
Journal of Software Engineering and Applications, 2018, 11, 552-567
http://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2018.1111033 Nov. 30, 2018 552 Journal of Software Engineering and Applications

A Grammatical Approach of Multi-Localization
of GUIs: Application to the Multi-Localization of
the Checkers Game GUI

Maurice Tchoupé Tchendji, Freddy-Viany Tatou Ahoukeng

Department of Mathematics and Computer Science, Faculty of Sciences, University of Dschang, Dschang, Cameroon

Abstract
By proposing tools that help for the accomplishment of tasks in almost all
sectors of activities, computer science has revolutionized the world in a gen-
eral way. Nowadays, it addresses the peculiarities of peoples through their
culture in order to produce increasingly easy-to-use software for end users:
This is the aim of software localization. Localizing a software consists among
other things, in adapting its GUI according to the end user culture. We pro-
pose in this paper a generic approach allowing accomplishing this adaptation,
even for multi-user applications like gaming applications, collaborative edi-
tors, etc. Techniques of functional interpretations of abstracts structures pa-
rameterized by algebras, constitute the formal base of our approach.

Keywords
GUIs, Context-Free Grammars, Multi-Localization, Abstract Syntax Tree and
Its Interpretations, XML, GUI Description Language, Haskell

1. Introduction

Regarded as the fourth pillar for sustainable development [1], according to the
UNESCO1 Convention on the Protection and Promotion of the Diversity of
Cultural Expressions, cultural diversity is a “world heritage” [2] and constitutes a
great wealth for the people. Therefore, the protection, promotion and mainten-
ance of cultural diversity are essentials for sustainable development for the bene-
fit of present and future generations. Moreover, as far as computer science is
concerns, one can easily agree that, a given user (a human), will use much more

1UNESCO: United Nations Educational, Scientific and Cultural Organization.

How to cite this paper: Tchendji, M.T.
and Ahoukeng, F.-V.T. (2018) A Gram-
matical Approach of Multi-Localization of
GUIs: Application to the Multi-Localization
of the Checkers Game GUI. Journal of
Software Engineering and Applications, 11,
552-567.
https://doi.org/10.4236/jsea.2018.1111033

Received: October 23, 2018
Accepted: November 27, 2018
Published: November 30, 2018

Copyright © 2018 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2018.1111033
http://www.scirp.org
https://doi.org/10.4236/jsea.2018.1111033
http://creativecommons.org/licenses/by/4.0/

M. T. Tchendji, F.-V. T. Ahoukeng

DOI: 10.4236/jsea.2018.1111033 553 Journal of Software Engineering and Applications

intuitively a software if he finds in the latter, elements that are culturally close to
him as language, iconography, and the color palette used, etc.

From the observations above, it is clear that it is imperative to take into ac-
count the various aspects related to cultural diversity during the development of
a software. This is not only to ensure that it is built in respect of the culture of its
various end users, but also to produce increasingly easy-to-use software for end
users. In order to achieve these objectives, cultural computing2 is the paradigm
that should be used if we want to efficiently take into account the possible cul-
tural diversity of end users, when producing a software tool. With this in mind,
software publishers, are now using knowledge from cultural computing to im-
prove the user’s experience of each of the end users of their tools: The tool must
be constructed in such a way that it is the GUI (Graphical User Interface) that
adapts to the user and not the other way around.

In order to produce several (localized) versions of the same software product,
publishers use two techniques: internationalization (i18n) and localization (l10n)
[4] [5]. Internationalization is the process of generalization which, in software
design, allows abstracting it from the peculiarities of a given culture by
representing intentionally the objects which it manipulates. According to Schäler
[6], localisation is “the linguistic and cultural adaptation of digital content to the
requirements and locale of a foreign market, and the provision of services and
technologies for the management of multilingualism across the digital global in-
formation flow”.

In order to perform a linguistic and cultural adaptation of an application,
among other activities, its GUIs must be translated to the signifiers, the habits,
etc of targets cultures. Figure 1 presents two located examples of George Weah’s
bibliography in Wikipedia for Francophone culture3 (Figure 1(a)) and for Arab
culture4 (Figure 1(b)). On these figures, we can notice some differences con-
cerning the language used, the position of images and menus, colors, etc.

Most single-user software used around the world are not located. It’s even
worse when you consider the case of those running on a network5, because for
such applications, it might be ideal to offer to each application user at a given
time, a GUI who is consistent with its own culture. For example, it’s about de-
signing a multiplayer game or a collaborative editing application so that, each
participant interacts on a located GUI in their culture. This is what we call

2The goal of cultural computing is to “addresse underlying and almost unconscious cultural deter-
minants that have since ancient times a strong influence on our way of thinking, feeling and
worldview in general” [3]. As far as GUI is concerns, it allows the end user of a given software to ex-
perience an interaction closely related to the fundamental aspects of his culture.
3https://fr.wikipedia.org/wiki/George_Weah
4https://ar.wikipedia.org/wiki/George_Weah
5This is easily verifiable on popular internet multi-player game applications as Le Seigneur des An-
neaux Online: les Ombres d’Angmar, Conan Exiles, Street fighter, etc. or for collaborative online
text editors such as: etherpad, Mediawiki, FidusWriter etc. for which all the GUIs of the different
participants in the game or in the edition are all identical, and are really suitable only for those users
who master the language of the manufacturer. Even though they are located, only the linguistic as-
pect (English translation) is addressed.

https://doi.org/10.4236/jsea.2018.1111033
https://fr.wikipedia.org/wiki/George_Weah
https://ar.wikipedia.org/wiki/George_Weah

M. T. Tchendji, F.-V. T. Ahoukeng

DOI: 10.4236/jsea.2018.1111033 554 Journal of Software Engineering and Applications

Figure 1. Bibliography of George Weah in Wikipedia: (a) for French culture, (b) for Arab culture.

multi-localization or simultaneous localization and this is what constitutes the
main objective of this paper: to propose a new approach of external mul-
ti-localization of GUIs of collaborative and interactive software.

Starting from the observation that the tree structure of a GUI can be
represented intentionally by an abstract syntax tree (AST) for a given con-
text-free grammar (see Section 2.1), we borrow techniques and tools from the
domains of language theory, compilation, and functional programming, to show
that, a particular localization of a GUI represented intentionally by an AST, is in
fact only a particular interpretation of this AST according to a given algebra: this
is the formal base on which our multi-localization approach is based.

More precisely, from an abstract grammar (AST’s model of GUIs of a given
application), we deduce: 1) Haskell data types6 [7] [8] for each of its grammatical
symbols, 2) types for algebras that will be use to write as many interpreters as
wanted, in as many GUI description languages (FXML7 [9], UIML [10], etc.), 3)
evaluation functions, each parameterized by both an algebra and a localization
file which will make it possible to locate the AST by interpretation. A synoptic
view of the proposed approach is sketched in Figure 2.

Organization of the manuscript: Section 2 introduces some concepts related
to software localization and GUI modeling using context-free grammars (CFG).
Our multi-localization approach, followed by its experimentation (derivation of
multi-located GUIs for a network checkers game) is presented in Section 3,
while Section 4 is devoted to the conclusion.

2. Preliminaries
2.1. Context-Free Grammars as GUI’s Models

A graphical window (GUI) consists of a set of basic components8 (Image, Menu,
Table, Text Box, etc.), arranged in relation to each other (horizontally, vertically,

(a) (b)

6Haskell is a functional programming language who is used (without prejudice to the generality) as
the supporting functional language of this presentation.
7FXML: JavaFX features a language known as FXML, which is a HTML like declarative markup lan-
guage. The purpose of this language is to define a user interface.
8These components are also called Graphical user interface elements; they are components used by
GUIs to visually represent information stored in computers: They are visible on the GUI.

https://doi.org/10.4236/jsea.2018.1111033

M. T. Tchendji, F.-V. T. Ahoukeng

DOI: 10.4236/jsea.2018.1111033 555 Journal of Software Engineering and Applications

Figure 2. A synoptic view of the proposed multi-localization approach.

etc.) to a precise positions on the window by means of the so called structural
components9 [11] [12]. Presented this way, one can easily realize that, the rules
governing the grouping of the (basics and/or structural) components of a GUI
can be described using the production rules of a CFG. Therefore, a GUI (tree
structure) can be intentionally represented by an AST of a CFG. In fact, for a
given graphical application, we can construct a CFG in such a way that, any of its
GUIs is intentionally represented by an AST of the latter (see Section 3.2.1): CFG
can be used as models of the GUIs of an application. This is the use made of it in
this paper.

Recall that a CFG defines the structure of its instances (AST) by means of
productions. A production, generally denoted 0 1: np X X X→  is assimilated
in the GUIs context, to a structuring rule showing how the component 0X , lo-
cated on the left hand side of the production, allows structuring/grouping the
other components 1 nX X located on the right hand side. More formally, we
have the following definition:

Definition 1 An abstract context free grammar (CFG) is given by
(), , A=   composed of a finite set  of grammatical symbols or sorts

corresponding to the different syntactic categories involved, a particular gram-
matical symbol A∈ called axiom, and a finite set ∗⊆ ×   of produc-
tions. A production () () ()()0 1,P P P PP X X X=  is denoted

() () ()0 1: P P P PP X X X→ 
, P denotes the length of its right hand side and

()lhs P (resp. ()rhs P return its left (resp. right) hand side. A production with
the symbol X as left part ie. () =lhs P X , is called a X-production.

An AST is a tree whose nodes are labeled by the grammatical symbols of the

Grammar
P1: X -> X1…Xn
…
Pk: X -> Z1…Zl

Data Types
data X= …
data Y= …

Data Types for Algebras

data AlgX= …
data AlgY= …

Catamorphisms
cataX:: FL->AlgX->X->dSemX
cataY:: FL->AlgY->Y->dSemY

Implement Algebra
algX_FXML= AlgX{ …}

- x

- x

Step1:
From the GUI's
grammatical model to the
functional program

Step2:
Algebras implementations:
one for each output GUI
description language +
creation of localization
files.

Step3:
Multi-localization:
Simultaneous localized
interpretations of the AST
by the calling to the
function cataX on an
instance of the type of
the axiom (X) of the
grammar. (runtime)

Implement Algebra
algX_UIML= AlgX{…}

.FXML

.FXML

Localization
file1 (fl1)

Localization
file2 (fl2)

9These components are also called layout components; they are invisible on the (rendering of) GUI
and are used to specify the arrangement of the basic components on which the user can interact.

https://doi.org/10.4236/jsea.2018.1111033

M. T. Tchendji, F.-V. T. Ahoukeng

DOI: 10.4236/jsea.2018.1111033 556 Journal of Software Engineering and Applications

grammar and is such that, for any internal node labeled X , having n sons la-
beled 1, , nX X , rule 1 nX X X→  must be a grammar production. Moreo-
ver, the leaf nodes must be associated with ε -productions.

Definition 2 The set (),AST X of abstract syntax trees according to the
grammar  associated with grammatical symbol X consists of trees in the
form []1, , nX t t

 where X is the label of the root node10 of the tree, 1 nt t
are subtrees of the root node and there is a production 1: nP X X X→  such
that ()0PX X= , n P= and (),i it AST X∈  for all 1 i n≤ ≤ .

AST can be interpreted as evidence of the conformity of the GUI (tree struc-
ture) with the grammar.

2.2. On Software Localization: External vs. Inner Localization

The localization of a software does not only concern its GUIs. This is an activity
that also includes the technical documentation provided with the software (in-
stallation guides, user manuals, etc.), online help and so on [13].

When the need to locate softwares was felt, the first answer given to this new
challenge by the software publishers was purely linguistic and recommended
working directly on the source code of the application: this is what we call inner
software localization [4]. Since the strings to be translated are generally scattered
throughout the application’s code, the localizer must have access to it. The latter
must then be either a translator with programming knowledge, or a programmer
with translation knowledge, or both must work in perfect intelligence.

Granting free access to the source code to a third party who is not the editor
poses at least the problem of security and confidentiality. Indeed, since transla-
tors do not generally have a great programming knowledge, the risk is great that
they inadvertently modify, or copy for unconfessed purposes the source code
available to them for translation [4].

In the early nineties, a new form of localization using resource files11 and
called external software localization [14] has been created. It allows translators to
process the text contained in the GUIs without need to have any particular pro-
gramming knowledge, or to constantly need the assistance of the programmers.
They only intervene on the resource file (containing localizations of localizable
elements such as text, etc.) which is subsequently delivered with the software
product. In production, the choice of the localization to use for a particular run-
ning of the software is done either interactively at the start of the software, or is
previously set in a configuration file. By doing so, the software developed is not
only completely independent of the end user culture, but is also highly extensible
from a localization perspective. Indeed, it is enough to create a new localization
file containing data relating to a new culture, for it to be taken into account by
the tool.

10In the following, as long as there is no ambiguity, we will not differentiate between a node and its
label.
11A resource refers to a structural or constant element of software that can be referenced at any time
in the body of the main program.

https://doi.org/10.4236/jsea.2018.1111033

M. T. Tchendji, F.-V. T. Ahoukeng

DOI: 10.4236/jsea.2018.1111033 557 Journal of Software Engineering and Applications

Recall that the work presented in this manuscript focuses exclusively on the
external localization of GUIs.

3. A grammatical Approach of External Multi-Localization of
GUIs

3.1. Derivation of a (Parameterized) Functional Interpreter of
ASTs

We have seen (section 2.1) that the logical structure of a GUI can be represented
by an abstract CFG.

Let ()1 , , A=   with
{ }1 1 2 1 1: , : , , :n m k lP X X X P X Y Y P X Z Z= → → →    , be a grammati-

cal model of GUIs of a software. We present in this subsection how to encode

1 , its ASTs as well as their interpreters in the functional language Haskell.
Well-known techniques describing how to carry out a functional implementa-

tion of a CFG, and how to write interpreters of its ASTs exist [15] [16]. We
briefly present below how we proceed. Note that, our way of doing things is not
fundamentally different from others but has the advantage of being modular.
Indeed, whereas generally a single algebra structure is associated with a gram-
mar, we suitably associate an algebra structure with each syntactic category of
the grammar and consider in fine that, the algebra structure associated with the
grammar is the one associated with its axiom.

Abstract grammar allows to specify syntactic structures that can be associated
in Haskell to a set of algebraic data types12 describing the different syntactic cat-
egories used in grammar. Terms of a data structure are generally subject to sev-
eral interpretations, all of them following the same recursion pattern. This is
why they are generally specified by means of algebras13 formally defined as fol-
lows:

Definition 3 Let (), , A=   be a CFG. An algebra X associated with a
grammar symbol X ∈ is given by: 1) an interpretation domain YD asso-
ciated with each grammar symbol Y appearing in a X -production of  , 2)
a reference to the Z algebra of each grammar symbol Z appearing on the
right-hand side of a X -production. 3) an application

() ()1
: X X XP P P

P D D D× × →

 associated with each X -production

() ()1: PP P P
P X X X→  . The algebra  associated with the grammar

(), , A=   is the one associated with his axiom A : A=  .
Given an abstract grammar (), , A=   , we deduce from systematic way

the Haskell data types, the associated algebra data types, and the evaluation
functions (catamorphisms14) as follows:

12An algebraic data type is a kind of composite type, whose values are data of another type wrapped
in one of its data constructors.
13Intuitively, an algebra is the homologue of interfaces in java language. For a given algebraic data
type, it encapsulates the types of various interpretation functions of this one: there is as much inter-
pretation functions as of data constructors of the given data type.
14In functional programming, catamorphisms provide generalizations of folds of lists to arbitrary al-
gebraic data types. It effectively computes a “simple value” from a “container like” structure and a
computation mechanism to compose the values in it.

https://doi.org/10.4236/jsea.2018.1111033

M. T. Tchendji, F.-V. T. Ahoukeng

DOI: 10.4236/jsea.2018.1111033 558 Journal of Software Engineering and Applications

1) A data type is created for each grammar symbol.
2) For each created data type, an associated algebra data type is created. It

consists of two groups of selectors:
 The group formed by types of interpretation functions of algebraic data

type: there is one for each data constructor of algebraic data type,
 The group containing references to algebras associated with the different

algebraic data types used in the definition of the type of which the cur-
rent algebra is associated.

3) For each data type created, an evaluation function encapsulating the recur-
sion pattern is created; it is parameterized by the algebra associated with this da-
ta type.

Application of the approach to the grammar 1
1) Creating data types:

2) Creation of data types for algebras: Xi

D denotes the type variable
representing the interpretation domain of the type iX .

3) Evaluation function parameterized by algebra data type associated to X data
type15.

15Note that in line 5 of this function, we evaluate the component x1 by using the algebra dedicated to
it; it is contained in the interAlgX1 component of algX.

https://doi.org/10.4236/jsea.2018.1111033

M. T. Tchendji, F.-V. T. Ahoukeng

DOI: 10.4236/jsea.2018.1111033 559 Journal of Software Engineering and Applications

3.2. A Multi-Localization Approach: The Steps

In order to be intensively localizable, GUIs have to be internationalised to ab-
stract any information directly related to a culture. This justifies the decomposi-
tion of our multi-localization approach into two phases: an internationalization
phase whose objective is to produce a grammatical model (an abstract grammar)
of all the GUIs of the software; followed by a phase of multi-localization, whose
objective is to produce on the fly, located GUIs for each of the participants in the
collaboration.

3.2.1. The Internationalization Phase
The internationalization phase can be considered as an analysis-design phase,
allowing not only to identify the localizable elements of the GUIs for the abstrac-
tion purpose, but also to highlight the structural relations which exist between
them. Only a summary description of this phase is given below, because it is not
the main object of this study. It takes place in four steps:

1) Sketching: produce a sketch of all the GUIs of the software. This can be
done because, this set is finished.

2) Identification: identify for each GUI the localizable elements for their ab-
straction; symbolic names will be found and only one occurrence of similar ele-
ments appearing in more than one GUI is retained.

3) Production of ASTs: identify the structural relationships between localiza-
ble elements of the GUIs and for each relation identified, study constraints re-
lated to the relationship; for example, the meaning of the relation that can be
different from one culture to another, etc. This step ends with the production of
an AST draft for each GUI: this is its intentional representation.

4) Derivation of the grammar model of the application’s GUIs: from the dif-
ferent ASTs produced in the previous step, derive their CFG by considering that,
the set of AST’s labels form the set of grammatical symbols and that, a label of a
inner node and those of its directs children form a production.

3.2.2. The Multi-Localization Phase
This phase starts after the previous one and takes as input the grammar pro-
duced. It takes place in three steps (see Figure 2):

1) Generation of data structures: generate from the grammar data structures,
algebras data structures and evaluation functions for each grammatical symbol
(Figure 2-Step1) as described in section (see section 3.1).

2) The choice of GUIs description language(s) and cultures to be located: the
produced GUIs are described in a (textual) language like FXML [9], UIML [10],
etc. An implementation of algebra must therefore be provided for each of the
target GUI (textual) description languages. Likewise, a localization file must be
produced for each target culture (Figure 2-Step2).

3) Multi-localization: at the running time, the located GUI is obtained by in-
voking the evaluation function associated with the axiom of the grammar. An
instance of algebra corresponding to the desired description language, and the

https://doi.org/10.4236/jsea.2018.1111033

M. T. Tchendji, F.-V. T. Ahoukeng

DOI: 10.4236/jsea.2018.1111033 560 Journal of Software Engineering and Applications

localization file related to the target culture are provided as effective parameters
during this invocation (Figure 2-Step3).

External localization of software uses resource files that can be in the binary
(.DLL, .EXE, etc.) or text format. In the following, we will call localization file a
text resource file, containing in addition to strings to display in the GUI (lin-
guistic aspect), other cultural information (color codes, disposition order of
components, etc.) whose suitable use by the ASTs interpretation functions will
provide a located GUI in which, not only linguistic concerns are addressed.

A localization file is structured in sections, and each of them contain informa-
tion about a specific cultural concern addressed (language, color, components
layout, etc.). Each section is structured as an associative list, ie. a list of pairs
(key, value) where key is the identifier of a resource (its internationalized form),
and value its concrete representation in the current target culture. We have on
the listing 6 an example of a localization file.

3.3. Experimentation: Application to the Multi-Localization of the
Checkers Game GUI

Recall that checkers game consists of a set of pieces that moves according to pre-
cise rules, on a checkerboard made up of 100 squares. It is played by at least 2
players and each player has 20 pieces of single color, which is distinct from the
color of pieces of the other player. The goal of checkers game is to take or block
the largest number of opposing pieces.

Considering that a checkers game can only be played by at least 2 players, it
can be implemented and played in a network: it is therefore a kind of coopera-
tive application. One can easily imagine a checkers game played by participants
belonging to different cultural areas. As mentioned in the introduction (Section
1), the game’s GUI can be multi-located in order to improve for each player his
application’s use comfort: each of the participants will then interact on a located
GUI relating to his culture.

The rest of this subsection presents how this goal can be achieved by applying
the multi-localization approach described in Section 3.2. Note that our goal here
is not to build a fully functional checkers game, but, to present how our ap-
proach can easily derive a multi-located GUI for the latter. For a better under-
standing of the example, we presented on Figure 3, the orchestration diagram
summarizing the interaction between different players during a game: any action
of a player (moving a piece) on his GUI is raised at the AST level and the GUI of
the other player is immediately updated accordingly; bidirectional binding [17]
is implemented between each localized GUI and the AST.

3.3.1. Localizable Elements and AST of the Checkers Game
For illustration purposes, we have retained in addition to the GUI components
related to the linguistic aspect, some others whose interpretation may vary from
one culture to another. Finally, the localizable elements selected for our toy ap-
plication are: strings (the linguistic aspect), colors, images of the pieces, layout

https://doi.org/10.4236/jsea.2018.1111033

M. T. Tchendji, F.-V. T. Ahoukeng

DOI: 10.4236/jsea.2018.1111033 561 Journal of Software Engineering and Applications

Figure 3. Orchestration diagram modeling the interaction between two checkers players.

components of the GUI and the chronometer displaying the remaining time at
the end of which the player must have moved a piece: his color will have to
change as soon as this time reaches a certain threshold.

From the abstraction of its elements and the structural relations that can be
identified between them, we have the AST of Figure 4 in which, the components
Label, Button, ImageView, TextField (resp. Vbox, Hbox, Gridpane) are abstrac-
tions of basic (resp. structuring/layout) components that names are related to
those that we generally have in the GUI’s build libraries.

3.3.2. GUI’s Grammar for the Checkers Game
From the abstract representation of checkers game (Figure 4) one can derive
abstract grammar whose productions (an extract) are presented on the listing 1.

Listing 1: GUI’s grammar for the checkers game

https://doi.org/10.4236/jsea.2018.1111033

M. T. Tchendji, F.-V. T. Ahoukeng

DOI: 10.4236/jsea.2018.1111033 562 Journal of Software Engineering and Applications

Figure 4. An example of a simplified AST representing the GUI of a checkers game.

In the listing 1, grammar symbols that do not appear on the left hand side of

any production are assumed to be associated with ε -productions (not shown in
this listing). In addition, in line 3, the notation “*” simply means that the gram-
mar symbol Vbox is used to structure zero or more BaseCompOrGroup com-
ponents.

3.3.3. Data Structures Derived from the Grammar of the Listing 1
An extract is given in the listing 2. Note that, a flat must be made to what have
been said in Section 3.1 with regard to the data types to create. In fact, we will
not create neither a Haskell data type nor algebra for grammatical symbols that
we call linguistic symbols; these are symbolic names whose concrete value in the
language of target culture is given in the localization file. In the listing 1, these
are the grammatical symbols whose names have “.game” as extension; they are
represented by the type String (their domain of interpretation) in the listing 2,
lines 7 and 8.

Listing 2: Data structures derived from the grammar of the listing 1

https://doi.org/10.4236/jsea.2018.1111033

M. T. Tchendji, F.-V. T. Ahoukeng

DOI: 10.4236/jsea.2018.1111033 563 Journal of Software Engineering and Applications

Listing 3 presents the Haskell code of the algebraic structures associated with
the data types of the listing 2. In this one, the types variables VboxD , HboxD ,

AstD , etc. represent the interpretation domains of the respective components,
Vbox, Hbox, Ast, etc. Note that, the interpretation functions of derived algebraic
structures, use data contained in the localization file. The latter is therefore pro-
vided as a parameter (listing 3, lines 7 and 10), and treated as an inherited
attribute16 associated with all the syntactic categories of the grammar.

During the scanning of a linearization of the AST, the checkers board is gen-
erated when GridPane is met. The syntactic categories BaseCompOrgroup, Ba-
seComp and Ast are used only for factorisation purposes (reducing the number
of productions), the interpretation functions of algebra that are associated do
not use data contained in the localization file: they do not take it as a parameter
as it is the case for other algebras.

Listing 3: Some algebras structures derived from the grammar of the listing 1

As for the interpretation functions of algebras, the evaluation functions para-

meterized by algebras (listing 4) use data contained in the localization file; it is
therefore provided as a parameter to these functions, and they must propagate it
in the AST, by making them available at the level of each of their sons (listing 4,
line 4).

Listing 4: The catamorphisms associated with the algebras of the listing 3

3.3.4. An Implementation of Algebra for FXML
For the checkers game, we chose FXML as the GUI description language. All
syntactic categories, except those qualified as linguistic symbols, therefore have

16In the attributed grammars, the inherited attributes allow among other things to propagate infor-
mation from the root to the leaves of a tree.

https://doi.org/10.4236/jsea.2018.1111033

M. T. Tchendji, F.-V. T. Ahoukeng

DOI: 10.4236/jsea.2018.1111033 564 Journal of Software Engineering and Applications

FXML as interpretation domain. A particular implementation of the algebra of
the listing 3, of which an extract is given in the listing 5, makes it possible to en-
code the located GUIs in FXML. It basically contains instructions for creating
(insertion of tags) a well-formed and valid FXML file.

Listing 5: An algebra for the localized interpretation of AST in FXML

3.3.5. Localization Files
For illustrative purposes and without detracting from the generality, we have
choose to multi-locate the GUI of the checkers game according to two cultures:
“Western like culture” and “African like culture”. Their respective localization
files are given in the listings 6 and 7. They have been save in files named respec-
tively fichLocalWestern and fichLocalAfrican, which are used in listing 8.

Listing 6: Localization file for a “Western like culture”

https://doi.org/10.4236/jsea.2018.1111033

M. T. Tchendji, F.-V. T. Ahoukeng

DOI: 10.4236/jsea.2018.1111033 565 Journal of Software Engineering and Applications

Listing 7: Localization file for an “African like culture”

3.3.6. Located GUIs
The FXML codes of the located GUIs of the AST of the Figure 4, in each of the
two target cultures, are obtained by invoking the function cataAST (listing 8) as
described in the subsection 3.2.2. Once the FXML files are created, they can be
viewed by using a FXML interpreter such as sceneBuilder17 to have the outputs
given by Figure 5.

Listing 8: FXML localizations of the AST of the Figure 4

4. Conclusions

In this paper, we presented an external multi-localization approach of GUIs of
interactive software. It can be used for the implementation of both collaborative
and standalone applications, in order to adapt on the fly the end user’s GUI to its
own culture: The user experience is therefore improved.

The approach has been experimented with great satisfaction for the develop-
ment of the multi-located GUI of checkers game, whose main lines of its imple-
mentation have been presented in this manuscript.

The proposed approach is based on the use of functional techniques for the
interpretation of abstract structures by the means of algebras. The use of alge-
bras gives to the programmer the latitude to offer with a lower intellectual in-
vestment the same localizations in various GUI description languages. Since the
kind of localization explored in this paper uses localization files, the proposed

17JavaFX provides an application named Scene Builder. On integrating this application in IDE’s such
as Eclipse and NetBeans, users can access a drag and drop design interface, which is used to develop
FXML applications.
https://docs.oracle.com/javase/8/scene-builder-2/get-started-tutorial/overview.htm#JSBGS164

https://doi.org/10.4236/jsea.2018.1111033
https://docs.oracle.com/javase/8/scene-builder-2/get-started-tutorial/overview.htm%23JSBGS164

M. T. Tchendji, F.-V. T. Ahoukeng

DOI: 10.4236/jsea.2018.1111033 566 Journal of Software Engineering and Applications

Figure 5. Multi-localization of the AST of Figure 4: (a) localization in a “Western like
culture”, (b) localization in an “African like culture”.

approach may allow even a non-computer specialist to increment the localiza-
tion degree (adding a new culture) of a software as soon as it has already been
located for at least one culture: It is enough for that to adequately create a new
localization file for the new target culture. Note however that, the creation of the
new file will be easier if one can do it by the mean of a DSL (Domain Specific
Language) [18]; this is one of the immediate perspectives of this work: that is, to
investigate about an implementation of the proposed method as a software sys-
tem, that generate code from high-level description, in order to not leave too
much manual low-level writing of boilerplate code (like the one in the listing 5)
to the software developer.

Acknowledgements

Authors warmly thank professor Tayou Djameni Clémentin for enriching dis-
cussions they had, during both laboratory seminars and the defense of Master’s
thesis of Mr. Tatou Freddy.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Sommet mondial des dirigeants locaux et régionaux - 3ème congrès mondial de

cglu, mexico, 2010. https://www.uclg-cisdp.org/en/node/1078

[2] UNESCO (2002) Déclaration universelle de l’unesco sur la diversité culturelle.
http://unesdoc.unesco.org/images/0012/001271/127162f.pdf

[3] Rauterberg, G.W.M. (2015) From Personal to Cultural Computing: How to Assess a
Cultural Experience. Pabst Science Publisher, 13-21.

[4] Fraisse, A. (2010) Internal and in Context Localisation of Commercial and Free
Software. Theses, Université de Grenoble.

[5] Esselink, B. (2000) A Practical Guide to Localization. Benjamins, John Publishing

(a) (b)

https://doi.org/10.4236/jsea.2018.1111033
https://www.uclg-cisdp.org/en/node/1078
http://unesdoc.unesco.org/images/0012/001271/127162f.pdf

M. T. Tchendji, F.-V. T. Ahoukeng

DOI: 10.4236/jsea.2018.1111033 567 Journal of Software Engineering and Applications

Company. https://doi.org/10.1075/liwd.4

[6] Schäler, R. (2007) Localization. In: Baker, M. and Saldanha, G., Eds., Encyclopedia
of Translation Studies, 2nd Edition, 157-161.

[7] Davie, A.J.T. (1992) An Introduction to Functional Programming Systems Using
Haskell. Cambridge University Press, New York.

[8] Doets, K. and Van, J.E. (2004) The Haskell Road To Logic, Maths and Program-
ming. King’s College Publications.

[9] Schildt, H. (2015) Introducing JavaFX 8 Programming. 1st Edition, McGraw-Hill
Education Group.

[10] Abrams, M., Phanouriou, C., Batongbacal, A.L., Williams, S.M. and Shuster, J.E.
(1999) Uiml: An Appliance-Independent XML User Interface Language. Computer
Networks, 31, 1695-1708. https://doi.org/10.1016/S1389-1286(99)00044-4

[11] Ganneau, V., Calvary, G. and Demumieux, R. (2007) Métamodèle de règles
d’adaptation pour la plasticité des interfaces homme-machine. Proceedings of the
19th Conference on L’Interaction Homme-Machine, IHM ‘07, Paris, 13-15 Novem-
ber 2007, 91-98. https://doi.org/10.1145/1541436.1541454

[12] Gabillon, Y. (2011) Composition d’interfaces homme-machine par planification
automatique. In Interface Homme-Machine [cs.HC]. Université de Grenoble, Gre-
noble.

[13] Reina, L.A., Robles, G. and González-Barahona, J.M. (2013) A Preliminary Analysis
of Localization in Free Software: How Translations Are Performed. In: Petrinja, E.,
Succi, G., Ioini, N. and Sillitti, A., Eds., 9th Open Source Software (OSS), volume
AICT-404 of Open Source Software: Quality Verification, Part 1: Full Pa-
pers—Practices and Methods, Springer, Koper-Capodistria, 153-167.

[14] Dirk, S.K. (2005) Internationalisierung und lokalisierung von software. In: Reineke
and Schmitz Klaus, Einführung in die Softwarelokalisierung, Gunter NarrVerlag,
Tübingen, 11-26.

[15] Backhouse, K. (2002) A Functional Semantics of Attribute Grammars. Proceedings
of the 8th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, TACAS ‘02, Springer-Verlag, Berlin, 142-157.
https://doi.org/10.1007/3-540-46002-0_11

[16] Fokkinga, M., Jeuring, J., Meertens, L. and Meijer, E. (1991) A Translation from
Attribute Grammars to Catamorphisms. The Squiggolist, 2, 20-26.

[17] Hu, Z.J., Mu, S.-C. and Takeichi, M. (2008) A Programmable Editor for Developing
Structured Documents Based on Bidirectional Transformations. Higher-Order and
Symbolic Computation, 21, 89-118. https://doi.org/10.1007/s10990-008-9025-5

[18] Van Deursen, A., Klint, P. and Visser, J. (2000) Domain-Specific Languages: An
Annotated Bibliography. ACM SIGPLAN Notices, 35, 26-36.
https://doi.org/10.1145/352029.352035

https://doi.org/10.4236/jsea.2018.1111033
https://doi.org/10.1075/liwd.4
https://doi.org/10.1016/S1389-1286(99)00044-4
https://doi.org/10.1145/1541436.1541454
https://doi.org/10.1007/3-540-46002-0_11
https://doi.org/10.1007/s10990-008-9025-5
https://doi.org/10.1145/352029.352035

	A Grammatical Approach of Multi-Localization of GUIs: Application to the Multi-Localization of the Checkers Game GUI
	Abstract
	Keywords
	1. Introduction
	2. Preliminaries
	2.1. Context-Free Grammars as GUI’s Models
	2.2. On Software Localization: External vs. Inner Localization

	3. A grammatical Approach of External Multi-Localization of GUIs
	3.1. Derivation of a (Parameterized) Functional Interpreter of ASTs
	3.2. A Multi-Localization Approach: The Steps
	3.2.1. The Internationalization Phase
	3.2.2. The Multi-Localization Phase

	3.3. Experimentation: Application to the Multi-Localization of the Checkers Game GUI
	3.3.1. Localizable Elements and AST of the Checkers Game
	3.3.2. GUI’s Grammar for the Checkers Game
	3.3.3. Data Structures Derived from the Grammar of the Listing 1
	3.3.4. An Implementation of Algebra for FXML
	3.3.5. Localization Files
	3.3.6. Located GUIs

	4. Conclusions
	Acknowledgements
	Conflicts of Interest
	References

