of car-
bon futures and energy commodities such as crude oil at the second stage. It was 
concluded that there was a positive correlation between the price of carbon 
emission rights and oil prices (OIL). However, the relationship between the nat-
ural gas price (GAS) and the price of carbon emission rights reversed in the 
high-frequency part. Rickels et al. [14] maintained that the European economy 
and hydropower supply had significant impacts on the price fluctuations of the 
EU carbon emission rights at the second stage. By using the BSVAR model and 
CVAR, Hammoudeh [15] and Aatola [16] found the changes in OIL, COAL, 
GAS, and POWER could explain short-term fluctuations in the price of carbon 
dioxide emission rights. Creti et al. [17] found that influences of energy prices 
on the price of carbon emission rights were inconsistent at the first stage and the 
second stage through multiple regression analysis. Chevallier [18] found that 
energy prices, economic activities, unpredictable temperature changes and mar-
ket events would cause price fluctuations of carbon emissions rights by using the 
VAR model of the Markov Chain. 

2. Research Method 
2.1. Maximum Entropy 

As the maximum entropy spectral estimation is superior to the power spectral 
estimation in resolution, spectral shift and adaptability to short sequence, this 
paper adopts the maximum entropy spectral analysis to study the fluctuation 
cycle of carbon prices. The maximum entropy spectrum is: 
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In the formula, f is the ordinary frequency and 1f
T

= , T is the cycle; i is the 

imaginary number, ( )0P k  corresponds to the residual variance of 0k , 

( )0 ,B k k  is the reflection coefficient of order 0k . The reflection coefficient can 
be obtained by the Burg algorithm, and the cutoff order 0k  can be determined 
by the FPE rule. 

The red noise standard spectrum is used to test the significance of the maxi-
mum entropy spectrum, which works by constructing 2

vχ  statistics. 
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v is the degree of freedom of the spectral estimation, and v and ( )RS f  are cal-
culated as follows: 
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In the formula, n is the length of the sequence, m is the maximum time delay 
of the spectral estimation, ( )S f  is the average of the entropy spectral estima-
tion, r is the autocorrelation coefficient of the original sequence of a lagging or-
der, f is the corresponding frequency, and the given significance level is α = 0.05, 

( ) ( )2 1vW f χ α> − . The frequency corresponding to the cycle is significant; oth-
erwise, the cycle would not be significant. 

2.2. Wavelet Variance Method 

Wavelet Analysis (WA) was put forward by Morlet in the early 1980s, which is a 
time-frequency multi-resolution method for studying time sequence. It can 
clearly reveal the variation cycles hidden in a time sequence, fully reflect the var-
iation trend of a system at different time scales, and estimate the development 
trend of a system in the future. Concrete steps of determining the cycle of wave-
let analysis are as follows: 1) selecting a suitable basic wavelet function; 2) calcu-
lating wavelet coefficients and drawing wavelet coefficient map (real part, mod-
ulus); 3) drawing the wavelet variance map. 

1) Selecting a suitable basic wavelet function 
When we transform a time sequence into wavelets, the selection of mother 

wavelet is very significant. At present, there are many wavelet functions to 
choose from, such as Mexican hat wavelet, Haar wavelet, Morlet wavelet and 
Meyer wavelet. Here, Morlet complex wavelet is selected as wavelet basis. Morlet 
wavelet is a complex one, whose modulus and real parts are two important va-
riables. The magnitude of the modulus stands for the intensity of the characte-
ristic time scale signal, while the real parts represent the distribution and phase 
information of different characteristic time scale signals in various time. 

( ) 2
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In the formula: t is time, 0ω  is dimensionless frequency, when 0ω  = 6, 
wavelet scale a and Fourier cycle are almost equal (λ = 1.03a), and thus scale 
term and cycle term can substitute each other. 

2) Calculating wavelet coefficients and drawing wavelet coefficient map 
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Formula (6) is the continuous wavelet transform of the function ( )f t , 

( ),fW a τ  is the coefficient of the wavelet transform, t
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, a  is called scale factor or stretch factor, τ  is 

called shift factor. 
3) Drawing the wavelet variance map 
The square of the absolute value of the coefficients of all wavelet transform is 

integrated across the entire time domain, i.e., the wavelet variance. The wavelet 
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variance is: 
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Based on the wavelet variance, the wavelet variance graph is a function of the 
variance concerning time scale a. It reflects the distribution of the fluctuation 
energy with the scale, and each peak value in the graph corresponds to the sig-
nificant cycle respectively. When the wavelet variance hits the maximum, the 
scale of the corresponding wavelet function coincides best with the sequence 
cycle. It indicates that the cyclical oscillation at this scale is the most dramatic, 
which is called the main cycle. 

The significance of wavelet variance is tested by red noise. The theoretical 
value of red noise is: 
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r is the autocorrelation coefficient for the original sequence of lagging order, tδ  
is the interval of time sequence. 

3. Existence Test of Cyclical Price Fluctuations of Carbon  
Emission Rights Sequence 

This chapter adopts the maximum entropy spectral analysis and wavelet va-
riance method to compare the fluctuation cycles of carbon prices, so as to ex-
plore the length of such fluctuation cycles. The data used in this paper stem from 
the EUA spot prices collected by Blue next and European Climate Exchange 
(ECX)1. The data cycle is from Phase II of the EU carbon trading system, ranging 
from March 2008 to November 2017, totaling 117 months of data. The empirical 
analysis is conducted by MATLAB7.0. 

3.1. Trend Test and Removal 
3.1.1. Trend Test 
It is necessary to analyze whether there is a trend before conducting cyclical 
tests. If there is one, the cyclical test should be carried out after the trend is re-
moved. The trend test is performed by Kendall rank correlation test and run test.  

Table 1 shows results of Trend test. The results of Kendall rank correlation 
test and run test are −8.8233 and −8.8922, respectively, whose absolute values are 
above 1.96 at 95% confidence level; it indicates that there was a trend in the 
original price sequence, and hence there is a need to conduct cyclical analysis af-
ter removing the trend. 

 

 

1Price in Phase II from Bluenext, and price in Phase III from ECX. 
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Table 1. Results of Trend test. 

Method Kendall rank correlation test Run test 

µ  −8.8233 −8.8922 

( )
2

0.05αµ α =  1.96 1.96 

3.1.2. Trend Removal 
For a sequence with a trend, the H-P filter method is adopted to remove the 
trend to obtain the cyclical component. The effect of HP filter is as shown in 
Figure 1. 

Figure 1 shows that the trend of the cyclical component after trend removal is 
basically the same as that of the original price sequence, and yet its cyclicity is 
more significant than that of the original price sequence. 

3.2. Existence and Cycle Length of Cyclical Fluctuations 

For time sequence with removed trend components, the maximum entropy me-
thod and the wavelet variance method are applied to test its cyclical existence 
and cyclical length. 

3.2.1. Maximum Entropy Spectrum and Cyclical Test 
As the maximum entropy spectral estimation is superior to the power spectral 
estimation in resolution, spectral shift and adaptability to short sequences, it is 
adopted to test the cyclicity of the new sequences after their trends are removed. 
Concrete steps include: 1) centralizing and standardizing the original sequence 
to obtain a new sequence; 2) working out ( )0 ,B k k  and ( )P k  by the Burg al-
gorithm; 3) determining the optimal order according to the FPE; 4) calculating 
the maximum entropy according to the optimal order and drawing the maxi-
mum entropy spectrum. 

The FPE rule, commonly used in the maximum entropy, is used to test the 
FPE effect within 50 orders, (preferably the minimum order of FPE). The result 
is as shown in Figure 2. 

Figure 2 suggests that with the order increasing, the FPE tends to decrease 
first and then rise; the FPE value is the smallest at the 15th order, so the order of 
the maximum entropy spectrum is 15. 

Based on the Burg algorithm, the maximum entropy spectrum is solved when 
the optimal lag order is 15. The maximum entropy spectrum is drawn by taking 
frequency f as the abscissa and logarithmic maximum entropy spectrum fS  as 
the ordinate. The reciprocal of the frequency corresponding to the maximum 
point is the corresponding cycle. The maximum entropy spectrum is as shown in 
Figure 3. 

In the entropy spectrum of Figure 3, there are several maximum points, but at 
95% confidence level of red noise, only three extremes pass the test; their cor-

responding frequencies are converted into cycles by 1T
f

= , corresponding 
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Figure 1. Trend removal chart of HP filter.  
 

 
Figure 2. FPE effect within different orders. 

 

 
Figure 3. Maximum entropy spectrum and price cycle. 
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to 33, 13.29 and 5.72 months. Among them, 33 months correspond to the long 
cycle, 13 months to the middle cycle, and 5.7 months to the short cycle. 

3.2.2. Wavelet Analysis and Cyclicity Identification 
Morlet wavelet is a complex wavelet, whose modulus and real part are two im-
portant variables. The magnitude of the modulus stands for the intensity of the 
characteristic time scale signals, while the real part represents the distribution 
and phase information of different characteristic time scale signals in various 
time. Therefore, this paper adopts Morlet wavelet to study the cycle of carbon 
prices. 

A total of 29 × 117 wavelet coefficients are obtained after 112 data are 
processed by continuous wavelet transform. The isogram for real part and mod-
ulus equivalents of wavelet coefficients is as shown in Figure 4. 

Figure 4(a) is the isogram for the real part of wavelet coefficients, which can 
reflect the cyclical variation of price sequence at varied time scales and its dis-
tribution in the time domain. It can be seen that there are obvious oscillations 
when the scale is above eight, i.e., when the scales are 10, 16 and 50. It indicates 
that there is a cycle in the price sequence at these scales. Figure 4(b) is the iso-
gram for the modulus of wavelet coefficient, which reflects the distribution of 
the energy density in time domain corresponding to the cycle of variation at dif-
ferent time scales. It can be found that when the scale is above eight, the energy 
is more concentrated; when the scale is between eight and 16, the energy con-
centrates before 2014, which indicates that the cycle is strong before 2014; when 
the scale ranges from 32 to 64, the energy is greater at each time, but it is more 
concentrated between 2010 and 2013. 

The square of the absolute value of the coefficients of all wavelet transform is 
integrated in the entire time domain, that is, the wavelet variance. The function 
graph of variance concerning time scale a is the wavelet variance graph, which  
 

 
Figure 4. Isogram for real part and modulus equivalents of wavelet coefficients. 
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reflects the distribution of fluctuating energy with the scale. Each peak value in 
the graph corresponds to the significant cycle respectively. When the wavelet va-
riance hits the maximum, the scale of the corresponding wavelet function coin-
cides best with the sequence cycle. It indicates that the cyclical oscillation at this 
scale is the most dramatic, which is called the main cycle. Meanwhile, the signi-
ficance of wavelet variance is tested by red noise. 

Figure 5(a) is the original wavelet variance graph, while Figure 5(b) is the 
logarithm of the ordinate to compensate for the small-scale value of the left 
graph. Based on the logarithm, it is found that only two extremes, 10 and 16, 
have passed the significance test, i.e., they represent the two cycles of the se-
quence, in which 16 months is the first main cycle and ten10 months is the 
second. 

3.3. Comparative Analysis of Empirical Results 

By comparing the cycles obtained by dividing peaks and troughs of cyclical 
components with the cycles obtained by maximum entropy and wavelet va-
riance, the results are as shown in Figure 6 and Table 2. 

Figure 6 and Table 2 show that: 
1) It is discovered through the maximum entropy that there is a 33-month 

cycle in price sequence, which is confirmed in the original cyclical component 
sequence. Since June 2008, there has been three cycles, namely June 2008 to May 
2011 (35 months), May 2011 to February 2014 (33 months), and February 2014 
to November 2016 (32 months), with an average cycle of 33.3 months, nearly 
three years. The average cycle length is closest to the Kitchin Cycle, indicating  
 

 
Figure 5. Wavelet variance graph. 
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Figure 6. Graph of cyclical component for EUA spot prices. 

 
Table 2. Cyclical table of EUA spot price fluctuation. 

 Time Sequence Length Test Cycle 

Maximum Entropy 

2008.6-2011.5 35  

2011.5-2014.2 33  

2014.2-2016.11 32  

Average Cycle 33.3 33 

2015.12-2016.5 5  

2016.5-2016.11 6  

Average Cycle 5.5 5.7 

Wavelet Variance 

2011.5-2012.10 17  

2012.10-2014.2 16  

Average Cycle 16.5 16 

2015.12-2016.11 11  

Average Cycle 11 10 

 
that the cyclical price fluctuations of EU carbon emission rights market generally 
fall within the Kitchin Cycle, belonging to probability cycle. 

2) The first main cycle of wavelet variance is 16 months, which is close to the 
maximum entropy of 13.2, and has passed the test of red noise. However, only 
16.5-month cycle is found in the actual cycle series, so the 16 months measured 
by wavelet variance is more accurate. The 16-month cycle is close to half of the 
33-month cycle, especially in the cycle from May 2011 to February 2014 (33 
months), which can be clearly divided into two intermediate cycles: May 2011 to 
October 2012 (17 months) and October 2012 to February 2014 (16 months). 

At the end of the cycle of from February 2014 to November 2016, the second 
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main cycle of about 10 months can be found, which is corresponding to Decem-
ber 2015 to November 2016, a total of 11 months. This cycle is just the sum of 
the cycle from December 2015 to May 2016 (five months) and May 2016 to No-
vember 2016 (six months), which is close to the 5.7 months cycle tested by the 
maximum entropy. It suggests that the second main cycle of 10 months tested by 
wavelet and the cycle of 5.7 months that passes the maximum entropy spectrum 
test are credible. 

3) By comparing with the real time sequence, it is found that both the maxi-
mum entropy and wavelet variance graph are effective methods to find cycles. 
Yet, there are some differences between them, and there is a certain margin of 
error between the calculated cycle and the actual sequence fluctuation. Further-
more, some of the cycles that have passed the significance test are not reflected 
in the actual sequence graphs, such as the 13.2-month cycle discovered by the 
maximum entropy. 

Overall, the cyclical price fluctuation of carbon emission rights sequence gen-
erally belongs to the short cycle fluctuation. The longest cycle is approximately 
33 months, which can be divided into two sub-cycles of some 16 months. In ad-
dition, there is a shorter cycle of around 10 months in the carbon price sequence, 
while the 10-month cycleconsists of two cycles of about 5.7 months. 

4. Analysis of the Factors Influencing Cyclical Price  
Fluctuations of Carbon Emission Rights 

Currently, there are plenty of literatures about the driving factors of carbon 
prices, but there is no literature to study the causes of cyclical price fluctuations. 
The factors that affect price fluctuations of carbon emission rights vary, of which 
direct influences arise from the changes of energy prices, especially the relative 
prices of fossil energy and clean energy. When the relative prices of clean energy 
(such as natural gas) and fossil fuels (such as coal) rise, enterprises will choose 
low-priced coal as fuel and raw materials, in a bid to cut the costs of reducing 
emissions. Such a rise in carbon emissions increases the demand for and the 
price of carbon quotas; otherwise, the opposite is true. 

Indirect influences stem from the changes in the business cycle. When the 
economy grows, corporate production activities will increase, so will the needed 
energy, carbon emissions, corporate demand for quotas, and the prices of quo-
tas. On the contrary, when the economy depresses, corporate production activi-
ties and emissions will drop, so will the demands for quotas and the price of 
carbon emission. 

4.1. Selection of Indicators and Description of Data 
4.1.1. Selection of Energy Price Indicators 
In order to better reflect the energy prices in Europe, the following four energy 
price indicators are selected: 

1) Coal price (COAL). The DES ARA thermal coal trading price data are se-
lected, which can represent the European coal prices, unit US$/ton.  
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2) Natural gas price (GAS). The natural gas price on Zeebrugge Trading Point, 
Belgium, is selected as the European natural gas price. Its price represents one of 
the important ones for European natural gas, which is €/MMBtu. 

3) Oil price (OIL). The Brent crude oil price is selected as its contracts of fu-
tures are deemed the benchmark price for European crude oil. 

4) Power price (POWER). As the German power price is representative in 
Europe, and thus the daily trading price data of the basic load of German power 
on the European Energy Exchange are selected, unit €/MWh. 

To avoid the influences of different units, the units are all converted into eu-
ros, namely €1/MWh = €8.1414/ton, €1/MWh = €(1/0.2931)/MMBtu (Ten-
dances Carbone). The prices of coal and natural gas are converted into the same 
unit. 

4.1.2. Selection of Economic Change Indicators 
The impacts of economic changes on the EUA can be measured by a compre-
hensive index. The five economic indices, which reflect the changes of business 
cycles, are selected, while the comprehensive index (ECOI), which represents the 
business cycles, is obtained by the principal component method. 

1) Economic Sentiment Index (ESI). ESI is the leading index to forecast the 
future economic development and changes. Economic boom refers to the overall 
economic growth trend, market prosperity, and expediting growth of economic 
aggregate; economic depression denotes the overall trend of economic decline, 
sluggish market, stagnant or lucid economic growth. 

2) Industrial Production Index (IPI). IPI is a comprehensive index to measure 
the monthly product quantity of manufacturing, mining, public power and nat-
ural gas industry and enterprises. The Index chiefly reflects the output of cyclical 
industrial equipment, consumer durables and building materials, as well as steel, 
textiles and other industrial raw materials. 

3) Purchasing Manager’s Index (PMI) for the manufacturing in the Euro zone. 
PMI is a composite index, which is composed of five diffusion indices: new or-
der index, production index, employee index, supplier distribution time index 
and major raw material inventory index. 

4) Consumer Confidence Index (CCI). CCI comprehensively reflects and 
quantifies consumers’ expectations of the current economic situation, economic 
outlooks, and their own incomes. It is a leading index for forecasting economic 
trends and consumption trends, which is indispensable in monitoring the 
changes in the economic cycle. 

5) Consumer Price Index (CPI). CPI reflects the price changes of consumer 
goods and services purchased by households. It measures the price changes of a 
group of representative consumer goods and services in a certain period, and it 
is a relative index. 

For the above five economic indices, the principal component method is 
adopted to reduce the dimension and obtain the business cycle comprehensive 
index that affects the price fluctuations of carbon emission rights. The analysis 
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results are as shown in Table 3. 
Table 3 shows that the first principal component accounts for 68.58% of the 

total contribution, suggesting that the first principal component can reflect the 
overall changes in the five indices. The eigenvalue drops rapidly from the second 
principal component, and therefore the first principal component is selected as 
an index to reflect the overall economic changes, recorded as ECOI. 

4.2. Empirical Study 

Based on the above analyses, such six indices as EUA, ECOI, COAL, GAS, OIL 
and POWER are selected. By using ADF unit root test, co-integration test, VEC 
model, Granger causality test, variance decomposition and other measurement 
methods, the dynamic equilibrium relationship and shock response among them 
are discussed. The above are monthly data, which range from March 2008 to 
November 2017. In order to eliminate the heteroscedasticity of the data, natural 
logarithm transformation is carried out. 

4.2.1. Stationarity Test 
ADF test was applied to test the stationarity of the four indices. The results of 
ADF statistics and P values are as shown in Table 4. 

Table 4 shows that the original sequences are not stationary at 5% significance 
level, but the variables become stationary after the first difference, i.e., the se-
quences are integrated of order 1, I (1) sequence. So, we can conduct the Johan-
sen co-integration test. 

4.2.2. Test of Long-Term Equilibrium Relationship among Variables 
In order to explore whether there is a long-term equilibrium relationship among  
 
Table 3. Results of principal component analysis of indices. 

 
First principal 

component 
Second principal 

component 
Third principal 

component 
Fourth principal 

component 
Fifth principal 

component 

Eigenvalue 3.429 0.857 0.567 0.126 0.021 

Contribution rate 68.580% 17.135% 11.344% 2.529% 0.412% 

Cumulative  
Contribution rate 

68.580% 85.715% 97.059% 99.588% 100.000% 

 
Table 4. ADF stationarity test. 

Variable 
ADF value of 

original sequence 
P value of original 

sequence 
ADF value of first 

difference 
P value of first  

difference 
Conclusion 

LnEUA −2.283201 0.1792 −8.186274 0.0000 I (1) 

LnECOI −2.248668 0.1906 −4.697101 0.0002 I (1) 

LnCOAL −2.256970 0.1878 −5.989244 0.0000 I (1) 

LnGAS −2.753237 0.0683 −10.00783 0.0000 I (1) 

LnOIL −1.415176 0.5726 −7.671850 0.0000 I (1) 

LnPOWER −2.831189 0.0570 −12.92583 0.0000 I (1) 
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variables, Johansen co-integration test is conducted for verification. As the op-
timal lag order of Johansen test is the optimal lag order of VAR model minus 1. 
Thus, the optimal lag order is determined by VAR model, while in the study the 
maximum likelihood estimation value (LR) is used for the FPE rule, AIC and SI 
are adopted to determine the optimal lag order. Due to the different lag orders of 
each rule or criterion, the FPE statistics determines the optimal lag order is order 
2 (see Table 5), and the VAR (2) model is established. All the unit roots of the 
VAR model are less than 1, indicating that the model is stable.  

The Johansen results are shown in Table 6. 
Table 6 shows that the co-integration test rejects the hypothesis that there is 

no co-integration relationship at 5% significance level, whose trace statistics and 
P values are 105.8613 and 0.0084; There is at most a set of co-integration hypo-
theses with trace statistics and P values of 55.70104 and 0.3901, which does not 
reject the null hypothesis. It thus indicates that there is only one co-integration 
vector among the variables, and that the standardized co-integration equation 
among them is: 

ln EUA 3.384180ln ECOI 9.282753ln COAL 1.183183ln GAS
                1.455523ln OIL 10.95446ln POWER 28.90384

= − − +
+ + +

  (11) 

Formula (11) shows that the prices of carbon emission rights have negative 
correlation with ECOI and COAL, but positive correlation with GAS, OIL and 
POWER. Specific influences are as follows: 

1) If POWER changes 1%, the EUA will change 10.95% in the same direction;  
 
Table 5. Comparison of different lag orders of VAR models. 

Lag orders LR FPE AIC SC 

0 NA 1.20E−08 −1.20923 −1.06109 

1 1207.46 1.68E−13 −12.3865 11.34949* 

2 67.08294 1.63e−13* −12.4248 −10.4988 

3 56.2904 1.71E−13 −12.3897 −9.57485 

4 52.22125 1.83E−13 −12.3508 −8.6471 

5 48.55642 1.99E−13 −12.3128 −7.72018 

6 44.06606 2.25E−13 −12.2642 −6.78277 

7 57.60296* 2.02E−13 −12.47645* −6.10611 

8 36.03544 2.47E−13 −12.4165 −5.15726 

 
Table 6. Results of Johansen co-integration test. 

Null hypothesis Characteristic root Trace statistics 5% critical value P value 

No* 0.353496 105.8613 95.75366 0.0084 

Max one group 0.180593 55.70104 69.81889 0.3901 

Max two groups 0.128690 32.79603 47.85613 0.5681 

Max three groups 0.069335 16.95391 29.79707 0.6435 

Max four groups 0.052287 8.690517 15.49471 0.3948 

Max five groups 0.021629 2.514615 3.841466 0.1128 
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if POWER rises, power-generating enterprises will raise output, resulting in in-
creased demands for carbon emission rights and higher prices. 

2) The EUA is negatively correlated with COAL; if COAL changes 1%, the 
EUA will change 9.28% in the opposite direction. GAS and OIL is positively 
correlated with the prices of carbon emission rights; if GAS changes 1%, the 
EUA will change 1.18% in the same direction; if oil changes 1%, the EUA will 
change 1.46% in the same direction. 

3) If economic development index changes 1%, the EUA will change 3.38% in 
the opposite direction. Such a result is inconsistent with the previous analyses, 
which may result from the imperfect carbon trading system, asymmetric infor-
mation in recent years. As a result, the EUA continues to fall, from its highest 
€27 to lowest €3.5, which is contradicts normal economic development. There-
fore, there is a negative correlation between the EUA and economic develop-
ment in the model. 

4.2.3. Short-Term Dynamic Relationship among Variables and the  
Degree to Which They Deviate from Long-Term Equilibrium 

The long-term equilibrium relationship among the variables is obtained by the 
VAR model, and yet it cannot reflect the short-term dynamic relationship 
among variables and the degree of long-term and short-term deviation. As such, 
a vector error correction model (VEC) is constructed in this paper to explore the 
long-term equilibrium relationship among variables. The forms of the VEC 
model are as follows: 

ln EUA
ln ECOI
ln COAL
ln GAS
ln OIL

ln POWER

0.187442 0.048973 0.095414 0.066945 0.012337 0.006375
0.179259 0.311175 0.061325 0.113242 0.014379 0.083229
0.002644 0.294368 0.394343 0.2901

t

t

t

t

t

t

∆ 
 ∆ 
 ∆
 

∆ 
 ∆
 
∆  

− − −
− − −

−
=

1ln EUA

39 0.294787 0.340687
0.013857 0.014737 0.010442 0.043701 0.029295 0.009917
0.068816 0.161684 0.271744 0.029528 0.238109 0.113644
0.057214 0.05943 0.138817 0.015562 0.147525 0.011283

t− 
 
 
 
 
 
 
 
 

∆
∆

−
− − −

− − − − −

1

1

1

1

1

1

ln ECO
ln COAL
ln GAS
ln OIL

ln POWER

0.016067 0.009189
0.00656 0.010872
0.004988 0.001089

ECM
0.022758 0.009255
0.003222 0.003809
0.40474 0.006383

t

t

t

t

t

t

−

−

−

−

−

−

 
 
 
 
 
 


∆
∆

∆

∆

−  
  −  
 − −

+ + 
− 

  −


 

 
− 





 

 






 
 
 
 
 
   

1ECM ln UA 3.384180ln ECOI 9.282753ln COAL 1.183183ln GAS
              1.455523ln OIL 10.95446ln POWER 28.90384

t E− = + + −

− − −
(12) 
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Formula (12) shows that the parameters of each error correction term are 
basically significant, and the coefficients of error correction terms in this model 
are less than zero on the whole when the model reflects the short-term dynamic 
fluctuation relationship among variables. It thus indicates that the model has the 
tendency of convergence in the long run, consistent with that of the VEC model. 

The changes that reflect the deviation of short-term fluctuation deviating from 
long-term equilibrium among variables are shown in Figure 7: the long-term 
equilibrium and stability relationship among variables can be described by a. 
Figure 7 shows that the zero-mean line of short-term fluctuations deviating 
from the long-term equilibrium is relatively significant before 2009. It speak 
value is around €4, while its valley value is about €-6. After 2009, the short-term 
fluctuations moderated, with the peak value and valley value hovering around €2 
and €-3. However, short-term fluctuations multiplied at the end of 2016, and the 
valley value is above €-4 at the outset of 2017; at the end of 2017, the peak value 
is higher than that of the previous peak, and there are signs of continued upward 
tendency, indicating the intensification of price fluctuations recently. 

4.2.4. Causality among Variables 
The Granger causality test is adopted to test the causality among variables. The 
Granger causality test requires that variables should be stationary and that there 
should be co-integration relationship among non-stationary variables. As these 
two requirements have been met in the above research, the Granger causality test 
can be used. The results of Granger test are as shown in Table 7. 

Table 7 indicates that there is a two-way Granger causality among POWER, 
COAL and the EUA at 10% significance level. There is one-way Granger causal-
ity among the EUA, economic fluctuation index and OIL: ECOI and OIL are the 
causes of the EUA’s Granger, and yet the EUA is not the cause of the two’s 
Granger; in addition, the Granger test shows that there is no Granger causality 
between GAS and EUA. 
 
Table 7. Results of Granger causality test. 

Null hypothesis F statistics P value Conclusion 

LnECOI isn’t the cause of LnEUA’s Granger 2.77897 0.0447 Rejected 

LnEUA isn’t the cause of LnECOI’s Granger 1.36903 0.2562 Accepted 

LnCOAL isn’t the cause of LnEUA’s Granger 3.81336 0.0122 Rejected 

LnEUA isn’t the cause of LnCOAL’s Granger 2.62783 0.0540 Rejected 

LnGAS isn’t the cause of LnEUA’s Granger 0.36646 0.7774 Accepted 

LnEUA isn’t the cause of LnGAS’s Granger 1.96996 0.1229 Accepted 

LnOIL isn’t the cause of LnEUA’s Granger 3.39520 0.0206 Rejected 

LnEUA isn’t the cause of LnOIL’s Granger 0.48566 0.6930 Accepted 

LnPOWER isn’t the cause of LnEUA’s Granger 2.34285 0.0772 Rejected 

LnEUA is not the cause of LnPOWER’s Granger 3.39597 0.0206 Rejected 
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Figure 7. Co-integration graph for Long- and short-term fluctuations. 

4.2.5. Contribution Rates of Various Variables to the EUA fluctuations 
The contribution rate of each variable to the EUA is analyzed by variance de-
composition. Variance decomposition can decompose the forecast-period mean 
squared error of any endogenous variable into the contribution made by the 
impact of each variable in the system, and then the relative importance of each 
variable impact is calculated, that is, the contribution rate of the variable. The 
selected lag length is 30 periods, and the impacts of the variables obtained from 
Eviews8 on the EUA is shown in Figure 8: 

Figure 8 suggests that: 
1) POWER has the largest variance contribution rate to the EUA, and its in-

fluences on the EUA is ascendant at the beginning; its contribution rate reaches 
13% at the lag period 10 before remaining stable; 

2) The variance contribution rate of COAL to EUA starts to rise from period 
0, and reaches 6% at lag period 10 before remaining stable; 

3) The variance contribution rate of GAS to EUA remains zero at the lag pe-
riod 6, and then it increases graduall and reaches 5% at the lag period 30; 

4) The variance contribution rate of OIL to the EUA remains zero at the lag 
period 9, and then it increases gradually and reaches 7% at the lag period 30; 

5) The variance contribution rate of ECOI to the EUA is relatively stable and 
small at each lag period, which is around 1%. 

5. Conclusions 

1) Overall, cyclical price fluctuations of carbon emission rights sequence be-
long to short cycle fluctuations. The longest period is about 33 months, which 
can be divided into two sub-cycles of around 16 months. Additionally, there is a 
shorter cycle of some 10 months in the price of carbon emission rights sequence, 
which in turn consists of two cycles of about 5.7 months each. 

2) The influences of each factor on the price of carbon emission rights are: in 
the long run, POWER and the relative price of COAL have the greatest impacts  
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Figure 8. Contribution of each variable to the EUA. 

 
on the price of carbon emission rights. If POWER changes 1%, the price of car-
bon emissions rights will change 10.95% in the same direction; if COAL changes 
1%, the price of carbon emissions rights will change 9.28% in the opposite direc-
tion. Bessie, an unexpected discovery is that there is a negative correlation be-
tween the comprehensive economic index and the price of carbon emission 
rights, which is inconsistent with the economic reality, and hence further study 
is needed. 

3) The contribution rates of each factor to the price fluctuations of carbon 
emission rights are as follows: POWER contributes the most to the price of car-
bon emission rights. The contribution rate of POWER to the price of carbon 
emission rights is still 13% at lag period 30, while that of COAL, OIL and GAS is 
6%, 7% and 5% respectively. Yet, the contribution rate of ECOI is relatively 
small, approximately 1% at each lag period, which may arise from the continued 
economic downturn in Europe in recent years. As a result, the carbon trading 
market cannot reflect the overall economic development, causing the price of 
carbon emission rights to negatively correlate with the economic development 
indicators. 

However, there are still some limitations in this paper, such as insufficient da-
ta volume, only more than 100 groups, which will affect the accuracy of the 
cycle. In addition, in terms of influencing factors, this paper only considers the 
linear relationship between them, but there may be non-linear relationship be-
tween them, which will be the focus of later research. 
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