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Abstract 
In this paper, I propose new models of quantum information processing us-
ing the exchange interaction in physical systems. The partial SWAP operator 
that can be realized using the exchange interaction is used as the underlying 
resource for defining models of quantum computation, quantum communi-
cation, quantum memory and decoherence-free subspaces. Given the non- 
commutativity of these operators (for adjacent operators operating on a 
common qubit), a number of quantum states and entanglement patters can 
be obtained. This zoo of states can be classified, due to the parity constraints 
and permutation symmetry of the states, into invariant subspaces that are 
used for the definition of some of the applications in this paper. 
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1. Introduction 

Entanglement is a non-classical manifestation of quantum formalism that was 
formulated to describe the non-local correlations that develop in quantum sys-
tems in certain physical processes and systems [1]-[7]. Over the years, this facet 
of the quantum world has been found in a number of physical systems, be it 
photonic [8] [9] [10] [11], phononic [12] [13] [14], atomic [15] [16] [17] [18] 
[19] or electronic [20] [21] [22]. Entanglement is also the quintessential quan-
tum-mechanical phenomenon that forms the underlying resource for future 
quantum technologies and therefore is a major subject of interest and research 
[23]-[28]. Be it in quantum computation [29] [30] [31], quantum communica-
tion [32] [33] [34] or quantum cryptography [35] [36] [37], entanglement is 
what these applications in quantum information processing are built on.  

Entanglement in condensed matter systems, from quantum dots [38] [39] and 
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semiconductor heterostructures [40] to Nitrogen-vacancy centers [41] [42], have 
been used to develop quantum technologies using entangled many-body systems 
[4] [5] [6]. Among the various physical interactions that can generate entangle-
ment, the exchange interaction 

1 2H JS S= ⋅
� �

                          (1) 

has been particularly useful for generating entanglement [38]. Here J is the 
coupling constant and S

�
 are the spins in the interaction. The exchange 

operation can generate the SWAP  as well as the SWAPα  gates [43] [44]. 
Burkard et al. [45] showed how an XOR (Exclusive OR) gate can be created from 
a CPHASE (Controlled Phase-Flip) gate that can be created using the SWAP  
gate. Subsequently, Barenco et al. [46] showed that two XOR gates and four 
one-bit gates can simulate any unitary two-qubit gate, thereby paving the way 
for realizing universal quantum computation. Divincenzo et al. [26] showed that 
universal quantum computation can be achieved using only the exchange 
interaction if one considers logical qubits to be the fundamental building blocks 
of the computational system. Another way to realize universal quantum 
computation that can be implemented using the exchange interaction is the 
cluster state quantum computation model. Tanamoto et al. [47] showed that  

upon preparing the initial state ( )1 0 1
2

± = ±  and applying the SWAP   

one can obtain the familiar Raussendorf's cluster state [48] after the operation of 
two single-qubit rotations. Given the general non-commutativity of SWAPα  
gates (for adjacent operators operating on a common qubit), the number of 
states that can be generated with the operation of these operators are many times 
more than what could be achieved using a commutative operator such as the 
Controlled-Phase Gate. However, due to the parity constraints and permutation 
symmetries of states operated upon by these operators, one can classify the states 
into invariant subspaces, which can be used for various tasks in quantum 
information processing.  

In this paper, I look at various quantum information processing applications 
that have been devised independently. In Section 2, quantum computation 
using the SWAPα  gate is discussed using five different models. In Section 3, 
we look at entanglement swapping, repeaters and quantum communication 
using the exchange interaction. In Section 4, we propose a way to implement 
quantum memory using the SWAPα  gate arising out of the exchange interaction. 
In Section 5, we look at the idea of decoherence-free subspaces and how this 
can be defined for systems undergoing the exchange interaction between its 
constituents. 

2. Quantum Computing Using SWAPα 

Quantum Computation is the manipulation of quantum resources and quantum 
entanglement therein for the purposes of realizing an information processing 
task. Historically, the circuit-based model of quantum computation and mea- 
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surement-based model of quantum computation have been the most popular. 
These arise from the key concepts of evolution and measurement of a quantum 
particle or system. The SWAPα  gate is a powerful tool for carrying out quantum 
computation, due to its ubiquity in physical systems such as those with exchange 
interactions. We have seen that the locus of states accessible using these gates is 
restricted to a certain subspace of the Hilbert space. As a result, it is understood 
that not all states are accessible by only using the SWAPα  gate.  

In this section, we will be looking at how to realize five different models of 
quantum computation using the SWAPα  gate as the key cornerstone of this 
discussion.  

2.1. Circuit-Based Quantum Computing 

In the realm of quantum information, a quantum circuit model of quantum 
computation is one wherein a computation is a sequence of quantum gates. 
These quantum gates are reversible transformations on a quantum register, a 
system comprising multiple qubits. The key paradigm shift, going from classical 
computation to quantum computation is the presence of reversible (quantum) 
logic gates. These mappings preserve the Hermitian inner product and a general 
n-qubit (reversible) quantum gate is a unitary mapping U from the Hilbert space 
of n-qubits onto itself. The pertinent point to be addressed here is regarding the 
number of quantum gates and resources required that can optimally approximate 
any quantum computation.  

Universal Gate Set 
A set of universal quantum gates is a set of quantum gates that can, in a finite 
sequence of gates from this set, replicate any arbitrary unitary operation that 
may be possible on a quantum computer [49] [50] [51] [52]. For physical 
systems with exchange interaction, universal quantum gates have been 
constructed with encoded qubits [26] [53], while the Loss-Divincenzo Quantum 
Computer relies on the SWAP  and single-qubit gates [38]. DiVincenzo and 
Loss showed that the SWAP  gate is universal with single-qubit rotations. 
This universality is derived in terms of the relation of the SWAP  gate with 
the classical XOR gate, which can be realized using the CNOT gate in the realm 
of quantum information processing [54]. This leads us to believe that a 
generalized case (of any general SWAPα  can comprise a universal gate set too).  

The first step in defining a universal gate set using SWAPα  is to realize that 
no such set can be made purely out of SWAPα  gates since these gates preserve 
Hamming weight of the quantum state representation. If we allow single qubit 
unitary operations, let us see the lowest number of SWAPα  that are required to 
carry this out. Given this symmetry of the SWAPα  gates, the cases we look into 
are: 1 1 2 200 11 00 11A B A B+ → + , 2 2 2 2

1 1 2 2 1A B A B+ = + =  and  

1 1 2 201 10 01 10C D C D+ → + , 2 2 2 2
1 1 2 2 1C D C D+ = + = . However, 

how is this possible if the SWAPα  gate leaves the states 00  and 11  
unchanged? This can be done by using a qubit-flip gate on one of the qubits:  

https://doi.org/10.4236/jqis.2018.84010


M. G. Majumdar 
 

 

DOI: 10.4236/jqis.2018.84010 142 Journal of Quantum Information Science 
 

( )1 2

2 2

1 1

1 1

2 2

1 2 2

1 e 1 e0 0
2 2

1 e 1 e0 0
2 2

1 e 1 e0 0
2 2

1 e 1 e0 0
2 2

xSWAP SWAP

i i

i i

i i

i i

U U I Uα α

πα πα

πα πα

πα πα

πα πα

σ ×= ⊗

 − +
 
 
 − +
 
 =
 + −
 
 
 + −
 
 

           (2) 

The SWAPα  also has a fixed accessibility of states, as mentioned previously 
in this paper. Since the sum of the coefficients for vectors with the same 
Hamming weight add to the same value over an operation of SWAPα  gates, 
states that do not follow this rule cannot be accessed. To begin with, two 
Bell-states differing by a relative phase of eiπ  cannot be inter-converted using 
SWAPα  gates. This can, however, be achieved using a phase-flip operator on a 
single qubit, say the second qubit.  

( )
2 2

1 1

1 1

2 2

2 1 2 2

1 e 1 e0 0
2 2

1 e 1 e0 0
2 2

1 e 1 e0 0
2 2

1 e 1 e0 0
2 2

z

i i

i i

i i

i i

U U I
πα πα

πα πα

πα πα

πα πα

σ×= ⊗

 − + +
 
 
 − − −
 
 =
 + − +
 
 
 − − −
 
 

           (3) 

Even though this brings in the extreme case of mpψ ψ± →  and  

mpφ φ± → , there are lots of other states that should be accessible using a 
general two qubit unitary gate. This greater independence is seen to come from 
the application of yet another SWAPα  gate:  

3

3 32 2

1 1

1 1

3 32 2

3 2

e e e e0 0
2 2

1 e 1 e0 0
2 2

1 e 1 e0 0
2 2

e e e e0 0
2 2

SWAP

i ii i

i i

i i

i ii i

U U U α

πα παπα πα

πα πα

πα πα

πα παπα πα

=

 − +
 
 
 − − −
 
 =
 + − +
 
 
 − − − +
 
 

        (4) 

This along with local unitary operations { },i iK L , where the index i denotes 
the qubit being operated on, should be able to implement any general two-qubit 
quantum gate. Hence, in the most general form, any two qubit quantum gate can 
be realized by the expansion  
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( ) ( ) ( )( )( )1 2 31 2 2 2 2 2 1 2x zSWAP SWAP SWAP
K K U I U I U L Lα α ασ σ× ×⊗ ⊗ ⊗ × ⊗    (5) 

Any circuit with two-qubit and single-qubit gates can thus be constructed 
using the SWAPα  gate, alongwith single-qubit unitary operations.  

2.2. Invariant Subspace-Based Quantum Computing 

Permutation symmetry has been of significant interest to the world of quantum 
physics and quantum information [55] [56] [57] [58] [59]. An early example of 
the success of the use of permutation-symmetric states was in the discovery of 
noiseless subspaces [56], in which quantum states could evolve without the 
introduction of any bit-flip errors. This follows from the constraints on the 
parity of the states that belong to these subspaces. Considering binary quantum 
states, a (partial) permutation on two qubits can be carried out by a (partial) 
SWAP gate [60], which as we saw previously can be realized using the exchange 
interaction. Due to this parity constraint for permutation-symmetric quantum 
states, one can define certain invariant subspaces that are constituted by vectors 
that remain invariant under the operation of permutation operators. For instance,  

the completely symmetric n-qubit Dicke states (e.g. ( )1 001 010 100
3

+ +   

for 3n =  and Hamming weight 1 in the state representation) will remain 
invariant under any permutation operator, and hence constitute a one-dimen- 
sional invariant subspace. Similarly one can compose higher dimensional 
invariant subspaces that are composed of vectors whose linear combination 
remains invariant under specific permutation operators.  

We see that this manner of composing invariant subspaces using the 
permutation symmetry of the system can be used for defining a model of 
quantum computation based on these subspaces. For defining the model, let us 
look at the fundamental elements that are needed to create such an imple- 
mentation. The three most important sections of a quantum computer are: 
high-fidelity initialization of the input quantum state, detection by measurement 
of the output quantum state at the individual qubit level and control of 
operations by interactions between qubits. In the previous section, we have 
defined universality of a set of quantum gates comprising the SWAPα  gate and 
quantum single-qubit rotation gates. This is sufficient for universal quantum 
computation. Later in the paper, we will be discussing qudit-based quantum 
computing and cluster state quantum computing using SWAPα  gates. In this 
section, we present our findings relating to a model of quantum computing that 
uses encoded quantum states as resource and that belong to the invariant 
subspaces of the symmetric group.  

Divincenzo et al. [26] defined an encoded quantum computation model based 
on encoding three physical qubits in one logical qubit. For the case of qubits 
operated upon by the exchange interaction, we can have a different model of 
encoding and quantum computation that exploits the (permutation) symmetry 
of the system. For instance, for the three-qubit case, we can consider the 
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invariant subspace [26] and Hamming weight 1,  

1 2 1 2Uα β α β′ ′+ → +                    (6) 

where U is an operation based on the symmetry of the invariant subspace, and 
, ,α β α′  and β ′  are complex numbers with 2 2 1α β+ =  and  

2 2 1α β′ + = . This is true for states with any number of qubits. If one were to 
start with a state that is a superposition of vectors within an invariant subspace 
and operate on it with an operator that abides by that symmetry, then the 
resultant output state will remain in the invariant subspace. The selection of 
invariant subspace depends on the number of vector states we want as our basis. 
This directly relates to the dimensionality of the invariant subspace.  

Let us look at the kinds of initializations, operation and measurements that 
are required for this model of quantum computing.  

2.2.1. Initialization 
Ideally an input quantum state for a quantum computer is separable. However, 
in this model of invariant subspace-based, the input state must respect the 
symmetry of the invariant subspace. As a result, the input state can be the vector 
state, of the invariant subspace selected, which is closest to a separable state. For 
instance, for three-qubit states with the invariant subspace [26] and Hamming  

weight 1, a good input state would be ( )1 001 100
2

ψ = − .  

2.2.2. Operations 
The operations that can be applied on the vector-state are selected based on the 
permutation symmetry of the invariant subspace. Firstly, we need to look at all 
the Youngs Tableaux [61] for the invariant subspace. Thereafter, we can decom- 
pose the cycle-structure into transpositions and apply associated SWAPα  on 
the vector state. The selection of the SWAPα  depends on the output state that 
is required.  

2.2.3. Measurements 
The measurement basis for the invariant-subspace based quantum computing 
model comprises the m vector-states in the invariant subspace  

{ }1 2, , , mV V V V= �                         (7) 

Theoretically, this measurement can be carried out by projection operators 
onto the vector states.  

2.3. Cluster State Quantum Computing 

Cluster states can be generated using SWAPα  gates [47] [62]. Tanamoto et al. 
[47] showed that this could be done for SWAP  and iSWAP gates. We get to 
similar results independently, using numerical and analytical methods, and go 
on to define a dynamical model of cluster state quantum computation. Cluster 
states are pure quantum states [63] defined on two-level system arranged on a 
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cluster-lattice. This cluster is a connected subset of a simple cubic lattice d  in 
1d ≥  dimensions. The cluster states clusterφ  obey the set of eigenvalue equa- 

tions ( ) ( )1 am
cluster clusterM a φ φ= −  with the correlation operators  

( ) ( ) ( )a b
x zM a σ σ= ⊗ . Here, ( )b nbgh a∈ , the set of all neighboring lattice sites of 

a, and { } { }{ }: 0,1 |m acluster m a Cluster= ∈ ∈  is a set of binary parameters which 
specify the cluster state.  

One of the fundamental differences that a SWAPα  model has with the usual 
CPHASE-based Raussendorf model of cluster quantum computation is that 
neighboring interactions generally do not commute: , 1 , 1, 0i i i iH H +  ≠  , unlike 
the CPHASE gate. As a result, we have, for the evolution operator,  

,
,e e i jiH tiHt

i j≠∏ . For creating cluster states using such non-commutative 
interactions, pairwise bonding between the qubits is needed. So, for an 
n-dimensional qubit array, cluster states can only be generated in 2n steps: firstly, 
two-qubit cluster states are constructed by performing exchange interactions 
between pairs of nearest neighbor qubits. These qubit pairs are thereafter 
connected to each other using another set of such operations, and a one- 
dimensional chain (cluster state) is created. Afterwards, these chains can be 
connected in various ways to give more complex structures, such as two- 
dimensional clusters and ladder clusters. A point to remember here is that to 
reach the standard cluster-state form, as formulated by Raussendorf, single qubit 
rotation gates are required. Even though it is possible to have a modified U Uφ ψ

-based cluster state model, where Uφ  and Uψ  are measurement gates along an 
arbitrary angle, it is more convenient to change all bases to a standard form of 
two-qubit cluster states:  

( )2

1 2 1 20 1Cψ = + +                    (8) 

where ( )1 0 1
2

± = ± . This realization can be carried out using a simple 

sequence of steps:  

2.3.1. Generating the Two-Qubit Cluster States 
Let us start with a state  

1 2inψ = + −                          (9) 

Then, we apply a general SWAPα  gate:  

( ) ( )0 0 e 1 e 0 e 1i i i i
inSWAP

U α
πα π πα παψ −→ + +          (10) 

We use the following composite operator:  

1 0 0 0
0 e 0 0
0 0 e 0
0 0 0 1

i

iU
πα

πα

 
 
 =
 
 
 

                     (11) 

to obtain the state 2

Cψ .  
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2.3.2. Creating Larger Cluster States 
Let us start with the simple case of connecting two qubit-pairs with the states of 
the cluster states 12C  and a third qubit 3+ .  

We can then apply the SWAPα  gate between qubits 2 and 3. This gives the 
state:  

( )0 000 e 001 e 010 011 100 101 110 111i iπα παψ = + − − + + + +  (12) 

We then operate with the operator:  

1 0 0 0 0 0 0 0
0 e 0 0 0 0 0 0
0 0 e 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

i

i

U

πα

πα

 
 
 
 
 
 =  
 
 
 
  
 

               (13) 

to obtain the cluster state:  

( )3 0 1Cψ = + + +                   (14) 

This method can be extended for higher number of qubits. As can be seen, a 
general SWAPα  has the problem of the need for the use of a non-local operator 
at the end to clean up the state to get the cluster state finally. This is, however, 
not the case for iSWAP gate, as used by Tanamoto et al. [47].  

2.4. Functional Quantum Computing 

In classical computing and programming, we have object-oriented and func- 
tional models of information processing. While the former deals with the 
manipulation of elements and resources using operators, the latter relates to the 
changing of operators to realize a certain computation. Classical functional 
computing relies on what is known as-calculus [64], which treats functions and 
data as the same type of objects. It allows for the computation of both functions 
of data as well as functions of functions.  

This idea can be extended to the realm of quantum information processing 
too. The idea of quantum combs has been used for this purpose [65] [66], as 
have models based on quantum λ  calculus [67] [68]. The switch-based model 
of functional quantum computing [69] is the realization that we are most 
interested in. In this paper, we extended the idea from being a control-qubit- 
based model to a control-qudit-based model.  

The Model 
The model takes as its inputs a set of N quantum operators { }0 1 1, , , NU U U −� , a 
control qudit Cd  and a register of input qubits. In our model, let us consider 
that each operator is applied just once and that we encode the operator in the 
N-qubit control qudit as follows: ( )( )0 000 0 1234 1d d e

N N= = −� � ,  
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( )( )1 000 1 1234 1d d e
N N= = −� � ,  
( )( )( )2 000 10 1234 1 2d d e
N N N= = − −� � , � ,  

( )( )! 111 1 1 3421d d e
N N N= = −� � . The encoding, marked by e  shows 

the sequence of the operators as well. The model coherently orders the quantum 
operators based on the value of the control-qudit, thereby creating a meta- 
operator, a superposition of many different sequential orderings of the same set 
of operators, which is then applied to the input qubit.  

Let us call this entire operation SWAPO  and let us take an illustration of this 
using the simple example of two operators 1U  and 2U . We will then have the 
control qudit in the states 0 12d e=  and 1 21d e= , which have the fol- 
lowing action on the operators: 1 2 1 20 d U U U U= , 1 2 2 11 d U U U U= . For a 
control qudit 0 1d dC α β= +  and an input state ψ ,  

( ) ( )1 2 1 2

1 2 2 1

0 1

0 1
SWAP d d

d d

O c U U U U

U U U U

ψ α β ψ

α ψ β ψ

= +

= +
          (15) 

This is an extremely useful tool for a multi-operator lattice-configuration such 
as the one we have developed for our model of cluster state quantum com- 
putation. Instead of restructuring the gates manually or even using gate- 
potentials in a synchronized manner, we can simply use the appropriate control- 
qudit to do the same.  

2.5. Qudit-Based Quantum Computing 

Quantum gates that are univesal for binary quantum logic operations belong to a 
family of unitary transforms are seen to be described by three parameters, and 
this arises out of the idea that up to an overall phase factor, any two dimensional 
unitary matrix can be written as  

( ) ( )2

cos e sin
, ,

e sin e cos

i

i i
U

ν

φ ν φ

λ λ
λ ν φ

λ λ−

 −
=   
 

             (16) 

expressed in the basis states 0  and 1 . The three parameters are usually 
taken to be irrational multiples of π  and each other. This this allows even a 
single gate in to generate all single qubit transforms by repeated application. 
However, we find it to be more useful to consider these three parameters as 
arbitrary variables, with 2U  representing a family of gates that can be realized 
by an appropriate choice of three physical controls. One of the properties of 2U  
is that it can transform any known state of a qubit to 1 : 20 1 1Zα β+ → . 

2U  also contains the phase gate 2X  that alters the phase of 1  without 
affecting 0 : 21 e 1X iφ→ , 20 0X→ . Using these two transformation 
properties of 2U , the two-qubit gates that are universal for quantum logic take 
the form  

[ ] 2
2 2

2

0
0
I

A U
U

 
=  
 

                     (17) 

The family of gates [ ]2 2A U  is universal for binary quantum logic. A unitary 
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transform on any number of qubits can be simulated by repeated application of 
these gates on just two qubits at any one given time.  

We can generalize this to the multivalued case. Let us define dZ  as a family 
of d-dimensional transforms that maps a known single-qudit state to 1d :  

1 2 10 1 1 1dZ
d d dα α α −+ + + − → −�              (18) 

Similarly, we can define the d-dimensional phase gate dX  as a function that 
does the following:  

1 e 1dX id dφ− → −                      (19) 

, 1dXq q q d→ ≠ −                      (20) 

We can now define the multivalued analog of [ ]2 2A U  as  

[ ] 2

2

0

0
d d

d
d

I
A U

U
−

 
=   
 

                      (21) 

For our system, we devise a very simple way to do this. We will present the 
formalism using a state with Hamming weight 1 for n-qubits. This can be 
generalized to other states with different Hamming weights. We define the state 

1d −  as the n-qubit W-state:  

( )11 1 00 01 00 010 100 0d N
N

− = − = + + +� � � �       (22) 

Now we define the other states by introducing a relative phase of eiπ  in front 
of each of the superposition states one-by-one, so as to obtain the set of 
equations from  

( )12 00 01 00 010 00 0100 100 0N
N

− = + − + +� � � � �    (23) 

to  

( )10 00 01 010 00 100 0
N

= + −� � � �            (24) 

In this formalism, we will use the property that  

( ) ( )1 101 10 01 10
2 2

SWAPα+ → + , 

( ) ( )1 e01 10 01 10
2 2

i
SWAPα

πα

− → − . A point to note here is that even  

though we could have constructed N logical qubits, we only constructed 1N − . 
This was because the definition of dX , as we do it below, does not allow the 
consideration of the state:  

( )1 00 01 00 010 00 0100 100 0
N

+ + +� � � � �  for the properties of dX   

to hold true.  
We define the dZ  operator as an inverse map, based on the linear com- 

bination of vectors considered and 
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2 2 2d SWAP
X I I I U α= ⊗ ⊗ ⊗ ⊗�                     (25) 

This allows us to construct the gate [ ]2 dA U  and therefore do universal qudit 
quantum computation using our system. The composite gate can be constructed 
by applying individual gates, as mentioned in the tensor product, on the 
individual qubits or pairs of qubits. The only drawback of this is the cons- 
truction of the inverse map for dZ .  

3. Entanglement Swapping, Repeaters and Quantum  
Communication 

In the realm of quantum information processing, entanglement swapping plays a 
major role in helping generate entanglement in remote particles. Let us say we 
start with the n-qubit state: 010101 01inψ = � . Now if we have pairs of 
qubits locally made to undergo exchange interaction, we shall get a series of 
entangled pairs. If the operator is the SWAP  and we have even number of  

qubits, we will have 
1 1 1 101 10 01 10

2 2 2 2int
i i i i

ψ
+ − + −   = + +   

   
� . Thus,  

we have qubit pairs ( )12,34,56,78, , 1,n n−� . We found that if we now use 
exchange interaction on the pairs ( )23,45,67,89, , 2, 1n n− −� , and then 
perform single qubit measurements on all qubits from qubits 2 to 1n − , we 
invariably entangle qubits 1 and n.  

Interestingly, due to the symmetric way in which the state decomposition over 
vector states takes place, the entanglement between qubits 1 and n is always 
maximal! Thus, using such smaller units (pairs) of entangled qubits, we can 
generate maximal entanglement over more complex structures and longer 
distances. Using this, we have found a variant of the conventional quantum 
repeater protocol by using exchange interaction instead of projective measure- 
ments. Even though both Bell-measurements (as used in conventional repeater 
protocols) and realization of exchange interaction (as in our model) have 
associated errors, our protocol is particularly useful for systems that give rise to 
the exchange interaction, such as in spin-systems and quantum dots. The 
maximally entangled state formed in our protocol between qubits 1 and n can be 
used for various quantum information processing tasks. This is particularly 
useful for quantum communication protocols.  

3.1. Quantum Communication Protocols 

Quantum communication is the process of transferring an arbitrary quantum 
state from one place to another. One of its most important applications is 
Quantum Key Distribution (QKD), which is very important in quantum 
cryptography. Traditionally photonic systems have been the most popular for 
the realization of quantum communication. For the simple exchange of quantum 
information between the elements of a quantum information processing system 
over small distances, spin dynamics can help in realizing quantum commu- 
nication protocols.  
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3.1.1. Stationary Qubit Model 
One of the most popular communication models in classical communication is 
the bus-based model. In this model, the bus/register is the primary unit of 
information processing and information is mediated between buses using flying 
bits. In the world of quantum information processing, this has traditionally been 
done by carrier particles such as photons. We can observe short-range and yet 
effective mediation done by the exchange interaction in spin-systems. In our 
stationary-qubit model, we have an integrated computing-and-communication 
system. Each computation unit comprises of an array of spins being driven 
through channels, such as electrons driven by surface acoustic waves in 
semiconductor heterostructures, and made to interact at specific locations in the 
system.  

This leads to rapid development of entanglement in this computing unit. Now, 
we have a bunch of particles in an intermediate unit that is kept away from the 
computing unit, until they are required for mediating in the communication 
protocol. When this is so required, one particle from the computing bus-unit 
interacts with the flying qubit, which subsequently interacts with other flying 
qubits and finally with another computing bus-unit (and its qubits). In this 
manner, information is transferred from one computing bus-unit to another. A 
simple model in this case would be one where there are a finite number of flying 
qubits, say one, for instance. Let us tag this qubit as 1F . Let there be a target 
qubit in a second bus-unit, tagged 2B . Let the flying qubit 1F  and bus-qubit  

2B  be initialized to ( )1 0 1
2

+ = + . If the state on the qubit from the first  

bus (let us call it 1B ) that is interacting with the flying qubit is in the state 

1
0 1Bψ α β= + , and we operate two distinct gates: 1SWAPα  between ψ  

and 1F , and 2SWAPα  between 1F  and 2B , and we have  

( )( )

( ) ( )

( )

1 11 2
1 1 2

2 12 1

1 1

22 1

1 30 0 ( 0 e e e 1
2 4 4 4 4

30 1 e e e 0
4 4 4

e 1 1 0 e 0
2 2 2 2

3 e e e
4 4 4

ii i
F B F

ii i

i i

ii i

π α απα πα

π α απα πα

πα πα

π απα πα

α β α β
ψ α

α β α β α β

α β α β α β α β

α β α β α β

+

+

   = + + + − + −   
   

 + + − + + − + 
 

+ −   + − +   + + + +    
    

+ + − +
+ + − + ( )

( )( )

1

1 11 2

1

31 1 1 e e e 0
4 4 4 4

ii i

α

π α απα παα β α β
β

+

+

 
 

  
   + + + + − + + −   

   

 

Perfect reconstruction of the system takes place for 1 2e e 1i iπα πα= = − , as 
expected. This is the case of the SWAP  gate. For all other SWAPα  gates, one 
needs to operate unitary operations on the 

2Fψ  qubit, based on the selection 
of powers-of-SWAPs.  

This model, however, has some associated problems: firstly, the tuning of the 
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interaction for the flying qubits has to be very precise and localized to the area 
around a qubit in a manner that does not affect or influence the other flying 
qubits. As can be seen from the form of the state, there needs to be a great degree 
of control for this communication protocol. Secondly, errors could also arise 
with greater number of such interactions.  

3.1.2. Communication Using a Chain of Stationary Spins 
A natural extension that could take place would be if the interactions between 
the qubits in a chain are non-changing and not controllable, and we cannot 
apply any control fields to the qubits. Such systems where a large collection of 
spin are permanently coupled can be found in bulk materials. These mutual 
interactions of spins makes them either tend towards being aligned or anti- 
aligned with respect to each other, resulting in phenomena such as anti- 
ferromagnetism. The term spin chain describes a large class of materials wherein 
the spins are arranged in a one-dimensional lattice and are permanently coupled 
to each other (with the interaction strength decreasing with distance usually). In 
the spin-chain model, we can extend the communication model from the single 
qubit as initially defined to a collection of flying qubits that transmit a certain 
amount of information. We start this protocol with the initialization of the spin 
chain, say with 000000 0inψ = � . I choose the couplings between the spins 
(s1 and s2) of two qubits in the exchange interaction: ,, i j i ji jH J s s= ⋅∑  in such 
a manner that initialization of the spin chain to such a state is easy. For instance, 
if in the exchange interaction, we take the coupling constant such that 0J < , 
we get the case of the ferromagnets, where the ground state in a magnetic field 
has all the spins oriented in the direction of this external field. Much like in 
the case of the single qubit mentioned above, in this slightly more involved 
protocol, a user Alice places an arbitrary quantum state at one end of the spin 
chain.  

Let us say that Alice is on the Nth site and Bob is on an arbitrary site b on the 

site. For instance, if Alices state is ( )1 0 1
2

+ , then the state of the spin chain 

is ( )1 000 00 000 01
2inψ = +� � . The natural evolution of this spin-chain  

leads to the state propagating as well being dispersed along the chain. Let us 
define the states 1 1000 0= � , 2 0100 0= � , � , 000 01N = � . 
Due to the Hamming-weight preserving symmetry of the exchange interaction, 
as discussed previously, the state inψ  can only evolve into a superposition of 
the various ψ  as defined above and 000 00� . As a result, the state of the 
spin changes at various points in the chain and also at Bob’s end. Bob now has to 
choose an appropriate time to obtain a state that is as close to Alices state as  

possible: ( )1 000 00
2bob bψ = +�  . The state of the spin at the site b will,  

in general, be a mixed state. The resultant output state can be obtained by the 
partial tracing off of all the spins at the other sites. We can then find the final 
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output state by evolving the initial state inψ :  

( )1e 000 00
2

iHt
out Nψ φ φ−  = + 

 
�              (27) 

where φ  are all possible N qubit states. Practically, in this example, only states 
with Hamming weight one will remain. The mixed state density matrix is given 
by partial trace with respect to the Nth qubit: ( )12 1 out outNTr ψ ψ= � . The 
transition amplitude depends on the factor e iHtb N− .  

4. Quantum Memory 

Computation, without memory, is not as optimal and efficient, and quantum 
computation is no different in the case of most algorithms and information 
processing tasks. This is particularly required in the context of quantum 
communication, and a way to realize this, which follows from the previous 
discussion on quantum communication protocols using a medium that has 
constant coupling constant that is always operational, has been formulated by us, 
as part of this project. Let us take the simple case of a system that has three 
components: the qubit(s) to be stored ( AQ  at location A), the memory bus and 
the qubit(s) in which the information is to be stored ( MQ  at location M). The 
simplest example would be when the initial states of qubits AQ  and MQ  are 
initialized as: 1Aψ = , 0Mψ =  and the bus-qubits in the state  

( ) ( ) ( )1 2 000 000B B B Nψ =� � . An important point to note here is that though the 
couplings ( ) ( ) ,B i B jS i j≠  are operational always, the SWAPα -based couplings 

( )1ABS  and ( )B N MS  are operated only when required.  
We begin our protocol by switching on the couplings ( )1ABS  and ( )B N MS . 

Due to the Hamming weight symmetry of the SWAPα , the evolution of the 
states based on the couplings leads to a superposition of states with the same 
Hamming weight. We can select the couplings and time such that we reach a 
state as close to the quantum state: ( ) ( ) ( )1 2 000 001AB B B N Mψ =� � . The simplest 
case in this is when the quantum-bus is represented by a single qubit. If we begin 
with switching on the coupling between AQ  and the memory-bus, keeping the 
coupling between the memory-bus and QB switched off. One can realize the 
SWAP gate by continuous operation of the coupling giving a state  

( )1 01ABψ = . Now we shut off the coupling ( )1ABS  and switch on the one 
between the memory and the qubit BQ . The SWAP gate is realized and the state 
is transferred to BQ , completing the protocol. More complicated circuits and 
systems can be implemented, including those with multiple storage qubits 
attached to the memory-bus.  

5. Decoherence-Free Subspaces 

A decoherence-free subspace is a subspace of Hilbert space of a system that 
remains invariant to non-unitary dynamics [70] [71] [72]. The system is kept 
decoupled from the environment and therefore its evolution is completely 
unitary. Decoherence-free subspaces can be characterized as a special class of 
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quantum error correcting codes (QECC), as shall be highlighted later in this 
chapter. These subspaces isolate quantum information and thereby prevent 
destructive or noisy interactions with the system’s environment. These subspaces 
are an important conceptual and physical tool in quantum information, and are 
found to be useful when coherent control of a quantum system is required. Loss 
of coherence of quantum systems is called decoherence and takes place due to the 
interaction of a quantum system with uncontrollable degrees of freedom of the 
environment of the system. Since quantum computers cannot be truly and 
entirely isolated from their environment and thereby information can be lost due 
to decoherence, the study of decoherence-free subspaces is of utmost important 
for the implementation of quantum computation in the real world.  

As per the definition of Decoherence-free subspaces [71], if we consider the 
dynamics of a system S coupled to a bath B and let the system evolve unitarily 
under the combined system-bath Hamiltonian  

S B S B IH H I I H H= ⊗ + ⊗ +                  (28) 

where SH  and BH  are the system and bath Hamiltonians respectively. SI  
and BI  are the identity operator on the system and bath respectively. The last 
term in the hamiltonian denotes the interaction Hamiltonian  

1
IH S Bα α

α=
= ⊗∑                       (29) 

where Sα  and Bα  act solely on the system and bath respectively.  
The evolution in a subspace �  of the system Hilbert space   is unitary for 

all possible bath states iff  
1) The following condition holds true  

= ,S a aα α αψ ψ ∈                    (30) 

for all states ψ  that span �  and for every operator Sα  in IH .  
2) Interaction operators S and B are decoupled initially.  
3) SH ψ  has no overlap with states in the subspace that is orthogonal to 
� .  
Then the subspace �  is called a decoherence-free subspace of  .  
Let us consider the dynamics of N interacting spins that are collectively 

coupled to an environment with each spin experiencing the same interaction 
with its environment. We can then write ( )i

iSα ασ=∑  with ( )i
ασ  denoting 

operation on the ith qubit. If we expand these operators, they look like the 
following for an N-qubit case:  

2 2 2 2 2 2 2 2 2 2 2 2x x x xS I I I I I Iσ σ σ× × × × × ×= ⊗ ⊗ ⊗ + ⊗ ⊗ ⊗ + + ⊗ ⊗ ⊗� � � �  (31) 

2 2 2 2 2 2 2 2 2 2 2 2y y y yS I I I I I Iσ σ σ× × × × × ×= ⊗ ⊗ ⊗ + ⊗ ⊗ ⊗ + + ⊗ ⊗ ⊗� � � �  (32) 

2 2 2 2 2 2 2 2 2 2 2 2z z z zS I I I I I Iσ σ σ× × × × × ×= ⊗ ⊗ ⊗ + ⊗ ⊗ ⊗ + + ⊗ ⊗ ⊗� � � �  (33) 

For the condition ,S a aα α αψ ψ= ∈�  to hold true for each of these 
forms of S, we must have states that will give a global and not local phase across 
the superposition in the operators xS , yS  and zS . This is only possible if 
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ψ = + ⊗ + ⊗ ⊗ +�  or − ⊗ − ⊗ ⊗ −�  for the operator of the form 

in Equation (31), y y yψ = + ⊗ + ⊗ ⊗ +�  or y y y− ⊗ − ⊗ ⊗ −�  for 

the operator of the form in Equation (32), and 0 0 0y y yψ = ⊗ ⊗ ⊗�  or 

1 1 1y y y⊗ ⊗ ⊗�  for the operator of the form in Equation (33), where  

( )1 0 1
2

± = ±  and ( )1 0 1
2y i± = ± . These can never be  

simultaneously true. As a result,  

0Sα ψ =                            (34) 

Exponentiating the operators in (30) and using (34), we have  

( ) ( ) ( )exp expO p S a I p a I pα α α α α
α α

ψ ψ   = − = −      
∑ ∑�       (35) 

If we now consider the hamiltonian for the exchange interaction:  
E a b b a→ , we see that  

( ) ( ) ( ) ( )exp expO p E a I p E E a I p E O pα α α α
α α

   = − = × − = ×      
∑ ∑� �   (36) 

Thus, given the result in Equation (31), the operator given by the exchange 
interaction preserves the decoherence-free subspace for a “collective deco- 
herence” model. The smallest number of physical qubits that gives a fully 
encoded Decoherence-free Subspace qubit is found to be four [71]. Let us take 
this case, and consider the states with zero angular momentum:  

( ) ( )10 01 10 01 10
2L = − ⊗ −                  (37) 

( ) ( )1 11 00 11 01 10 01 10 11 00
23L

 = ⊗ − + ⊗ + + ⊗ 
 

    (38) 

Let us now look at the effect of the operation of the various exchange 
interactions ijE , where the ith and jth qubits are being exchanged.  

12 120 0 , 1 1L L L LE E→− →                  (39) 

Due to the symmetry of the logical basis states, 34E  has the same effect. 
Looking at the operation, we can define an encoded Z  operator:  

12 34Z E E= − = −                          (40) 

For defining a similar X  operator: 0 1 , 1 0L L L LX X→ →  is not as 
straightforward since no one exchange interaction seems to provide the solution. 
Therefore, before moving forward with trying to define this composite operator, 
let us look at some other cases for the exchange interaction:  

( )13
1 1 30 0101 1100 0011 1010 0 1 ,
2 2 2L L LE → − − + = −  

( )13
1 11 1001 0101 1100 0011 1010 0110

23
3 10 1

2 2

L

L L

E  → − + + + + 
 

= − −

  (41) 
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Again, due to the symmetry of the states, the case for 24E  gives the same 
results. Using operators 12E  and 13E  (or 34E  and 24E ), we can define the 
X  operator  

12 13 34 24
1 2 1 2
3 3 3 3

X E E E E= − − = − −              (42) 

The ability to implement these primary logical operations is sufficient to 
implement any gate in ( )2SU  on the encoded qubits, by using the Euler angle 
reconstruction (about any two orthogonal axes):  

( )( ) ( ) ( ) ( )exp 2 exp 2 exp 2 exp 2z y zi n i i iω σ βσ θσ ασ− ⋅ = − − −
� �    (43) 

the resulting rotation is given by the angle ω  about the direction specified by 
the unit vector n, both of which are functions of α , β  and θ . Mapping 
( ) ( ), , , ,x y z X Y Zσ σ σ → , we can construct any element of SU(2) in the encoded 
space by turning on and off the appropriate exchange interaction.  

For two qubit gates, we have to construct slightly more complex combinations 
of gates. Let us start with the controlled-Phase shift gate (CPHASE). The idea is 
to introduce a phase for the last case and not for any of the others. With some 
clever usage of the exchange interactions, this can be done:  

( )( )12 56 12 56 2E E E E I− − − − −                   (44) 

This gives us a phase only for the case for 11 L
. The CPHASE gate has been 

previously realized in a different manner by Bacon et al. [71] using the operators: 
[ ] [ ]1 26 12 25 15 12 16, ,h E E E E E E= + + + , ( )8

2 1 25 j jjh E E
=

= +∑  and  

( )1 2 1
1 , ,

32
c h h h=    . As can be seen, our operator is a lot simpler in construction.  

The CNOT gate can be realized similarly using two logical qubits. We find the 
form of this operator in the encoded space to be  

( )( )12 56 57
1 2
3

I E E E− − −                   (45) 

The CNOT gate has been realized previously with two logical qubits 
comprising of three physical qubits as well by DiVincenzo et al. [26].  

Thus, one can obtain a fault-tolerant universal set of gates using just the 
exchange interaction.  

6. Discussion 

Since the SWAPα  gates generated by the exchange interaction are non-com- 
mutative in general (adjacent operators operating on a common qubit), we can 
obtain an entire zoo of quantum states (and entanglement patterns) using these 
operators. However, given the parity constraints due to the permutation 
symmetries involved, we can define invariant subspaces for these states. This 
gives us an efficient method for classifying the generated states.  

This resource and classification has been used for defining various models of 
quantum computation, quantum communication, quantum memory and deo- 
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cherence-free subspaces. The Hamming-weight preserving symmetry of the 
SWAPα  gate is found to be of fundamental importance in most of these 
protocols. Due to the ubiquity of the exchange interaction in various physical 
systems including in condensed matter systems, this set of applications can be 
extremely useful in realizing quantum information processing in such physical 
systems.  

7. Conclusion 

In this paper, I have proposed new ways of applying entanglement generated 
using the exchange interaction for various quantum information processing 
tasks. This includes five distinct models of quantum computation, ways of 
implementing quantum communication protocols, quantum memory and de- 
fining decoherence-free subspaces. Future experimental realizations of quantum 
information processing that involve the exchange interaction can be based on 
the comprehensive theoretical study of these applications given in the paper.  
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