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1. Introduction

The banking sector has been subject to constant changes in the economic envi-

ronment over the past two decades. The Basel Committee on Banking Supervi-
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sion lays down regulations and supervises the behavior of the banking industry,
by imposing minimal capital requirements and other measures. One of the defi-
ciencies of the 1988 Basel Accord (Basel I) was its failure to distinguish between
levels of credit risk in assets in general [1] [2]. According to Ferguson [3] this
further increased the divergence between economic and regulatory capital re-
quirements, making the capital adequacy ratio less reliable as a measure of the
financial health of banking institutions. Theoretical evidence of the 1988 Accord
suggested that the revised Basel Accord may influence the structure of a bank’s
balance sheet. Berger and Udell [4] examined the relationship between commer-
cial loans and the risk-based capital requirements that operate as a regulatory
tax. Jones [5] proposes regulatory capital arbitrage as an incentive to adjust
on-and-off-balance sheet activities to the 1988 capital requirement. Since then
numerous researchers [6] [7] [8] [9] [10] have carried out empirical studies in
order to point out that the risk-based capital requirements caused a reduction in
bank lending under Basel 1. Studies by [9] [11] [12] [13] have examined the
capital constraints on banks and response to the revised capital requirements.
For a more comprehensive overview on Basel I and Basel II, we refer the reader
to [14]-[22].

Basel II Capital Accord of June 2004 lays down regulations through more
risk-sensitive minimum capital requirements. Basel III was agreed upon in
2010-11, and was scheduled to be introduced from 2013-2015. However, the date
of implementation has been revised further to 31 March 2019. The third instal-
ment of the Basel Accords was developed in response to the deficiencies in fi-
nancial regulation revealed in the financial crisis of 2007-08. Basel III is intended
to strengthen bank capital requirements by increasing bank liquidity and de-
creasing bank leverage. Unlike Basel I and Basel II, which focuses primarily on
the level of bank loss reserves that banks are required to hold, Basel III focuses
primarily on the risk of a run on the bank, requiring differing levels of reserves
for different forms of bank deposits and other borrowings. Therefore, Basel III
does not, for the most part, supersede the guidelines of Basel I and Basel II;
rather it reinforces the intentions of the accord, see [23]. This provides incen-
tives for greater awareness of differences in risk through more risk-sensitive
minimum capital requirements based on numerical formulae. The Capital Ade-
quacy Ratio (CAR) is a measure of the amount of a bank’s capital relative to the
amount of its credit exposures, see [16] [24] [25]. Therefore, maintaining mini-
mum CAR is to guarantee that banks are prepared to absorb a reasonable level of
loss before becoming insolvent and will help to promote the stability and effec-
tiveness of the banking system.

On the other hand, the nominal interest rates quoted in financial markets are
formed in the processes of contracting between borrowers and lenders and an
increase in anticipated inflation raises the nominal interest rate. This increases
the number of dollars that creditors or debtors who are transacting in nominal
financial instruments except to receive or pay when a loan matures. If these ex-

pectations are realized, all nominal values will be higher at maturity. A banker’s

DOI: 10.4236/tel.2018.815207

3362 Theoretical Economics Letters


https://doi.org/10.4236/tel.2018.815207

R. S. Perera

nominal assets and liabilities typically mature at different dates. At any given
moment, the maturity dates of a bank’s asset generally extend beyond those of its
liabilities. In other words, interest rate change affects the payments stream obli-
gated by the banker’s liabilities before it affects the bank’s receipt stream. Con-
sequently, an increase in interest rate reduces the expected net stream of dollar
receipts as the banker’s creditors, renegotiate for a higher interest rate, while the
interest rate earned by the bank on its existing loans eventually mature and are
renegotiated at the higher interest rate, the interest rate earned by the bank on its
existing loans is locked up. Of course, the loans eventually mature and are rene-
gotiated at the higher nominal rate, but the banker’s capital is reduced nonethe-
less. Banker’s optimal asset portfolio decision requires that the expected returns
from the two portfolios are equalized in equilibrium. Therefore, in the presence
of anticipated inflation the interest rate at which banks lend to firms decreases
the banks’ net worth and show that a deterioration in banks’ net worth or a
strengthening of capital requirements may increase the interest rate at which
banks lend to firms and hence dampen lending and output. As a result, the sup-
ply of capital to goods producing firms will fall, reducing output. As output de-
clines, aggregate demand weakens and inflation declines. The initial effect,
originating from the change in the maximum loss, brings about second-round
effects on the macro-economy through endogenous developments in the banks’
net worth. When the initial effect leads to a decline in the banks’ net worth, it
also dampens output and inflation through changes in the risk taking capacity
originating from insufficiency. Hence, bank’s capital has a direct effect on the
upper bound on bank assets under Basel III capital requirement and thereby
bank’s lending ability. Importantly, there are two conditions required for the
bank capital channel to operate. First, banks should have no excess capital that
can be used to buffer against shocks that deplete bank capital. Secondly, the
capital market is imperfect in that it is costly for a bank to raise capital

Literature regarding quadratic optimization dates back to Markowitz in the
1950’s. In his mean-variance analysis the theory of combining risky assets to
minimize the variance of return (e, risk) at any desired mean return is exam-
ined. The locus of optimal mean-variance combinations is called the efficient
frontier, on which all rational investors desire to be positioned. Since then there
has been continued interest to incorporate specific features to the Markowitz
[26] model, such as the monotone characteristics. Maccheroni et al [27] ad-
dressed this issue and formulated a new class of monotone preferences that co-
incide with mean-variance preferences on their domain of monotonicity, but
differ where mean-variance preferences fail to be monotone. Moreover, they
showed the functional associated with this new class of preferences details the
monotone mean-variance preferences and its advantage over mean-variance
preferences Maccheroni et al [27]. In a dynamic optimization setting a modifi-
cation of Maccheroni type objective function has been analyzed by [18]
[28]-[33]. The problem of maximizing Maccheroni’s 2009 functional is a

max-min problem that naturally forms a stochastic differential game (SDG). In
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the literature there are two main approaches in determining the solution to such
games either via the maximum principle or Backward Stochastic Differential
Equations (BSDEs). The BSDE approach is based on the dynamic principle and
Hamilton-Jacobi-Bellman equations (Hamilton-Jacobi-Bellman-Isaccs (HJBI)
for differential games). In this study we use HJBI equation for the game and
simplify to a linear form by applying some transformations. As a by-product we
obtain a formula for the optimal strategy.

The novelty, of this study is the development of a robust portfolio alloca-
tion/management model for a bank with respect to inflation (non-tradable sto-
chastic state variable) and provisional capital process that maximizes perform-
ance criterion of a modified version of the monotone mean-variance functional.
Assuming that the banker can invest in treasuries, a stock index and a loan
portfolio, we formulate the portfolio optimization problem as a SDG and it is
solved via the HJBI equation to derive the optimal investment strategy. Optimal-
ity criterion is constructed via a functional by modifying the monotone
mean-variance performance. We discuss the banker’s portfolio compositional
decision based on the expected returns from the two portfolio holdings subject
to the equalization in equilibrium. We examine the dynamics of myopic optimal
portfolio and the intertemporal hedging demand portfolio of the optimal portfo-
lio holdings. We then derive the Basel III CAR. Compliance of minimum CAR is
modeled under the assumption retained earnings, loan-loss reserves, the market
and shareholder-bank owner relationship. In this study, Basel III CAR given by

0=,
a,.,
where C represents the total capital and a,, the total risk-weighted assets
(TRWAS) of the bank, respectively.

Recalling Maccheroni et al. [27], we have (optimal asset portfolio decision re-
quires that the expected returns from the two assets are equalized in equilib-
rium)

. 1
X—)lgrigEQ{X+£C(Q|P)}, 6>0, (1)
where 6, is a risk aversion coefficient, C (Q|P) , called a penalty function, Q

is a class of all probability measures, Pis a given probability measure and

Pl(dOY | | .
C(Q|P)= E I:(Fj} I, if Q< P, 2

+00, otherwise,

where C (Q|P) is known as the Gini concentration index. Due to technical dif-
ficulties, of Equation (1), we consider the set Q to be all absolutely continuous
probability measures which have square intagrable Radon-Nikodym derivative of
the form Equation (15). This modification of monotone mean-variance function is

still monotone and the performance criterion of convex risk measure A(X ), is
defined as:
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A(X):supEQ[— —ld—Q}, 6>0, (3)
0eQ 2dP
satisfying the following three axioms:

1) Convexity: If @ €(0,1), then A(aX +(1-a)Y)<aA(X)+(1-a)A(Y),

2) Monotonicity: if X <Y, then A(Y) < A(X) ,

3) Translation invariance: f € R, then A(X + Y) = A(X) -T.

Hence, the problem of maximizing Equation (1) becomes a max-min problem
and naturally forms a stochastic differential game for optimization problem.

This article makes the following contributions to the literature:

1) Introducing banker’s provision capital risk process as a controllable diffu-
sion process, we extend [31] analysis into robust portfolio allocation/manage-
ment framework with inflation. This allows the banker to deal with the issue of
bank capital adequacy and risk management in an incomplete market within a
stochastic dynamic setting. This empowers the banker to regulate his/her provi-
sion capital risk process by controlling the amount of wealth invested in the loan
portfolio as well as the amount of wealth invested in the stock index. A nega-
tive/or positive correlation between the provision capital process and the capital
loss/or gains from the loan portfolio is captured via p,. A negative/or positive
correlation will capture the influence of provision capital risk process on the fi-
nancial market holdings via p,. Consequently, we can show how a nega-
tive/positive correlation of p,, and p, affect the banker’s myopic demand
and intertemporal hedging demands on optimal polices.

2) We argue that the relevance of inflation risk stems not only from banker’s
concerns with real return volatility, or interest lost but also from the fact that in-
flation is a proxy for the variation of the investment opportunity set.

3) We formulate this problem as a stochastic differential game and use HJBI
equation to derive optimal investment strategy.

4) Optimality criterion of the optimal investment is based on a functional as a
modification of a monotone mean-variance preference.

5) We provide a verification theorem and describe the dynamics of the total
capital ratio under Basel III regulations

6) We show that our solution coincides with the solution to classical Markowitz
problem where the risk aversion coefficient is dependent on stochastic factor.

7) Our results confirm that the presence of inflation risk alters the banker’s
optimal holdings and the trade-off between the myopically demand optimal
portfolio and intertemporal hedging demand portfolio is determined by the de-
rivatives of marginal utility with respect to the state variable.

The remainder of this paper is organized as follows: Section 2 and Section 3
contains the description of the investment opportunities, market setting and
model set up and in Section 4 we formulate the bank’s investment problem sub-
ject to banker’s provision process as a Maccheroni type SDG between the banker
and the market. We then derive the HJBI equation, formulate the verification

theorem and transform our equation to linear form. This is followed by a com-
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parative analysis and discussion of the useful properties of this solution. In Sec-
tion 5 we derive an explicit Indigo Partial Differential Equation (IPDE) for the
dynamics of the Basel III CAR by dividing the total bank capital and TRWAs
under provision capital process paradigm. In Section 6 we compare the result
with solution to classical mean-variance optimization problem. Section 7 con-

cludes the paper.

2. Formulation of the Banking Model

We consider a financial market which is continuously open over the fixed time
interval [O,T]. We work within a filtered probability space (Q,}" ,P) with
F= (]-" (t))OStST , where P is the reference probability measure and Q denotes
the information structure. The mathematical model for a continuous-time mar-
ket allows at least two types of financial assets (treasuries, and a stock index
fund) to be bought and sold without incurring any transaction costs or restric-
tion on short sales. Issuing of loans is considered to be a third investment op-
portunity for the bank. We assume that the expected rate of inflation is not ob-
servable, but must be inferred from observation of the price level itself and this
inflationary risk in the market is captured by an external stochastic factor
0= (O(t))ogtg, with O(S)IO. To capture the operation and management
strategies of banks, we need to consider the balance sheet, which records the
bank’s assets (uses of funds) and bank’s liabilities (source of funds). The items
on the balance sheet behave in an unpredictable manner, due to the uncertain
behavior of the activities related to the evolution of treasuries, loan demand,
risky and riskless investments, deposits, loan repayments, borrowing and eligible
capital. As in [24], we define the balance sheet of a commercial bank at time #as

M (1)+S(t)+L(1)=D(t)+B(1)+C(1), (4)

where, M,S,L,D,B and C are the treasuries, securities, loans, deposits, bor-
rowing and bank capital, respectively. Each of these variables will be regarded as

afunctionof QxR, >R, .

2.1. Treasures, Securities and Loans

A bank reserve is the currency deposit that is not lent out to the bank’s clients. A
small fraction of the total deposits is held internally by the bank in cash vaults or
deposited with the central bank. Minimum reserve requirements are established
by central banks in order to ensure that the financial institutions will be able to
provide clients with cash upon request. Bank reserves are typically held by fi-
nancial institutions to avoid bank runs and have sufficient cash on hand, should
an unexpected and large withdrawal request come up. Bank reserves are divided
into required reserves and excess reserves. Because of the banking industry’s
importance to the economy, national authorities regulate banks by obligating
them to hold a certain amount of required reserves with central banks. Excess
reserves represent any vault cash that banks hold that is in excess of the required

reserves amount. Banks typically have low incentive to maintain excess reserves
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because cash earns the rate of return of zero and can lose value over time due to
inflation. Thus, under normal circumstances, banks minimize their excess re-
serves and lend out money to clients rather than holding cash in their vaults.
Bank reserves decrease during periods of economic expansion and increase dur-
ing recessions.

These funds are not used to lend to customers or to meet day-to-day currency
withdrawals. Treasury securities and bonds are issued by the national treasury as
a means of borrowing money to meet government expenditures that have not
been covered by tax revenues. Marketable securities are stocks and bonds that
can be swiftly converted into cash, hence are highly liquid assets. We suppose
that a commercial bank raises funds to invest in a risky asset, in this case a loan.

The interest rate on the loan is denoted by r(t) .

2.2. Total Bank Capital

Banks can raise their capital by selling new equity, retaining earnings, issuing
debt or building up loan reserves. By nature, the dynamics of bank capital is
stochastic due to uncertainty related to debt and shareholder contributions.
However, in theory the bank can decide on the rate at which debt and equity is
raised. According to Basel III, the bank capital can be portioned into so-called
Tier 1 and Tier 2 capital, ie, C(t) =Cp, (t) +Cp, (t)

Tier 1 capital is the book value of its stocks, E(t) plus retained earnings
E (t) Tier 2 capital (collectively known as supplementary capital) is the sum of

subordinate debt, S, (#) and R, (¢) loan-loss reserves. As a result, we have

C (1)=E(t)+E,(1), (5)
and
Cp,(t)=S,(1)+R, (1) (6)
Therefore, the total bank capital can be expressed as
C(1)=E(t)+E, (t)+S,(t)+R, (7). (7)

The market value of subordinate debt at time #may be given by

S, (1)=S5, (O)exp[jr(u)du].

0

2.3. Dynamics of Total Capital

We assume that the bank holds capital in n+1 categories, n of which are re-

ferred to as bank equity. Then the return on the ith bank equity is defined as
de,(t)=e, (t)|:(r(t)+ Zo—ijnj)dt + Zay.dl/f/j (t)},i =12,---,n, (8)
= j=1

The co-variance matrix and the market price of risk are given by ¥ = (0'” ):lj:1
and 7=(n,-.n, )T , respectively and are assumed to be constants. T, is the
transpose of a vector or matrix. At time #we assume that the bank capital is being
converted into loan and marketable securities at the rate of p, (t) =pX (t)dt
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for a constant p . Here, X (t) represents the total asset portfolio of the bank.
Greenbaum & Thakor [34] argues that excessive high capital requirements
may result in banks taking on more risk and may lead to a bank acquiring higher
levels of equity on order to become compliant. The upshot of such practices in-
cludes reduced liquidity and erosion of discipline in the bank’s operation while
defeating the purpose of the regulatory requirements. Therefore, capital re-
quirement should be pitched at an appropriate level and banks should operate as
near as possible to the minimum required level of capital. Therefore, it is essen-
tial to properly monitor and project the dynamics of the CAR. For this reason, in
Section 6, we describe the dynamics of Basel III CAR as a SDE. Due to the
non-dynamic character of retained earnings and loan-loss reserves, these aspects
are not considered to be active constituents of bank capital. This implies

dE, (t)=dR, (1)=0, V¢ . Hence the C-dynamics may be expressed as:
ac(1)=c(t) 3w, def—(’)+[1-iwi (t)jC(t)dSD—(t)—,BX(t)dt
=G (’) i=1 Sp (t) 9)
= C(O)[(r(0)+ W' (1) Wn)de+w" (¢)¥dW (1) |- pX (1) dr,

where w' (¢) are the proportions invested in securities. The diffusion term
w' (t)‘Pde/(t) in (9) establishes a correlation between bank capital and total

risk-weighted assets.

3. Financial Market Setting

3.1. Treasures

The first of three assets, we consider treasury M (t) which evolves according to
dM (t)=M (¢)r(t)ds, M(0)=1, (10)

where r(t) is the instantaneous nominal interest rate at time ¢ and is F, -

measurable. Assume that M (t) is a well-defined process.

3.2. Stock Index Fund

The evolution of the price process of the stock index fund S§ ::(S(t))O«T is
governed by the SDE:

dS (1) = S(1)| (r(1)+ & (0(1)))de + 0, (0(1)) W, (1)) |, $(0)=5>0, (11)

where & (O(t)) >0, is the risk premia of the stock index, o, (O(t)) >0, is

positive volatility parameters that are continuous functions and assumed to sat-

isty all the required regularity conditions, in order to guarantee that the unique
strong solution to Equation (11) exists. The unit market price of risk for the
stock index is 4, (O(t)) >0 and the risk premium of the stock index fund is

&(0(1)=a,(0(1)) 4 (0(1))-
3.3.Loans

Any loan is essentially an interest rate contingent claim and by It6’s lemma the

dynamics of the loan price are assumed to follow according to the SDE
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dL (1) = L(1)| (r()+ &, (0(1)))de + o, (O(2)) ams (1) | (12)

& (O(t)) >0 is the risk premia per loan in the loan portfolio, o, (O(t)) >0,
is the volatility parameter that are continuous functions and assumed to satisfy
all the required regularity conditions, in order to guarantee that the unique
strong solution to Equation (12) exists. We assume that the bank grants loans at
a nominal interest rate or loan rate as a sum of instantaneous nominal interest
rates, the market price of risk and the default risk premium. Here,

& (O(t)) =1 (O(t))O'L (O(t))+£ , is the unit market price of risk for a loan.
As in [35], the default risk premium ¢, is the credit spread charged by the bank
and it is the function of the probability of default (£D), and the loss given default
of the loan, (LGD) (Spread = PDx LGD ). Main liabilities for the bank come
from approving loans. Total outstanding number of loans at time ¢is denoted by
L(t). Then the revenue from writing loan policies over the time period
(t,t + dt) is given by ¢, (O(t))w2 (f)dr. We also assume that bank can sell

their loan portfolios to other banks.

3.4. Inflation in the Economy

We define the dynamics of the rate of inflation is given via the following SDE
do(t)=a(0(1))dt+b(0(1))( pdW, (2)+ p,dW, (2) + p,W, (1)), 0(0) =0, (13)

where the coefficients a,b are continuous functions and satisfy all the required
regularity conditions, in order to guarantee that the unique strong solution to
Equation (13). (p,,p,,p;)€[-11] are the correlation coefficients and ,,,
and W, are three independent standard Brownian motion which are orthogo-

nal to each other.

3.5. Bank’s Provision Capital Process

The nominal interest rates quoted in financial markets are formed in the proc-
esses of contracting between borrows and lenders and an increase in anticipated
inflation raises the nominal interest rate. This increases the number of dollars
that creditors or debtors who are transacting in nominal financial instruments
except to receive or pay when loan mature. If these expectations are realized, all
nominal values will be higher at maturity. A banker’s nominal assets and liabili-
ties typically mature at different dates. At any given moment, the maturity dates
of a bank’s asset generally extend beyond those of its liabilities. In other words,
interest rate change affects the payments stream obligated by the banker’s liabili-
ties before it affects the bank’s receipt stream. Consequently, an increase in in-
terest rate reduces the expected net stream of dollar receipts as the banker’s
creditors, renegotiate for a higher interest rate, while the interest rate earned by
the bank on its existing loans eventually mature and are renegotiated at the
higher interest rate, while the interest rate earned by the bank on its existing
loans is locked up. Of course, the loans eventually mature and are renegotiated
at the higher nominal rate, but the banker’s capital is reduced nonetheless. We
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also argue that the relevance of inflation risk stem not only from banker’s con-
cerns with real return volatility but also from the fact that inflation is a proxy for
the variation of the investment opportunity set. We define the bank’s provision

capital risk process as
dz(t)=vdt + AW (1), (14)

where v and f are two positive constants. #(¢) is another standard
Brownian motion defined on the given filtered probability space and a nega-
tive/or positive correlation will capture the influence of provision capital risk
process of the loan portfolio on the financial markets via p,. A negative/or
positive correlation between the provision capital process and the capital loss/or
gains from the loan portfolio via p,. Inflationary risk in the economy is cap-
tured via p,. We suppose that under 2, there is a 4-dimensional Brownian mo-
tion such that the correlation coefficients are p,, p,,p; and p, respectively,
with respect to W . Then Vf/(t) can be written as

W (1) = P () + oI, (1) + o7 (1) + PV, (1)
where W, (t) is another standard Brownian motion orthogonal to
W, (t),W,(t),W;(t), we define p, = \/1—([)12+[)§ +[)§) and

(ﬁ17ﬁ27ﬁ37ﬁ4) € [_1;1] .
We assume that the probability measure is not precisely known and the

banker knows only a class of possible measures. To construct banker’s objective

function, following [29], we consider the class of 77:=(1,,7,,75,7,) € M. as

Q{ \ ([ (6)a, () + s (1) s ()

(15)
(O (1), ()20, 0),

where &£ ()t denotes the Doleans-Dade exponential and M denotes the set of
all progressively measurable processes 77 := (771 N/ 774) such that

7 n
E (%J <+ and E [dQ ] . Q" denotes the measure determined by

n € M. This implies that we have an additional family of stochastic processes
(Y" (1),0<¢t< T), are given by the SDE
4V (1) =1y ()" ()0, ()-+ 1, ()" ()0, (1), (1) (1) (1)
)

+77, () Y7 (¢)dW, (1),Y" (5) = ».

do”

(16)

Moreover, note that Y7 (7) = Y ip

At time ¢ the banker chooses w, (t) amount to be invested in the risky stock
index fund and w, (t) amount of outstanding loans included in the loan port-
folio. Then the trading strategy is a pair of stochastic processes
k(t)= (w] (1), w, (t)) Corresponding to a strategy K(l) the dynamics of the

bank’s portfolio under inflational risk control strategy can be written in an ex-
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plicit manner subject to an initial wealth xas
ax ) (1)
dM (t)

( —w (¢ )) Mt

ds(r) dL ()

Wl(t) S(t) +W2(t) L(t) _Wz(t)dﬂ'(t)

)
[7(6) X (t) S( () w () + & (O(t)) w, ()~ vw, (1) ] de
W, 1)+, (O())w, (6)dW, (£) = w, (1) BAW (1),

(0(1))m (2)
& (0(0)=us (0(1)=r(1).&. (0(0)) = s (O(e) = r (1)) - w5(0(1))

and (O(t)) are the appreciation rates for the stock index and for a loan, re-

(17)

+ 0

where

spectively. We rewrite Equation (17) as:
Q0 ()= (1) X (1) + & (0(1)) w (1) + &, (0(6)) s (6) = vws (1) ] e
+(o (O(r))w (z)—mwz (1)) am (1)
+w, ( )( )) - Bp, ), (1) (18)
— (1) B () w, (1) BRI, (1)
X(0)=x.

Definition 1. The control strategy « = (w1 (s),w, (s)) ; t<s<T inthetime
interval [t, T] , is admissible if it satisfies the following assumptions:

1) w,w, are progressively measurable;
2) There exists an unique solution to Equation (14) and

E f’t [ sup

t<s<T

X(“’la”’z)

}<+oo for all 7€M, where E”7 denotes the expectation

with respect to measure Q7.

4. Banker’s Asset Optimization Strategy

Shareholders of a bank expect a decent return on their capital investment. In
order to maximize shareholder wealth, the bank management must strategically
allocate the shareholder’s wealth in investment strategies while minimizing the
risks. (Shareholders will describe the uncertainty of an investment’s success or
failure as risk, and the bank management must monitor this risk because it af-
fects the bank’s cost of capital, market value and ultimately shareholder wealth).
Consequently, changes in the bank’s asset value are reflected in changes in the
shareholder’s equity. The value of the bank portfolio depends on the credit qual-
ity of borrowers (creditors) that the bank has lent money to conclude that the
uncertainty in borrowers’ future credit quality leads to uncertainty in the bank’s
future portfolio value. In order to formulate the banker’s optimization problem
as a Maccheroni type, we define the banker’s objective as

J5(x,y,0,t) = X [ ~x"N(1)-y" (T)] . Then the banker’s aim is to

min supJ(K’”) (x,»,0,), (19)
neM

over a class of admissible strategies A,.

Using [36] stochastic differential game we model problem (19) as a zero-sum
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stochastic differential game. We claim the measure Q" is controlled by the
market (player 1) and the portfolio x is controlled by the banker (player 2).
Under this setting we are looking for a saddle point {(wl* ,w;),n*} e A xM
and the value function V(x, y,o,t) such that

J((W{F’Wz)ﬂ) (x, ¥, o,t) < J((W{’Wz)ﬂ*) (x,y,o,t) < J((WI’WZ)’”*) (x, ¥, o,t)
and V(x,y,0,t)= J((wl*'w;)’”*) (x,5,0,1).

4.1. HJBI Equation and the Verification Theorem

To establish a link between HJBI-equation and a saddle point to our problem in
this subsection, we recall Equations (18), (16) & (13) and setting M(l) =1 for
all z ie

a1 (1) =[ & (0(6)) w () + &, (O(0) ws (1) —ow, (1) Jae
+0,(0(0))w (1)dW; (1)+ &, (O(1)) w, ()W, (1)
— wy (1) AW (2), o0
dY” (1) =, (1) V" (1) AW (1) + 1, (1) V" (1) AWV (1)
715 ()Y () AW (2) +7, (1) Y7 () AW, (1),

5 )
dO(t)=a(0(t))de+b(O(1))( pdW, (1) + p,dW, () + p74 (1))

After applying the Girsanov transformation, we define the Q" dynamics of

the system (20) as:
ax ) (1) = w (1) & (0(1) +w, (1) (& (O(1)) =)+ (wi (1) (0(1))
=B, (), (1) + w, (1) (0, (O(1)) = 35 ) (1)
=w, () Bpyrrs (1) = wy (t) Bpun, t:ldt+(wl ()e (0(1))
_ﬂﬁlwz(t))dWl(t)+W2(t)<aL(0(’))_ﬂﬁ2)dW2(t)
= w, (1) BpydW; (£) = w, (1) BpudW, (1),
Ay (¢) = (n (£)+ 75 () + 3 (¢) + 3 (£))Y" (¢) e+, (£) Y7 (¢)dIW, (2)
+1, ()Y (1) AW, (6)+ 15 (1) Y7 () AW, () + 1y () Y7 (2) AW, (1),
do(t)= ( (0(2))+b(0(2)) pyn, (£) +b(O(1)) P, (£) +b(O(1) )p3773(t)

+b(0(t))(p,dW] (£)+ o, d W, () + ps¥s (1 ))’

(21)

dw, (¢)=dw, (¢)—-n,(r)ds,
dw, (1) =dw,(t)-n,(r)ds, o)
dw, (1) =dw,(t)—n,(t)de,
dw,, (t)=dw,(t)-n,(t)de
Let " be the differential operator given by
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E(K’”)V(x,y,o,t)

:ZEJF{Wz (52 (0)=0)+ (1 (0) = 8P )m2 ) + wis (o)
ov

+ (ngl (0) - ﬂﬁlwz)rll -W, (13163773 + B, )}a

ov
+ (475 47 +f7§)y5+(a(o)+b(o)p]m

ov
+ b(o)pzﬂz + b(O)/?3773 )E"‘

1 A

5(012 (o)w =2Bp,0, (o) ww,
v

ox’?

2 A2 2

+ B 4wk (0, (0)= Bp,) + wiB S5
v

1 1 o
(i) PRSP
+((W10'1 (0)_ﬁ,51W2)’71 ""Wz( ( ) ﬁ/bz)ﬂz

2

o (w1 (0) - BAw,)b(0)

—w, 80315 = w, Bom, ) y%

33 (, (0) = 525 (0) s W 3pib (0) 1) o
oV

#(mb(o0) o+ 7:b(0) py 41 (0) 1) v 2o

We now formulate a Verification Theorem. The proof of this theorem is simi-
lar to the proof of theorems from [18] [31] [32] [37]. For the completeness of
this analysis we briefly state the theorem.

Theorem 1. ( Verification Theorem). Suppose there exists a function
v ecr (]R x(0,+0)x Rx[0,T )) N C(]R x(0,+0) xR x [O,T]) and a Markov
control (K* (x,y,0.1),7" (x,y,o,t)) e A, x M, such that

EK*(x’}””’t)"iV(x,y,o,t) <0,
CK’”*(X’}"O”)V(X, y,o,t) >0,

(23)
EK*(x,y,o,t),q*(x,y,o,t)V(x’y,o’t) _ 0,
V(x,y,o,T)z—x—y
Forall neR* xeR? (x,y,0,t)e Rx(0,+0)xRx[0,T), and
B {sup y(x (s),Y(s),O(s),s)H <4 (24)
1<s<T

Forall (x,y,0,1)e Rx[0,+0)xRx[0,T],x=(w,w,)eA,,ne M. Then
JE (x,y, o,t) < V(x,y,o,t) <J (x,y,o,t) (25)

Forall k= (wl,wz) eA,neM, and V(x,y,o,t) =g (x,y,o,t).

Proof. Fix (x,y,0,1)eRx(0,4+0)xRx[0,T), choose any 7€M and con-
sider the system of Equation (21) with «” (t) =x" (X(t),Y(t),O(t),t). If we
apply the It6 formula to Equation (21) and the value function ¥, we obtain
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Eoron [V(XTKI'A(T—&)’YT}A(T—s)’OT:A(r_s)’T: T - ))}

= V(x’ ¥, O,l) + E" l:jtTfA(Ts)ﬁ,{*(x),ﬂ(x)V(X,(* (S), Ve (S),O(S),S)dsi|

X,7,05t

Ty AT-) &
VT, [ [0 g (s)aw (s)},
where (T,f,n =1,2,- ) is a localizing sequence of stopping times such that,

E!,, = [me”) B (s)dw” (s)} =0.

X,y,0,t
Using E"*(""J”””)"’V(x, ¥,0,) <0, yields
E! . [V(X;}A(T_g), Yr:]%(r_g)’ OT;A(T_E),T"S A(T - g))} >V (x,p,0,1).

Since Equation (25) holds, applying the dominated convergence theorem and
letting n — +o0, and using V(x, ¥,0, T) =—Xx—y, we obtain
JE (x,y,0,1) 2V (x,y,0,t) . Replacing 1 byn" and using
E'(*(x’y’o’t)’"*(x’y’”’t)V(x, ¥,0,t)=0, we obtain J (x,»,0,1)=V(x,y,0,t). Next
choose any x €A, and apply the Itd formula to the system of equations (21)
with 7" (¢)=n" (X(t),Y(t),O(t),t) . Repeating the method presented above
and using ﬁ”’”‘(x‘y’o”)V(x,y,o,t) >0, we obtain J*7 (x,3,0,t) <V (x,v,0,1).

Remark 1. The conditions given in Equation (25) will hold if the upper and
the lower HJBI equations are satisfied such that

21:]}%121 max LYY (x,y,0,1) = may E;}g} LY (x, y,0,1) =0,

V(x,y,o,T)=—x—y.

4.2. Solution to the Stochastic Differential Equation
To find the saddle point we first use the upper HJBI equation

min max £V (x,3,0,1)=0, (26)

xeR? UERA

Consequently, we obtain

V+a(o)V, + 34 (o),

t 0

+E€1]g} IJ?R?‘( {|:W2 ((gL (0) - U) + (O—L (0) - ﬂﬁz)nz - ﬂ/a3773 - :Bﬁ4 - ﬂlaﬁl )

+w (& (0)+ 0, (o)m) [V + (i +m3 +75 +n} ) »V,

1 n
+b(0)(p1771 + 0,11, + P37 ) v, + E((Wlo-l (f) - pow, )2

A . . 1
2 (0, (0) = B5,) + Wi L 4w B3 Vi (0 43 0} ) Y,
+((W101 (0) - ﬂ,blwz)n] +w, (O-L (0) - ﬂ/az )772 - Wzﬁ,bﬂh - Wzﬂ[’ﬂh)nyy
+b(0)((wlo-l (0) - ﬂﬁlWZ)pl W, (O-L (0) - Bp, ) Py = WP Ps ) Vo

+b(0) (P, + 1,0, +11505) ¥V, } = 0.
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We expect V(x, y,o,t) to be of the form
V(x,y,0,t)==x+G(o,t)y, where G(0,T)=-1.

Then we obtain

yG, +a(0)yG, +%b2 (0)yG, +Kmezin?2 Iﬁ%§{[—w2 ((gL (0)_0)
+(O-L (0)- ﬂrbZ)nz = Bpim — Bpsns — o, ) W (gs (0)+0 (0)’71 ):' (27)
+2b(0)(p]77] + P, t p3773)yG0} =0.

The maximum for Equation (27) over (771,772,773,774) is attained at

(' smsomi):
m (W) = 2;((1) - 2yg/(310,t) K (2((::))’
n;(wz):%%‘b(om%’
75 (w,) 2y£/(3;t) (), (2((:;))’
n;(w,) ‘2y§/?40,t)w

For (77:,0;,?7;,77:) , we obtain

1., .
yG, +a(0)yG, +Eb (0)yG,, +m1nm?§;{[—w2 ((§L (0)-v)

ke® ne
(0 (0) =552 )13 (wy) = Bovirs (wiswy) = Bosar; (w,)
+Bpu ()= (& (0) + () (1.,)) ] 28)
#{ (7 (o) (05 (02)) (5 (o)) i () )5
+2b(0)( oy (W wy )+ py1ts () + pyn; (Wz))yGn} =0.

Then the minimum over x = (Wl, wz) is attained at

&(0) _,pb(0)G,(0.0) |, fp

w;*:—z,vG(o,t)le((,) o,(0) G(o,t)} a1(0)

X
w,,

& (0)—1)
(0, (0)=Bp,) + 52 (8 + P2+ )

wy = —2yG(0,t)|:

(0(0)=0.) + B (51 + 55+ %) G (o)

Bpioi (o)
(00(0)=b:) + 5 (5 + 73+ %)

( 285(0) 310 ~b(0) . (0, (0)~ B3,)+ Bb(0) P, ] G, (o,r)]

1

By simplifying the above two equations, we obtain
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(B2, ~2p0(0)T1,) 6, <o,r>}

N (& (0)-v)
o, (o)1,
(29)

o, (0)1‘[2 G(o,t) ’
S (0) —U + Bois (0)
I1, o, (0)1'[2

pants + 251, =2b(0) pp, |G, (o,1)
I1,11, )

w, = —2yG(o,t){
(30)

where
M, =(0,(0)=Bp,) + B (47 + 5L + 5} »
M, =(0,(0)= Bp,) + (55 +57)
and
IT, = 253b(0) pp, —b(0) o, (0, (0) = B, ) + Bb(0) pyp;.

Furthermore

i () = { OJ {ﬁp, I,) - plb(o)HOHZ}GD(o,t)’ (31)

0 IT,I1

i (o) - (m(@( °) )Hﬁ) ()] [(q(o%ﬂﬁz)(é(o)—v)J
)

(o I,
_[("L( )( 1 =2p8b(o )p1p1)+b(o)p2H2JGo(

I,

() = Lﬁ%l@fs( )Hm(;(o)_u)J

0'1( )Hz I,

(33)

L[, ~b(0)(28° P55 + sT1,) ) G, (0,1)
1, G

i ()= (ﬂ PP (0 )j{ﬂ@(g(o)—u)]

1 HZ HZ
o,(0) G

{mnl —~2b(0) B> ppifs ] G, (0.1)
HZ
Then the saddle point candidate for the game
((wf,w;),nl* (Wi, wy).m5 (wy), 13 (W), 774) is governed by Equations (29), (30),
(31), (32), (33) and (34). By substituting Equations (29) and (30) into Equation
(28) and dividing by y; we obtain the final equation of the form

G, +(a(0)-4d, (0))Go +%b2 (0)G,, —d, (0) +d (0)G (35)
and we define = S (0) — (EEL (0)_0)
d we define 2, 1 (O)JQ oo
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A A

(ﬂ3/51/332) ¥ VAQLYY: ﬂ1+4ﬂ4b(0)/71/312/33/54
2

I I I

B*b(0) ppi p;
Lt L L +2
HZ 21 2 ( )il
ﬂ:;ﬁ]ﬁﬁl 21 ﬁ5p]3pj j'l 2HH ﬂ'z
IT,1I1, I1,11; I1,

ﬂzpr ALY VAL

1, & 1,11,

d,(0)=2

A

—4b(o) p Ay +4

4h=2 4

A A2

B’b(0) pprp;
I

2

_4ﬂb(0)p1’61/12+4 Ay

ﬁzﬁlznlz (Hl -II, )2 _4ﬂb(0)p1/6]l_[| (Hl _Ho)
I3 I, 11,

d,(0)=

o
~48°b(0) ppi 5 -+ b7 (0)(350 -3 - p37)

2
2

2
I RN I 2b(0)ﬂ2/71/31/63
+—L + L4y
Hi (IB p3 IB p4)1—[2 H2

n (GL (0)_ﬂ;52 )2 (H] _2:Bb(0)p1,51 ) [(Hl _2ﬁb(0)p1/51)
I, I,

2 A b A
_znl_zﬂ p1H1+4ﬁ (0)/)],01]

I, I,

I1, I1, IT,

_4ﬂ3b(0)p1,51,53,54nl _2ﬂ2ﬁ32H1 I + 182/6121_[1
2 1

1T, I, IT, I,

3 ~3 2 A ADd
L Pb(0)pp —ﬂﬁfb(o)J+4ﬂ b(o) pAA; (ﬂl
H2 H2 HZ

) b(o) p, (UL (o) _ﬂ/62)(1'[l + Apn, Zﬂb(o)plﬁlj

_zw_b(o)ju%@(mnl ~2pb (o)1)

b(O),B3p1,[71,53,54H1 L+ ﬂzlblz
I1, n, II,

+4

~2pnl0)n |

I, (. ) 0, s
+2b(0)H—l(ﬂp32 - Bpipy _MJ
0

H2
5 B piT, [&_ 2 pBb(0) P N B o, J

m, \m, 1, 1,1,

(-1 ( AT pbo)
2 2 A2 1 1 0 1 ] b 2
+28°p; m, [ HéH ﬁ ( ) PP C+ I,

. (m o I .
~2Bb(0) pip, (—Hl + B0t o —Zﬂplplb(O)Ho]-
0 072

(36)

(37)
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d3(0):ﬂ12 1+2ﬂ2ﬁ12 _ﬂ ,bl (O-Ll_(lj)_ﬂ[)Z) (:B 1,?[1;03)
B pip ) e
( ;f) %(ZHZ—(UL (0)_13102) -p P4) (38)
+ k| PP —2(0L(0)_ﬂﬁ2)2 Po. L BAP B hA
1 I I, I, .

2

Lemma 1. If the value function V exists and is a solution to Equation (28),
then it is also the solution to lower the Hamilton-Jacobi-Bellman-Isaacs (HJBI)
equation max mmﬁ( V(x,,0,t)=0.

r]e]R xeR?

Proof. We know that max mlnL( V(x,y,0,t) < min max E("’”)V(x, y,0,t),
r;e]R xeR? xeR? ;7E1R4

due to the fact that max min £y V(x,y,0,¢)<0.In addition we have
neR” xeR

max min L7V V(x,y,0, t)>m1n£( V(x,y,0,t),YneR"

IyeR4 xeR? xeR?

Using Equations (35), (36), (37) and (38) we can verify that
mmL( V(x,y,0,t)=0. This implies that maxmmﬁ( V(x,,0,t)20.

xeR? r;e]R xeR?

Lemma 2. Suppose that initial conditions x,,y,,0,,t,, are fixed and G is a so-
Iution to Equation (35) and ((Wl*, w;),nl* (Wi wy),17 (W, ), 775 (w, ),77:) e A, xM
is given by Equations (29), (30), (31), (32), (33) and (34). Then

27" (£)G(O(t),t) = X (1) = x, +23,G (0y,1,) . V1 €[ 1(=0),T].

Proof. 1t is sufficient to prove that dX* (r) :d(2Y”* (t)G(O(t),t)). Due to
the saddle point conditions the system of equation given by Equation (20), can

be written as:

dX(K)(t)

(ﬁﬁlnl _2p1b(0)no)/11 G, (O»t)

=-2y" (r)G(O(t),t)[ri_["—/ll+2ﬂ/3MMz + o G(o,1)

T,T1, + 2 5211, —28b (o )plpIHOJ Go(o,t)}dt

+ILA, [ m, G(ovt)

-2y (t)G(O(t),t)l:{E_‘z’_ ﬂ;{ff Jil + (821, _lz_ilb(o)HO) GG((:;))

_ﬂpl{nn L+ 2P, —2b (o )plpIH(,]Go(o,t))}dWl(t)

IT,I1, G(o.t

—2v" (I)G(O(l‘),t)l:(o-L (0)- 5) 2o + Bpy (ULIEIo)_/;,sz)

A

2
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[ LI, + B2 90, =2 8b(0) pipI, |G, (o,t
+(GL(0)—ﬁP2)[ Lt HOHZﬁ (0)Ave JG((oo,t))}sz(t)

+27" (t)G(O(t),t){ﬂ,bylz +%,@

~ [ TLIT, +ﬂ2,b12H1 _2ﬂb(0)lblplno G, (Ost)
+ﬂp{ 1,11, J (o) | (1) 9

2 A A

+2r" (t)G(O(t),t){ﬂﬁM,z +%ﬂ1

+ Bp, 1,11, +,32,512H| _Zﬂb(o)ﬁlplﬂo G, (O,I) aw, (t),
IT,I1, G(o,t)
and
ay”

_ —[m {ﬂm (.- plb(O)Honan* cg((:;))}dm (0

3 |:(ﬂ/51 (GL (0) _,3152)

m JAY"‘ +(o,(0)= Bpy) V"

. ((O‘L (0)- ﬁﬁz)(Hl - Zﬂb(o)ﬁlpl) +b(0) p,I1, ]Y"* G, (o,1)
m, G

H ELL oyt oy

2

BT, —b(o)(2ﬁ2p1ﬁ1ﬁ3 + p3H2)JY”* G (Oat)
11,

- (40)
2 A A

H{ ELLY 4 oy

2

A _ 2 A A X
ﬁp4Hl 2b(0)ﬂ plplp3 YI] Ga (Oat) dVV4 (t)
IT, G(o,t)

Using Equation (35) we can verify that
dG(0(1).1)
=[d1(O(t),t)+d2(0(t),t)—d3 (O(I),I)Jdt (41)
+Gy (0(1).1)b(0(2)) (AW, (6) + pd W, (1) + IV, (6) + AV, (1)),

where d| (O(t),t),a’2 (O(t),t) and d, (o(t),t) are defined above Equations
(36), (37) and (38). We obtain the right hand side of Equation (40), due to the
fact that

d(2r7G(0(0).1))=2G(0(0).)dr” (1) + 217 (1)4G(0(1).1)

+2dY” (1)dG(O(1),1).
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4.3. Economic Analysis

In this subsection, we analyze the impact of p, and p, on the optimal poli-

cies. For fixed initial conditions (xo, Voo oo,to) under Lemma 2 ensures that

& (o) | AAi (4 (0)-v)
o (o), o(0)1,

w=-2Y" (t)G(O(t),t)|:

L (BAI, =2pb(0)1,) G, (o,rq
O-I(O)HZ G(O’t) ,

ws =-2Y" (t)G(O(f)»f)FL (;)2—0 i ifis)g

+ LI, + B2 AT, —2ﬂb(0),51,011_[0 G, (Oat)
1,11, G(o,t) |

Hence we can use

s & IT %
K== X* ()= x, +29,G(0,.1,) . (5;11_[ +ip(lj2)
1 2 1
%,—/

myopicdemand

011, —2pb(0)I1 5
+ ('Bpl 1 il (0) 0) Go (O’t) + 2y0G(00’t0) 22 + ﬂplﬂq
o, (o)1, G(o.t) 11,
intertemporal hedging demand | myopicdemand

L[, + 4251, —28b(0) ppll, |G, (0.1)
I1,11, G(o.1)

intertemporal hedging demand

1) Each optimal portfolio weight is a sum of two terms, the first being the
myopically optimal portfolio. It is a sum of a two factors and depends on the ra-
tio of the first to second moments of excess returns and the impacts of p, /5,
I1, and TI,. It corresponds to the instantaneous mean-variance portfolio in
which the investment opportunity set remain constant through time. The my-
opic portfolio is always positive for a nonzero market price of risk. (Myopic
mean variance demand does not include intertemporal hedging component).
This myopic term is well-known from Merton’s problem and can be reproduced
in our general setup of stochastic coefficients [38].

2) The second term, intertemporal hedging portfolio is the portfolio with the
maximal absolute correlation with the state variable (inflation). It represents the
difference between the solution under stochastic coefficients and the myopic so-
lution and the additional investment is caused by the presence of the stochastic
factor (inflation). It does not have a constant sign. The excess risky demand van-
ishes in the uncorrelated case p, = p, = p, = p; = p, = 0and when the volatility

of the inflation process is zero. For w, it is a sum of two factors whilst for w,

DOI: 10.4236/tel.2018.815207

3380 Theoretical Economics Letters


https://doi.org/10.4236/tel.2018.815207

R. S. Perera

G, (o,1)

it is a sum of three factors and —2
G(o,t)

variable is to the banker. The myopic part, these portfolios are weighted by the

measures the importance of the state

inverse of the banker’s risk aversion. Hence, the optimization of our modified
version of monotone mean-variance preferences is consistent with classical
mean-variance optimization subject to a suitably chosen risk aversion parameter
7 > (which depend on o, ). When the risk aversion 7/(00) >1, we have a posi-
tive intertemporal hedging demand for risky assets and it exhibits a hump-shaped

1
7(00)

risk aversion have no intertemporal hedging demand. It is important to note that

function of risk tolerance . This is due to the fact that investors with unit

both the myopic and hedging demands are scaled equally by risk aversion and
that the trade-off between holding a myopically optimal portfolio and intertem-
poral hedging is determined by the derivatives of marginal utility with respect to
the state variables. Intertemporal hedging portfolio strategy may hedge or
speculate on expected return or mean-aversion risk by choosing to hold long or
short position of the risky assets.

3) p, >0, examines the impact of banker’s provision capital risk process on

the optimal stock index return holding portfolio w; . Since the myopic portfolio

demand for risky assets are always a linear function of risk tolerance (o) .
JACH

When >0 and Il 4 +0,(0)BH A1, > (ﬁlbll'll - 2p1b(0)1'[0) , the in-

tertemporal hedging demand on the optimal stock index fund is smaller than the

myopic portfolio. Intuitively, the banker takes long positions if

(8pI, —2pb(0)T1,) (B, —2pb(0)T1,)
o, (0)1'[2 o, (0)1'[2

<0, or short positions if >0 in

each of the perfectly correlated portfolios to hedge against undesirable innova-
tions of the market state variable in the intertemporal hedging demand portfolio.
4) On the other hand if p, <0, implies a negative impact on optimal stock
index return holding portfolio w, due to banker’s provision capital risk proc-
ess. If 5, <0 and T (T4, + BA 4 ) > (TLIT, + B2 ATT, —28b(0) AT, the
intertemporal hedging demand on the optimal stock index fund is smaller than
the myopic portfolio. Intuitively the banker takes long positions if
LI, + B2p 11, —28b(0) ppI1, ) <O or short positions
LI, + B2 pI1, —=28b(0) pp I, ) > 0 in each of the perfectly correlated port-
folios to hedge against undesirable innovations of the market state variable in
the intertemporal hedging demand portfolio.
5) To examine the impact of p, >0, on optimal loan return portfolio w, , we
oy T, + B4, =26 (0) o,
I1, 1,11,
tertemporal hedging demand of the optimal loan portfolio is smaller than the
myopic portfolio. Intuitively, the banker takes long positions if

I, + :Bzﬁlzl_h - Zﬂb(o) ;51/011_[0
IT,I1,

set p,>0 and A4, + . Then the in-

<0, or short positions if
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LI, + 32§71, — Zﬂb(o)lbholno
HOHZ

folios to hedge against undesirable innovations of the market state variable in

the intertemporal hedging demand portfolio.

ﬂ:bﬁq > ITIL, + ﬁzﬁfnl - 2ﬂb(0),5]p11_[0
I1, IT,I1,

tertemporal hedging demand on the optimal loan portfolio is smaller than the

>0, in each of the perfectly correlated port-

6) If p <0, and A, + , the in-

myopic portfolio. Intuitively, the banker takes short positions if

ILIT, + ﬁzﬁfnl —-2Bb (0) ,51,011—10
HOHZ

ILIT, + ﬁ2:[712H1 -2Bb (0) ,51,011_10
HOHZ

folios to hedge against undesirable innovations of the market state variable in

>0 or long position

<0 in each of the perfectly correlated port-

the intertemporal hedging demand portfolio.

7) If p, >0, will also affect the magnitudes of optimal portfolios via IT,IT,
and I1,.If p, >0 and TI,4 + Bp A0, > (BT, —2pb(0)I1,), then the in-
tertemporal hedging demand on the optimal stock index fund, w, is smaller
than the myopic portfolio. Intuitively, the banker takes long positions if
(ﬁ,b1nl —Zplb(o)l_[o) (ﬁ,b1nl —Zplb(o)l_[o)

o, (0)I1, o,(0)11,

<0, or short positions if >0, in

each of the perfectly correlated portfolios to hedge against undesirable innova-

tions of the market state variable in the intertemporal hedging demand portfolio.
8) If p,<0 and II, (Hzﬂz + ﬁﬁlﬂl) > (HIHZ + AT, — 2ﬁb(0)/31plno)

the intertemporal hedging demand for the optimal stock index fund w; is

smaller than the myopic portfolio. Intuitively, the banker takes long positions if

(HlH2 + Pl —28b(o) /31,011_10) <0, or short positions

(HIH2 + B2 P, - Zﬁb(o),blpll_lo) >0, in each of the perfectly correlated port-

folios to hedge against undesirable innovations in the market state variable in

the intertemporal hedging demand portfolio.

oy T, + 84T, ~2b(0) T,

9) If p,>0 and +
) It p, 4 i, .1,

, the in-

tertemporal hedging demand on the optimal loan portfolio w, is smaller than

the myopic portfolio. Intuitively, the banker takes long positions if

ILIT, + ﬂszlznl - Zﬂb(o),ﬁlplno
1_[01_[2

ILIT, + :Bszlznl - 21317(0),51:011_10
IT,I1,

folios to hedge against undesirable innovations of the market state variable in

<0, or short positions if

>0 in each of the perfectly correlated port-

the intertemporal hedging demand portfolio.
BpiA > ILIT, + :82/3121—11 - Zﬂb(o),bllqno
HZ HOHZ

tertemporal hedging demand of the optimal loan portfolio is smaller than the

10) If p,<0 and A, + , the in-

myopic portfolio. Intuitively, the banker takes short positions
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ILIT, + ﬁzﬁfnl -2Bb (0) ,51,011_10
HOHZ
LI, + BT, =2 8b (0) Aol
1,11,
folios to hedge against undesirable innovations of the market state variables in
the intertemporal hedging demand portfolio.

Note:
P, >0 implies IT, >0,I1, >0 and II, >0, iff

(2:8[7(0);51,01 _b(o)pz (GL (0) _ﬂﬁz)) < ﬂb(o)ﬁ3p3 :
p, <0 implies IT,>0,I1, >0 and IT, >0 iff
(285(0) i, =b(0) pa (0, (0) = B,)) < Bb(0) pr

p, >0 implies T1,>0,IT,>0 and II, >0, iff (o, (0)-/8p,)<0.
P, <0 implies IT,>0,IT,>0 and II, >0.

>0, or long positions if

<0, in each of the perfectly correlated port-

4.4. Smooth Solution to the Resulting Equation

In order to obtain a smooth solution to Equation (35) we follow [39] and obtain
the following results subject to the boundary condition G (0, T ) =-1.

bZ
Case 1: d, # éo) . Define G(o,t)=-F“(o,t), where F(z,T)=1, to ob-

tain

£+ (a(0)-d, (), + 31 (0)

J{lbz(o)(a—l)—ad (O)}F_ﬂld (0)F =0.
2 : F a’
2
This implies that « = zb#) and we obtain
b (0)—2@’2 (0)

b’ (0) —-2d, (0)

b* (o)

b2
Casell: d, = ;0) .Define G(o,t)= ") where F(z,T) =0, to obtain

F, +(a(0)-d, (0))F, +%b2 (0)F, { sz (0)F =0. (42)

F +(a(0)-d,(0))F, +%b2 (0)F, +d; (0)F =0, (43)

Remark 2. If a,b,y" b-4,Y." A} are Lipschitz continuous, Y . 4 are
continuous and bounded by 0< & <5b”, then there exists unique smooth solu-
tions for F, and F, to Equations (42) and (43) respectively via Theorem 1 of
[40]. F, and F, satisfy the Feynman-Kac representations such that

F(o.1)=E,, {exp {1;2(01))2_—5;2@)] J, d (O(S))dSH,

Fy(0.1)=E,, [ [ 4, (é(s))ds],
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where dO(s)= [a(é(s)) —d, (é(s))]ds + b(é(s))dW(s) and O(t)=o0 .
Since, Z; A, are bounded functions it implies that F, and F, are bounded
and Gis bounded away from zero for any (p;,0,,p;)€[-11].

Lemma 3. Suppose a,b,zz:b ‘ ﬂ,i,i:/if are Lipschitz continuous, Z; A

i=1 i=1
are continuous and bounded as 0<g&<b’ and F is a bounded solution to
Equation (42) or Equation (43). Then the first order o-derivative of F is
bounded.

Proof. To obtain a bound for F, it is sufficient to estimate the Lipschitz con-
stant. First of all, noting that (01,02) € (—oo,a] , there exists L, >0 such that
-e”?|< L, |o—c_)|.

Secondly, the solution to Equations (42) and (43) and the fact that /112 and 1]

are Lipschitz continuous and bounded, we obtain the existence of L >0, such that

[F(0.0)~F (5.0) < LB| [1|F. (0.0) - F. (3.0) s |

|

where from notation convenience, we write Ef (I:“S (o,t)) instead of E,, f (Ii)
Then via (Theorem 1.3.16 of Pham [41], there exists C, >0, such that

E[sup

t<s<T

0]

g

SLT]E[sup

t<s<T

F(0.0)~F (5.1)

F (0.0)~ ,(5.1)

}S C, |o—5 , which completes the proof in the first

case. Similar estimate can be deriving for the solution for Equation (43).
Theorem 2. Suppose a,b,z;b . /"Ll.,z; Al , are Lipschitz continuous,

Z; A, are continuous and bounded, 0<e <b*. Then there exists a saddle

point k" (x,y,0,t),n"(x,y,0,t) € A, x M, for problem (19) such that

1,4 (o) N Bpi, (0) N (ﬁ,bll_ll - 2p1b(0)H0) G, (0,1)

o, (0)I,  o,(0) o, (o)1, G(ot) |

w, = —2yG(0,I,‘){/l2 (0)+%@

2

+(H1H2 + /AT, —Zﬂb(o)ﬁlplno ] G, (o,t)}

w o= —2yG(0,t){

IT,I1, G(o,1)

(i *):_[%Jgs(o)_{ﬂﬁlﬂl(ﬂl—HO)—plb(o)HOHZ}GO(o,t)

1,11, G(o,t)’
. (W*)_ _[ﬁAl (0. (0)=5p,)&s (O)J_[(GL (0)-55,)(&, (")_U)J
2 1—[2

_[(O'L (0)_ﬁ/32)(nl _zﬁb(o)ﬁll’l)“Lb(o)/’sz ] G, (o:1)
I, G(o,1)

T (W o, (o), I,

S =
N Bp,I, —b(o)(2ﬂ2p1/31/33 +/73H2) G, (O,t)
I, G(o,t)’

a *)_[ﬁzﬁlﬁgfs(O)}{ﬂﬁz(‘fL(O)—U)j
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. {ﬁzfs]ms @)Hm (& (o)—v)j

4 o, (0)1_[2 IT,

N ﬁ,b4nl_2b(0)ﬂ2p1/31ﬁ3 GO(O,I)
I, 1)’

where G is a unique bounded solution to

2

G, +(a(0)=d,(0)) G, +5b*(0)G,, ~d, (0) 2

with terminal condition G (O,T ) =1.

,(0)G =0, (44)

Proof. Since there exists a unique bounded solution to Equation (44), via
Lemma 3 the derivative G, is bounded. If we set V(x, ¥, o,t) =—Xx+ G(o,t)y ,
then it is sufficient to prove that the Markov saddle point
k" (x,»,0,t),m" (x,y,0,t) € A, x M, and condition Equation (25) holds. Hence
G is bounded and Y” is a solution to the stochastic linear equation with
bounded coefficient and it will imply that

Ez,y,o,t [sup G(O(S),S)Y’f (S)
t<s<T

[sup X
t<s<T

and define the strategy &

}<+00,f0rall n € M. To prove

" (S)H<+OO , we consider the fixed initial conditions (xo,yo,oo,to) ,

12*=—[X’“*(t)—x0+2y0G(00,t0){ ()(Z BpA, ())

(ﬁ:blnl —2p1b(o)1‘[0) G, (o,1) ,Bpl
" o, (0)1'[2 G(o,t TG OO’ /12 (45)
n ILTT, +ﬂ2,512H1 _2/317( )p1/31
LI, IT,

Now let us define:

¢,1(0,t):={n%( 0) PpA(o) (BAT1, —2pb(0 )HO)GO(OJ)}

o, (O)H2 o, (o) o, (o)1, G(o,t)

%(o,t):{zz(opm

I,

. LI, + B2 piT1, =2 8b(0) pp 1, | G, (0,t)
HOHZ '

Furthermore, ¢,-(¢5),¢,-0,,0,-(£,—v) and @, o, are bounded func-
tions due to the fact that Z . Y _1|/12| are bounded. Therefore the process
K(t):= X" (t)~x, +22,G(0,,1,) is a unique solution to the following equa-

tion

dK<t>:[ 2 (00).)(& () ]m[(A(o@),,)q(o(,))dm(t)}
.(000.)(& () -0()))* Lo (0).0)ox (0w 1)
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This is a linear stochastic equation with bounded coefficients and satisfy

X7 (s)

Ezo,yoﬂo,to [sup }<+OO, for all 7€ M. This confirms admissibility of
1<s<T

*_ 3 £
K o=(w,w).

5. Basel III CAR

First step is to obtain the dynamics of the TRW As with respect to the total asset
portfolio of the bank.

Remark 3. Bank’s Tier 1 and Tier 2 must be at least 8% of the total
risk-weighted assets (TRWA’s) and asset performance is a key albeit lagging in-
dicator. The TRWA’s are calculated in accordance with advanced internal
measurement approach (AIRB) for the majority of group’s credit risk exposures.
Hence we describes the dynamics of TRWA’s under risk regulation at time £
a,,(t) can be described by the stochastic differential equation

%: 5y (1=, w,) dg((f)) 45 (WZ (t)dLLT(;))_WZ (t)dﬂ'(t)}
ds (1)
S(e)”

where §,=0. 6, and 0, isestimated via AIRB and will lie between

+0,W, (t)

0<9,,0, <1 or this analysis purely as an example by setting &, =0.35,
0, =0.45 and simplifying, we obtain
da,, (t
a—((t)) = [O.35w2 (t)(r(t) +& (0) - U) +0.45w, (t)(r(t) +& (0))] dt
+0.45w, (1) o, (0)dW, (1)+0.35w, (1) o, (0)dW, (t)—0.35w, (t),BdW(t).

Proposition 1. (Explicit Indigo Partial Differential Equation for the Basel III
CAR)

Suppose that the dynamics of total bank capital C (t) and total risk-weighted
assets a,, (t) are described by Equation (18) and Equation (46), respectively.
Then the dynamics of the Basel III capital adequacy ratio y (t) of a bank satis-
fies the following SDE.

(LZT(:)) = [(771 - ¢~72 - 453](11 - [,B1dn/1 (t) + :BdeVz ([) + ﬂ3dVV3 (t) (47)

+ p,dw, (t)—ﬁsdvff(t)],

(46)

where
G =0, (1)+w ()Y, ¢,=pX(1),

@, = {[osswz ()(r(1)+ &, (0)-0)+0.45w (1)(r () + & (0)) ]
~[(045)" ¢ (1)o7 (0)+ (035) w3 (1) B° 7
~2(0.45)(0.35)w, (t)w, (¢) Bo, (0) p, |
+(035)" Wi (1)(, (0)- B,
+(0.35)" w3 (1) 23 +(035)" w3 (1) 8° 53
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B, =0.45w, (1) o, (0)—0.35w, (1) Bp,, B, =0.35w,(¢)o, (0)—0.35w, (¢) Bp,,
Bs = B, —0.35w, (1) Bp,, B, =—0.35w, (¢) Bp,, s =w' (¢) V.
Proof. In this proof we derive Equation (47) using the general ItO’s formula.
Let f(am, (t)) =(a,, )71 .

(0 0)= T KD gy 1o, e,y

~odi— E)) [da 8] 03904 o))
+045w1 (6)(r( r)+ 5 (0)) |de+0.45w, (¢) 5, (0) dW, (1)
+0.35w, (1) o, (0)dW, (1) —0.35w, (1) B( AW, (¢)+ p,dW, (1)

+ AW, (1) + pdI, (1))} + (t)[<04s> W (1)o7 (o)

+(035)" w; (1) %47 - (045)(03) ()w: (1)or(0) BD (as)
+(035) w3 (1) (0, (o)~ A, ) +(0.35) w3 (1) 35
+(0.35) Wi (1) B°5; | ar.

Through algebraic manipulation and re-arranging the drift, diffusion and
jump part of df ( ( )) We obtain:

df (a,, (1)) =~ : (t){[035w2()( r(£)+&, (0)—0)+0.45w, (1)(r(1) + & (0)) ]
~[(045)" i (1)o7 (0)+(0.35)" W} (1) 45
~2(045)(0.35)w, (1), (1), (0) 55, +(0.35) w2 (1), (0) - )
+(035) Wi (1) 23 +(035) wi (1) 23 ] a
! {(045w, )—0.35w, (¢) 85, ) dW, (1)

(035w2(t) 1(0)- 035Wz(f)ﬂ/32)sz(f)
—0.35w, (1) Bp,dW; (1) —0.35w, (1) Bp,dW (1)}

49)

Then the CAR is expressed as ;((t):&:(?(t)f(a}W (t)) To find an

am,(t)
expression for dY(t)zd(f(a,w(t))C(t)), we apply ItO’s product rule to
;((t) . As aresult, we have
dy(1)=f(a, (t=))dC()+C(1)df (a,, (t-))+d[ f(a,,).C](7)
= f (@ (O] (r(e)+w (1) s)dHWT( )waw( )] pX (1))
_%{[o.zs% (0)(r(0)+ &, (0) ~0)+ 045w, (1)(r(1) +& (0))]
= (045w (1)o7 (0)+(0.35)" w2 (1) 47

~2(045)(035)w; (1), (1), (0) A5y~ (0:35) w3 (1)(0 (o)~ B2, )
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+(035)" i (1) 253 ~(0.35) wi (1) 55} ]|

_ @)

1) {(0.45w, (1) 0, (0) - 035w, (1) B, )W (1) 0

+(0.35w, (1) 0, (0)—0.35w, (1) Bp, ) dW, (1)
—0.35w, (¢) Bo,d; (1) 0.35w, (1) Bp,dW, (1)}
Grouping the drift and diffusion rems of d;((t) results in

d)f((tt)) = [(771 -9 _¢3]df—|:,31dVV1 (t)-i—ﬂzd[/Vz (f)+ﬂ3dVV3 (t)

+ BudW, (1)= BdW (1) ],
where we have introduced and defined ¢,,9,,%;,5,.05,,5;,.8, and S, in the

formulation of this proposition.

6. Relation to Mean-Variance Optimization

Since the motivation of our objective function comes from mean-variation optimi-
zation literature, we compare our results with such mean-variance optimization. In

order to consider the mean-variance problem we consider the following functional
v (x,0,0)=E, X*“(T)-yD}, X"(T), »>0,
where y isthe bank’s risk aversion coefficient and
2
D:, X“(T)=E,,, [XK (T)-E,, X" (T)] . The aim of the banker is to maxi-
mize I (x,0,0) with respectto & =(w,w,) e A,. Following [32], we define
sup Z* (x,0,0) = sup {Emox’( (T)=VE, o[ X" (T)-E,, X" (T)]z}
xeAy

KeAy

2
= sup sup {A 7B, .o [X” (T)- A] },
AeR  °
KeA;
where A = {K eA B, X (T)=4,4¢ R}. Hence we have replaced the un-
constrained mean-variance optimization problem with a constrained maximiza-
tion of quadratic objective and using Lagrange method we obtain the minimiza-

tion functional as:

1" (x.0.0)=E,,, [ X (1)~ 4] ~2E,, x"(7)

X,0,t

, (51)
=B, | XM -(4+1)] 2411

to determine the solution " (/) over a class of admissible controls jl, and we

find I such that B X" ) (T)=A. Applying Theorem 4.1 of [21] we have

x,0,0
the optimal strategy for functional Equation (51) as:

P (l,x,o,t) = —(x_(A +[)|:20(i1)(§z " ﬁilﬂ(qo()o)

o —2pb(0)11,) H, (o,r)} (s l)[ 1 (o) 2P 0)

o, (0)1'[2 H(o,t) IT,
. LI, + B° p7T1, —28b(0) p oI, | H, (0,1)
I1,11, H(o,t) ||
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where H satisfies

H,+(a(0)~dy(0)) H, + 1 (0) H,, ~ds (0) 2~ (o) H =0

1
together with the terminal condition H (0,7)=1. Noting that G = T is a

solution to
1, G’
G, +(a(0)—a’I (0))G0 +Eb (o)Gw —-d, (O)EU+ dy(0)G =0,
where G(o, T ) =1. In addition, we have
K" (l,x, o,t)

=_{x—(A+Z){ 4 (0) ﬁPMlz( )

(O o (0)
(Bp1L, ~2pb(0)I1,) H, (0.2) BpA (o)  (52)
L \Ph O'I(O§H2 H(o,t)}_(AH)P?(O)WLpH—Z

n LI, + 75711 - 2ﬁb(0),[71plno H, (Oal)
I, IT, ,

confirming that the quadratic optimization is consistent with monotone optimi-

zation with suitable 4 and /
In order to identify [*, we recall E,_, X (]) (T)= 4, and define
()= x"" (0) - (4+1), (53)

Since ¢, -(&).0,-0,,0,-(£,—v) and ¢, -0, , are bounded functions and
P(t) is a solution to the stochastic linear equation with bounded coefficients,

we obtain

dP(r)_[ 7(06))(5 (0) ]d[
PO s (000,02 (00)-o(¢

This implies that P(1)=
R(t)= exp{_[;gol (0(s
+0,(0(5).5)(& (0(5))~0(s)) =5 03 (0(s).5) 0 (0(s))ds

+[10.(0(5).5) 0, (0()) W (5)+ [, 22 (0(5).5) 7, (O(5)) s (5)].

Using Equation (52) we have XK*(I*) (t) = (x— A )R(T) + A+ (1 - R(T)) .
This implies that

~— ~—
=
|
—_
+
~
*
~—  ~—

z*(@;%, i B, R(T)#1. (54)

Finally, we note that

2

aa=7B,| V) (T)—AT = A= 7B,[(x~ A)R(T)+ 7 (4) (1~ R(7))]
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and the maximum over A is attained as

A =x (55)

" 2yE, I (T)
R(T)-E, ,R(T)

1-E,,,R(T)

x,0,0

where T? (T ):: . Substituting it into Equation (53) and

Equation (54) we obtain

A* = x+ L (1 - ];EO,OR(T))
27/ ]D)O,OR(T)

1 (1_Eo,oR(T))Eo,0R(T)

% nrm Y

and l*(A*)

Consideration Equation (52) we conclude that the banker’s mean-variance
optimal strategy is given by
1-E_R(T %
K (x,0,t) =~ x—x, = L o (1) (HOA(O) +’Bp'/12(0)
2y ]D)UO’OR(T) o, (O)H2 o, (0)
N (ﬂ/blnl - 2/0117(0)1_[0) G, (0,1)
o, (O)H2 G(o,t)

_( ! 1—E00,0R(T)J( 1 (o) + 224 (0)

2 2 ,R(7) m,

L[ LT, + 251, —28b(0) ppIl, |G, (0.1)
1,11, G(o,t) ||

The dynamics of the banker’s monotone optimal strategy is given as:

M4 (o) | A (o)
o (0)1'[2 o, (0)

K (x,O,t) =—{x—x0 +2yOG(00,O)[

(mﬂ—mﬂdmﬂqu
o (o),  G(o)
b (0)

+2y0G(00,0)[ﬂ7 (0)+H—2

n ILIT, + ,32,5121_[1 - 2/’)b(0)/51p1H0 G, (0,1) )
IT,I1, G(o, t)
Hence, we quantify the banker’s risk-aversion factor as
1-E, R (T)

" 43,G(0,,0)D? ,R(T)’

4

7. Conclusions

In this study we examined continuous time optimization incorporating inflation,
assuming that the preference criterion is based on a modification of a monotone
mean-variance functional introduced by Maccheroni et al [27]. There are two
risky assets available to invest, and the compositional changes in bankers’ asset
portfolio allocation between stock index fund and the loan portfolio is due to the

influence of the state variable (inflation). We demonstrate that in the presence of
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anticipated inflation, the banker’s capital in Tier I and Tier II can be reduced
and radically alters the banker’s optimal holdings between the myopically opti-
mal portfolio and intertemporal hedging portfolio. Specifically, it is assumed
that banks allocate their assets such that they are able to repay all of their debts
even when the maximum loss on both types of assets materializes. Our model
suggests that, changes in inflation will contribute towards the deterioration in
banks’ balance sheets, a slowdown in lending or investment strategies. As these
changes affect the tightness of the Tier I and Tier II capital holdings due to Basel
IT CAR requirements, if banks asset allocation tilts toward stock index fund
holdings due to a re-balancing of banks asset allocation, the supply of capital via
loans to goods producers’ decline. As a result, output decreases and deflation
emerges. Our results confirm that the presence of inflation risk radically alters
the banker’s optimal holdings and the trade-off between holding a myopically
optimal portfolio and intertemporal hedging demand is determined by the de-
rivatives of marginal utility with respect to the state variable.

In addition, the model helps to capture the extent of deterring Tier I and Tier
II bank’s adequate capital in the presence of aggregate risk and will help to set up
a risk management strategy via diversifying its investment portfolio. On the
other hand, the bank may choose to use financial instruments to mitigate these
aggregated risks.

Future research could apply the maximum principle and backward Stochastic
Differential Equations (BSDE) method over our method (dynamic programing
principle and Hamilton-Jacobi-Bellman equations). Similarly, one could apply
HJBI dynamic programming principle by capturing the banker’s provision capi-
tal risk process via a jump-diffusion process, as oppose to the diffusion process
applied in the study. However, in doing one may not able to obtain a closed-

form solution.
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