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1. Introduction
http://creativecommons.org/licenses/by/4.0/

Recently, there has been a great deal of interest in “global” methods

(Galerkin and collocation methods) for the numerical solution of two-
point boundary value problems. By this, we mean methods which find
a solution in the form

N
un(@) = 3 arii(a) (1)
k=1

where {9, (m)}ivzl is a basis for an N-dimensional subspace of func-
tions, S. The functions ¢ (z),k = 1,2,--- , N, are called test functions
and the space S is called the test space.

To simplify the computations, the basis test functions {ty, (x)}ivzl
are taken to be orthogonal and in many cases they are polynomi-
als, splines, sinc or wavelet. In essence, the Galerkin method is a
discretization scheme in which the expansion coefficients {ak}szl are
obtained by solving a set of NV algebraic equations.

For example, consider the problem Lu = f, where L is a self-adjoint
operator and f is a known function. The Galerkin method yields the
system of equations

2

> an(Lip(x), v5(2)) = (f(2), ¢5(x)), j=1,--N,

k=1
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which is an algebraic system of equations that can be solved for the
unknown coefficients ay,.

In the collocation method no quadrature sums are required. The
unknown coefficients ay in (1) are determined by the linear system

Lun(z;) = f(z;), 0<ua; <1, ji=12,....m

The aim of this paper is to develop the wavelet and Bernoulli bases
for solving PDE of the form

o _ o
ot Qa2

subject to the boundary conditions
u(oﬂt) = hl(t)a u(lat) = hZ(t)a (3)

and the initial conditions
(4)

where a € {1,2}.

In this paper, there are two different approaches for solving two-
point boundary value problems. Galerkin is based on wavelet and
collocation is based on using Bernoulli operational matrix to reduce
the problem into solving a system of linear algebraic equations. Re-
cently, there has been a lot of research papers dealing with wavelet-
Galerkin. Those papers include solution of partial differential equa-
tions [1], two-point boundary value problems [2], integro-differential
equations [3], second-kind integral equations [5], Fredholm integral e-
quations numerically [4,6], nonhomogeneous time-dependent problem-
s [7], singularly Perturbed convection-dominated diffusion equation [8],
telegraph equations [9], eigenvalue problem of a compact integral op-
erator [10], fourth-order multi-dimensional elliptic partial differential
equations [11], fourth order linear and nonlinear differential equation-
s [12], stochastic fractional differential equations [13], Schordinger e-
quations with general nonlinearity [14], generalized wavelet-Galerkin
method [15]. El-Gamel et al. [16], have compared the wavelet-Galerkin
and sinc-Galerkin techniques in solving nonhomogeneous heat equa-
tions. Moreover, El-Gamel has compared the wavelet-Galerkin and
Adomian decomposition methods of boundary-value problems [17].

Bernoulli matrix method has been used to find the approximate so-
lutions of two-dimensional hyperbolic telegraph equations [18], linear
partial differential equations [19], pantograph equation [20], nonlinear
fuzzy Hammerstein-Volterra delay integral equations [21], fractional
Fredholem-Volterra integro-differential equations [22], the Blasius and
MHD Falkner-Skan boundary-layer equations [23], linear multidimen-
sional diffusion and wave equations [24], optimal control problems [25]
and Fuzzy integral equations [26]. Recently, El-Gamel and Adel [27]
proposed a new approach to solving higher-order boundary value prob-
lems via Euler matrix method.

The rest of this article is organized as follows. In Section 2,
we describe the wavelet-Galerkin method. In Section 3, Bernoulli-
collocation method is introduced. Section 4, gives specific three ex-
amples to test the two proposed methods and compare the results.
Closing with conclusion In Section 5.

DOLI: 10.4236/am.2018.911083

1271 Applied Mathematics


https://doi.org/10.4236/am.2018.911083

M. El-Gamel et al.

2. Wavelet Bases

2.1. Governing Equation

Setting _ _ _
0%u _ u't —au' 4 (a—1u!

ot (At)e
Equation (2) may be approximated by

Wt — ot + (o — i d2 i+l ‘
= it 5
[ s | =T e

where t* = iAt,i =0,1,2,... . Then, rewriting Equation (5)

d2 ui+1 1 ) .
o 7+1 —_ M tz+1 6
o | |0 = MG )
where

M (z, 1Y) = —p(z, 11 — { } ul + [(O‘ — 1)} wil,

(At)>

We assume that
(@, t) = h(t)z(z) =Y ca' h(t).
=0

2.2. Daubechies Wavelet Bases

More detailed discussions about Daubechies wavelets can be found
in [28-31].

2.3. Wavelet-Galerkin Method

Let the solution u(z) at the (i + 1)** time level of the problem be
approximated by

271

us(z) =277 3" ap¢(2’z—k), ke2z, (7)
k=2—D

By substituting the solution u(x) in Equation (6), yields

271 271

J/2 a d72 in _oJ/2 1 a JCL’f
2 k;D ko (027 — k)] -2 {( At)a} k§D k(27 — k)
= M(z,tTh). )

We use the inner product of both sides of Equation (8) with
27/2 (27 — 1) leads the following equation

271 1 27 -1
> bglak_[] > chax=d),1=2-D,3-D,..,2"~1.

(At)>
k=2—-D k=2—D
(9)
where
1
b, = 2J/ 627z — k)p(27x — 1)dx
0
271 (10)
= [ otu— k= motay
=T} ,(27 = 1) =T, (=),
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i Ci i c
=—h (t +1) Zo 2(z‘+%)JMl <2J) - Q(E?J Mlo (2J) :
(12)

The algorithm for calculating I'{_,,T'? ,, and M;™ has been de-
scribed in [32].
The matrix-vector form of the Equation (9) is

1
v~ [ 7 A= 19)
where
J J
W= [bkl]Q—ng,lg 2717 R= [ckl]zfpgk,zg 2717
S= [dr{zl]2—D <1<27-15 A= [a2—D’ a3—Dy- - - 7G2J—1]t7

where ¢ denotes the matrix transpose. Now we have a linear algebraic
system that can be solved by the Q-R method.
3. Bernoulli Bases

More detailed discussions about Bernoulli operational matrix can be
found in [18,22,23,25].

Bernoulli-Collocation Method
Let the solution of (6) is

N
un (2, 871) = un () ~ Y " a, By (x) = B(z) A (14)
n=0

where

A =[ag,a1,...,ay]
B(I) = [BO(I)’Bl(z)7' .- 7BN(x)]
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then the matrix form of the second derivative is
d2

@w(x,ﬂ*l) = d—ZuN(ac)”l —B@(z) A =B(z) (M) A. (15)

dx

where M is (N + 1) x (N + 1) Bernoulli operational matrices of dif-
ferentiation described by

0 0 0 By ()
1 0 0 Bi(z)

M=|0 2 0 and B(x)' =
Do " : Bn_1(z)

By replacing each term in Equation (6) with the approximation
defined in Equation (14) and (15) and collocate them at z = xj, defined
as the equal collocation points where

k
o= k=012 N

We reach the following theorem

Theorem 1. If the assumed approximate solution of the boundary-
value problem (6) is (14), then the discrete Bernoulli system is given
by

N 1 N
nz::o Bn(:ck) - W ;Bn(xk) Ap

_ 777(.Z'i,ti+1) o u(zk,ti) + ((O‘At)i) u(xk,tifl). (16)

(At)*

Proof. By replacing each term of Equation (6) with the corresponding
approximation represented in Equation (14) and (15) and collocate
them with x = x; collocation points. O]

The fundamental matrix for the above system is

PA=F
where
o =B (M) -JB,
and
Bo(xo) Bl(xo) BQ(CE()) e BN((E())
BU(.’IJ1> Bl(acl) BQ((El) e BN(acl)
B= | Bo(w2) Bi(z2) Ba(zz) Bn(x2) 7
Bo(l'N) Bl(fN) BQ(LCN) BN(iN)
—n (g, L) — (A‘i)au(xo,ti) + %u(xo,ti’l)
- —n(z1, t 1) — (A‘;‘)au(xl,tz) + %u(m,t’_l)

—n(an, ') — Ghwulen, t) + %u(mmti_l)
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(Alt)a (1) 0 0
0 OR (1) 0
J = 0 0 Aan= 0
: 1
0 0 0 ane

Then, substituting the approximation from (14) in the boundary
conditions in Equation (3) yields

N
> an Bn(0) = by (t) (17)
n=0
and
N
> an Bu(1) = ho(t"). (18)
n=0

Replacing the first and the last row in the augmented matrix [®; F]
with the boundary conditions from Equations (17) and (18) will lead
to the new augmented matrix [©; ] which is an N 41 linear equations
in N 4 1 unknowns defined as

OA=F
where
By(0) Bi(0) B2(0) Bn(0)
@ = @ )
Bo(1) Bi(1) Ba(l) ... Bn(1)
h1<ti+1)
—77(1‘0,7?”1) - (A%)au(antz) + EZ;)la)u(xO,tl_l)
i « i a—1 i—

F: —ﬂ(ffl,tﬂ)—l(&)au(ffl»t)+ EA )oc)u(x17t 1)
(N, ) = Ghwulen, t) + 227)104) w(zn,t' )

ho(t4F1).

This system is solved using the Q-R method for finding the unknown

. N . . i—1
coefficients _{an}nzo , but with known approximate u(zg,t* ') and
then u(xg,t*) can be evaluated, respectively.

4. Numerical Examples

Three examples are considered to demonstrate the efficiency and accu-
racy of the proposed methods in homogeneous and nonhomogeneous
boundary conditions. Daubechies 6 wavelet, D = 6, is used and each
example was run for J = 9 and we take At = 0.001. The maximum
absolute error is taken as

[Ewell = ’Uexact ~ Uwavelet-Galerkin | »

and

IEscl = [texact — UBernoulli-collocation| -
Example 1 [17] Consider the following problem

Up =gy 0<a<1,¢>0, (19)
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subject to the boundary conditions
u(0,t) = exp(t), wu(l,t) =exp(t+1),
and the initial condition
u(z,0) = exp(z),
whose exact solution is
u(z,t) = exp(t + ).

Table 1 shows the comparison between the absolute errors ||Epcl||
and [[Ewel -

Table 1. Maximum absolute errors for Example 1.

(z,t) |Egcll, N =10 IEwal,J =9.
(0.25,0.1) 4.631913E—-06 8.5436E—05
(0.5,0.1) 6.838514E—06 9.3299E—05
(0.75,0.1) 6.751201E—06 1.7983E—05
(0.25,0.5) 5.340952E—05 5.4634E—04
(0.5,0.5) 7.813925E—05 7.6003E—04
(0.75,0.5) 6.350286 E—05 5.7020E—-04
(0.25,1.0) 1.769145E—05 1.3965E—-03
(0.5,1.0) 2.588038E—05 1.7219E-03
Example 2 [17] Consider the following problem
U = Uz 0<2<1,¢t>0, (20)

subject to the boundary conditions
u(0,t) =0, wu(l,t)=sinle?,
and the initial conditions
u(z,0) =sin z
whose exact solution is
u(z,t) =sin ze .

The computational results are summarized in Table 2.

Table 2. Comparison between the maximum absolute errors for Example

2.

(z,1) [Egcll, N =10 [EwealJ =9.
(0.25,0.1) 1.00112E-06 3.2750E—-05
(0.5,0.1) 1.70939E—-06 5.5452E—05
(0.75,0.1) 1.58965E—06 4.3456E—05
(0.25,0.5) 6.18197E—06 1.9567E—05
(0.5,0.5) 9.80818E—06 5.4572E—04
(0.75,0.5) 8.19902E—06 7.7654E—04
(0.25,1.0) 7.60298E—06 1.6562E—04
(0.5,1.0) 1.20468E—05 3.7982E—-03
(0.75,1.0) 1.00501E—-05 4.4324E—-03
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Example 3 [17] Consider the following problem
Upt = Uy + 2 exp(—7t) sin(rx), 0<z<1,¢t>0, (21)
subject to the boundary conditions
u(0,t) =0, wu(l,t) =0,
and the initial conditions

u(z,0) = sin (7 z)

us(x,0) = —7 sin (7 x)
whose exact solution is
u(z,t) = exp(—7t) sin (7 x).
The computational results are summarized in Table 3.

Table 3. Comparison between the maximum absolute errors for Example
3.

(z,1) [Epcll, N =10 [EwelJ = 9.
(0.25,0.1) 4.64123E—05 4.7799E—03
(0.5,0.1) 6.23950E—05 3.8654E—03
(0.75,0.1) 4.64123E—05 2.7143E—03
(0.25,0.5) 1.28684E—04 6.5798E—02
(0.5,0.5) 1.72999E—04 7.3478E—02
(0.75,0.5) 1.28684E—04 1.8764E—02
(0.25,1.0) 1.13949E—03 3.2385E—01
(0.5,1.0) 1.63140E—03 5.7492E—01
(0.75,1.0) 1.13949E—03 4.2954E—01

5. Conclusion

The main objective of this article is to develop two accurate methods
to solve nonhomogeneous heat and wave equations. Bernoulli oper-
ational matrix with collocation method and wavelet with Galerkin
method have reduced the problem into the linear algebraic system.
Some illustrative problems are given to ensure the high efficiency of
the proposed algorithms.
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