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Abstract 
In this paper, a methodology for the numerical location of a global 
point-to-point (P2P for short) homoclinic asymptotically connecting orbit is 
applied to a modified version of Shimizu-Morioka system, which models a 
semiconductor laser. This type of global bifurcation can be considered as a 
stylized mathematical description of self-pulsation in this laser type, associ-
ated with saturation. The location is achieved by use of a custom algorithm 
based on the method of orthogonal collocation on finite elements with fourth 
order boundary conditions, constructed through scale order approximations. 
The effectiveness of the algorithm and the superiority of high-order boundary 
conditions over the widely used first order ones are justified throughout the 
obtained graphical results.  
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1. Introduction 

The numerical location of global asymptotic orbits is often proved to be a com-
putationally demanding task, even in low dimensional systems. However, the 
recent improvement of hardware capabilities and symbolic mathematical soft-
ware allows researchers to locate global asymptotic orbits numerically more eas-
ily. Homoclinic point-to-point (P2P for short) connecting orbits arise in various 
applications where hysteresis and saturation phenomena are present. These or-
bits are considered to be separatrices in the nonlinear state space in 2D conser-
vative ODEs (ordinary differential equations), since they divide the phase space 
into qualitatively different regions of motion; one region of periodic solutions 
and one of non-periodic ones, respectively. In that sense, homoclinic orbits can 
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be perceived as the limit of periodic solutions, which is a periodic orbit, the fun-
damental period of which tends to infinity, while the orbit itself remains 
bounded. From a different perspective, a homoclinic P2P orbit can be regarded 
as the result of the collision of a limit cycle and a fixed point.  

In the present paper, an algorithm for the numerical computation of global 
homoclinic P2P orbits is applied to a three-dimensional differential dynamical 
system, be it a modified Shimizu-Morioka system [1], [2] modelling a semicon-
ductor laser. The aforementioned algorithm has been carried out by means of 
the well-known method of orthogonal collocation on finite elements (widely 
used in the famous software AUTO86 (see [3]) and MATCONT (see [4], [5])) 
and it has already been successfully applied by the authors to a Lorenz system, as 
well as to a three-species food chain model with group defence ecosystem (see 
[6]). In the version applied herein, Lagrange polynomials have been used as the 
basis polynomials, instead of the Legendre polynomials implemented in [6] (see 
Section 2, Equation (4)). Hence, the collocation points associated with each time 
subinterval (see [6], Figure 1) are placed at the Gauss points, which are the roots 
of the maximum degree Legendre polynomial relative to this subinterval. 

The respective procedure involves the evaluation of high order boundary con-
ditions (BC from now on). Note that both the well-known and widely used tech-
niques of projection BC and the method of eigenvectors (see [7]) are approxima-
tions of the first order. Thus the application of those techniques presupposes 
good initial data for the successful computation of the orbits of interest and this 
is becoming harder and harder to achieve as the number of state variables to-
gether with the number of active parameters increase. Moreover, it is well 
known that the projection method converges exponentially with the increase of  
 

 
Figure 1. Numerically continued limit cycles of increasing period around fixed point 

( )1,0,1E+ . 
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the truncation interval, which in turn, however, can increase the computational 
time (mainly in ordinary PCs with low to moderate CPU power such as an Intel 
Core i7 870). So, the use of high order BC can be proved useful in cases like that. 
An appropriate combination of the multiple scales approximation method with 
that of successive approximations leads to the construction of a technique for the 
determination of high order BC. The idea for this combination comes from De-
prit and Henrard [8], Bennett [9] and the relevant references therein. Also, 
Hassard [10] presented the idea to use high order BC instead of the projection 
ones. 

The theoretical background of the computational procedure is given in [6] 
(Sections 2 and 3). More precisely, in the paper mentioned above, the defining 
equations and important formulae associated with the algorithm implemented 
are presented throughout Section 2, while a brief description of the procedure 
concerning the derivation of high order BC is presented in Section 3. In the same 
Section, the determination of the number of control parameters is treated. This 
concerns the number of the necessary active parameters of the system for which 
the homoclinic orbit is an isolated, structurally stable phenomenon. By the 
analysis developed in [6] (Section 3), for the system presented herein this num-
ber has also been calculated equal to one, so we have chosen one active parame-
ter, a (see Section 2 below). Thus, in Section 2 of the present paper, the algo-
rithm is applied to a modified version of Shimizu-Morioka system, modelling a 
semiconductor laser. After a brief review of the theory associated with the type 
of lasers under consideration, where the significance of homoclinic orbits is 
mentioned, as well, an equilibrium analysis is performed and the scale order ap-
proximations (up to the fourth order) of the system together with the respective 
outgoing solution are obtained. Both the latter and the similarly constructed in-
coming solution lead to the extraction of high (fourth) order BC, the use of 
which together with the method of orthogonal collocation on finite elements re-
sults in the homoclinic orbit under consideration. The analysis is carried out 
with the aid of Mathworks Matlab and the symbolic engine of Maplesoft Maple, 
concluding with the associated graphical results. 

2. Application to a Modified Version of Shimizu-Morioka  
System 

The method of orthogonal collocation on finite elements with fourth order BC 
has been applied to a modified version of Shimizu-Morioka system [1], [2], for 
which the location of a homoclinic connection at the fixed point ( )0 0,0,0E  has 
been carried out. The system is described by the following differential equations 

2

x y
y x qy xz
z bz bx

=
= − −

= − +







                       (1) 

and the connection between its parameters and the Lorenz ones is presented in 
[11]. This version of the system deals with the modelling of a homogeneously 
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broadened single-mode laser (see [12] and the relevant references therein). By 
scaling ,t b y bYτ= = , setting ( )21q b b= −  and then ( )2 1 1b a= +  (see 
[2]), (1) becomes 

( ) ( )
2

1 1
x y
y a x ay a xz

z z x

=

= + − − +

= − +







                  (2) 

where dot denotes differentiation with respect to τ  and we have resubstituted 
τ  with t and Y with y. The state variables , ,x y z  describe the small amplitude 
dynamics of the Laser with Saturable Absorber (LSA) [13], and more precisely 
the amplitude of electric field intensity E, the amplitude of atomic polarization P 
and the atomic polarization differences in absence of the laser field, respectively. 
Moreover, a is the active (control or bifurcation) parameter. 

2.1. Brief Theory and Significance of Homoclinic Orbits 

The LSA lasers exhibit sustained laser oscillations consisting of pulse trains of 
really short high intensity and high frequency laser output (also known as pas-
sive Q-switching or self-pulsing behaviour). Such behaviour has been both theo-
retically and experimentally confirmed for CO2 lasers, microchip solid state las-
ers etc. Semiconductor lasers exhibit rates of high repetition ranging from hun-
dreds of MHz to almost 1/10 GHz, while they have useful applications in tele-
communication and in optical data storage using CD and DVD systems. Some 
other applications include the optical feedback noise reduction in semiconductor 
injection lasers and optical timing extraction by injection locking of self-pulsing 
optical oscillators. The phenomenon of self-pulsation is a result of the nonlinear 
interaction of the slowly responding amplifying and absorbing media and the 
fast response of the electric field in lasers driven by a constant pumping power. 
Actually, the basic mechanism responsible for the generation of these oscilla-
tions starts as the laser is turned on and the amplifying medium, the gain, is ex-
cited to a sufficiently high level via some type of pumping process. The absorber 
absorbs the free photons in the laser and thus the intensity of the electric field 
remains low and the saturation of the gain goes on. As soon as the absorbing 
medium saturates, the usual laser process starts with a strongly excited gain 
causing a high electric field intensity and thus truly enhanced output power. 
During this process both the gain and the absorber return to ground state and 
the process starts all over again. In semiconductor lasers, this can produce a 
pulse train with a typical frequency of the order of several GHz. The homoclinic 
point-to-point connecting orbit arising in the system of interest, can be consi-
dered as a mathematical representation of the aforementioned high power 
self-pulsation. A characteristic of lasers with obvious practical importance is that 
by changing either the material or the pump power, the qualitative behaviour of 
the laser beam can change dramatically, that is a large variety of local and global 
bifurcations can occur.  

However, the presence of quite different time scales makes numerical simula-
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tions of lasers both challenging and time consuming, so the use of appropriate 
time scaling transformations can be useful, sometimes. 

2.2. Computation of Equilibria 

By means of (2) we easily find the three equilibria of the system, be them 
( ) ( )0 0,0,0 , 1,0,1E E± ± . Also, the Equation (2) are invariant under the transfor-

mation ,  x x y y→ − → − , so its orbits are symmetric with respect to z-axis and 
we can restrict our analysis to 0x > . Moreover, the Jacobian matrix associated 
with (2), is 

( ) ( )0 0

0

0 1 0
1 1 1

2 0 1
J a a z a a x

x

 
 = + − + − − + 
 − 

                (3) 

where ( )0 0 0, ,x y z  represents the equilibrium under consideration (the nonli-
nearity condition for higher order terms is obviously valid). Thus, for 0E  we have 

0

0 1 0
1 0

0 0 1
EJ a a

 
 = + − 
 − 

                      (4) 

giving the eigenvalues 1 2 31, 1, 1aλ λ λ= − = = − − , hence 0E  is a saddle. Fur-
thermore, with regard to E+  the Jacobian matrix becomes 

0 1 0
0 1
2 0 1

EJ a a
+

 
 = − − − 
 − 

                     (5) 

with characteristic equation 

( ) ( )3 21 2 1 0a a aλ λ λ+ + + + + =                 (6) 

By setting ( )0 1 22 1 , , 1p a p a p a= + = = + , then according to Routh-Hurwitz 
criterion, as long as the following relations: 

( ) ( )

0

1

2 1 2 0

0 1 0
0 0

0 2 1 0

p a
p a
D p p p a a

> ⇒ + >

> ⇒ >

= − > ⇒ − + >

             (7) 

hold together, that is for 2α >  (only positive values of the parameter have a 
physical meaning for our model), the equilibrium ( )1,0,1E+  is locally asymp-
totically stable, since in that case the eigenvalues have negative real part. Also, 
according to Liu criterion [14], in the case where the first two inequalities of (7) 
are valid, then the following equality: 

( ) ( )1 2 0 00 2 1 0 2p p p a a a a− = ⇒ − + = ⇒ = =           (8) 

determines a Hopf bifurcation, if in addition ( )2 0d d 0D a a ≠  also holds, which 
is equivalent to the transversality condition. Since the critical first Lyapunov co-
efficient is evaluated ( ) 2

1 0 5.183052 10l a −− ×  (by means of the corresponding 
normal form formulae included in the algorithm presented in [15]), a nondege-
nerate (codimension 1) supercritical Hopf bifurcation occurs, that is stable limit 
cycles bifurcate from the unstable equilibrium ( 2a < ). Then, the strategy of 
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analysis is to start from a limit cycle, which bifurcates from the equilibrium E+ , 
and numerically continue it with respect to its period and the necessary (active) 
parameter towards the direction of the increase of the period, until it gets close 
enough to the saddle fixed point of interest, 0E , associated with the homoclinic 
orbit, and also the active parameter remains practically unchanged. So, as the 
largest cycle can be considered as a good initial approximation of the homoclinic 
orbit, the main computation of the homoclinic orbit can be carried out. The 
numerical continuation herein has been carried out by means of a custom algo-
rithm of sequential numerical continuation based on the method of orthogonal 
collocation on finite elements and the corresponding integral phase condition 
(see [6], Section 2, Equation (8)). The corresponding numerically continued cy-
cles are presented in Figure 1.  

2.3. Application of High Order Boundary Conditions 

Let us now apply the aforementioned high order BC. Assuming the solutions of 
the differential system under consideration can be approximated by 

( ) ( ) ( ) ( ) ( ) ( )
1 1 1

, ,
k k k

i i i
i i i

i i i
x t x t y t y t z t z tε ε ε

= = =

≈ ≈ ≈∑ ∑ ∑          (9) 

where ε  is the orbital parameter and k is the maximal order of approximation. 
Then, by substituting the expressions of (9) into (2) (the Taylor expansion with 
respect to 0E  coincides with the system itself) and equating the same order 
terms, we obtain the respective linear (with respect to the variables correspond-
ing to the j-order, 1, ,j k=  ) systems. In terms of the present analysis the 
maximal order of approximation has been chosen to be 4k = . Then, each sys-
tem is solved and the solution is substituted in the subsequent, higher order sys-
tems (method of successive approximations). Let us present these systems. 

1st order of approximation 

( )
1 1

1 1 1

1 1

1
x y
y a x ay
z z

=

= + −

= −







                      (10) 

2nd order of approximation 

( ) ( )
2 2

2 2 2 1 1

2
2 2 1

1 1
x y
y a x ay a x z

z z x

=

= + − − +

= − +







                 (11) 

3rd order of approximation 

( ) ( ) ( )
3 3

3 3 3 1 2 2 1

3 3 1 2

1 1
2

x y
y a x ay a x z x z
z z x x

=

= + − − + +

= − +







             (12) 

4th order of approximation 

( ) ( ) ( )
4 4

4 4 4 1 3 2 2 3 1

2
3 3 1 3 2

1 1

2

x y
y a x ay a x z x z x z

z z x x x

=

= + − − + + +

= − + +







           (13) 
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By means of the procedure described in [6] (see Section 3, p. 558), we arrive at 
the approximations of both the outgoing (locally asymptotically unstable) vector 
solution and the incoming (locally asymptotically stable) one. These approxima-
tions can be extracted with the aid of a symbolic computational package, such as 
Mathematica or Maplesoft Maple (which offers direct integration with Math-
works Matlab), as the calculations can be lengthy even for low dimensional sys-
tems. We present below the solutions associated with the outgoing vectors: 

1st order approximation 

( ) ( )

( ) ( ) ( )

( )

1
1 1 2

1
1 1 2

1 3

e e

e 1 e

e

a tt

tt

t

x t c c

y t c c a

z t c

α

− +

− +

−

= +

= + − −

=

                   (14) 

where 1 2 3, ,c c c  denote the integration constants (from now on , 1, 2,3, 4,ic i =   
will denote integration constants unless stated otherwise). By setting 2 3 0c c= =  
we get the first order approximation of the outgoing solution vector 

1 1

1 1

1

e

e
0

t
out

t
out

out

x c

y c
z

=

=

=

                          (15) 

2nd order approximation 

( ) ( )

( ) ( ) ( )

( )

1
2 4 5

1
2 4 5

2
2 6 1

e e

e 1 e
1e e
3

a tt

tt

t t

x t c c

y t c c a

z t c c

α

− +

− +

−

= +

= − +

= +

                   (16) 

and setting 4 5 6 0c c c= = =  we take the second order approximation 

( )
( )

( )

2

2

2 2
2 1

0

0
1 e e
3

out

out

t t
out

x t

y t

z t c −

=

=

=

                       (17) 

3rd order approximation 

( ) ( )

( )

( ) ( ) ( )

( )
( )

1 3 3
3 7 8 1

1 3 3
3 7 8 1

3 9

1e e e
6 4

1e 1 e e
2 4

e

a tt t

a tt t

t

ax t c c c
a

ay t c c a c
a

z t c

− +

− +

−

+
= + −

+

+
= − + −

+

=

            (18) 

The third order approximation is obtained by setting 7 8 9 0c c c= = = , 

( )

( )

3 3
3 1

3 3
3 1

3

1 e
6 4

1 e
2 4

0

t
out

t
out

out

ax c
a
ay c
a

z

+
= −

+

+
= −

+

=

                      (19) 
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4th order approximation 

( ) ( )

( ) ( ) ( )

( ) ( )

1
4 10 11

1
4 10 11

4 4
4 12 1

e e

e 1 e
1e e

15 4

a tt

a tt

t t

x t c c

y t c a c
az t c c
a

− +

− +

−

= +

= − +

+
= −

+

                  (20) 

and setting 10 11 12 0c c c= = =  we get the fourth order approximation of the 
outgoing solution 

( )
( )

( ) ( )

4

4

4 4
4 1

0

0
1 e

15 4

out

out

t
out

x t

y t
az t c
a

=

=

+
= −

+

                    (21) 

So, by substituting the aforementioned formulae of  

( ), , , 1, 2,3, 4out out out
j j jx y z j =  for ( ), ,j j jx y z  in (9), we arrive at the outgoing 

solution up to the fourth order: 

( )

( )

3 3
1 1

3 3
1 1

2 2 4 4
1 1

1e e
6 4

1e e
6 4

1 1 1e e e
3 15 4

t t
out

t t
out

t t t
out

ax c c
a
ay c c
a

az c c
a

ε

ε

−

+
= −

+

+
= −

+

+
= −

+

                   (22) 

where 1c  can be user defined. Similarly, the expressions of the incoming vector 
can be set, as well. There, the integration constants associated with the “unstable 
eigenvalues” must be set equal to zero. The effectiveness of high order BC im-
plemented compared to the classic first order ones, often encountered in bibli-
ography, is presented in Figure 2 (approximation of outgoing solution) and in 
Figure 3(a) and Figure 3(b) (approximation of incoming solution). 
 

 
Figure 2. Comparison between 1st, 2nd and 4th order BC for the system of interest (out-
going vector) ( 1.724323a   ). 
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(a) 

 
(b) 

Figure 3. Comparison between (a) 1st and 4th order BC and (b) 2nd and 4th order BC, 
for the system of interest (incoming vector) ( 1.724323a   ). 
 

Via the method of orthogonal collocation on finite elements combined with 
the aforementioned fourth order BC, the homoclinic connecting orbit of interest 
(i.e. at the origin) has been computed inside the truncated time interval 
[ ]23.5, 23.5− , which has been determined with the aid of the well-known Beyn’s 
method [16], while the Euclidean distance of the initial point (i.e. the one closest 
to the equilibrium) of the outgoing solution vector from the equilibrium is 
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112.5545 10uδ
−×

 and the corresponding distance of the incoming (stable) so-
lution vector is 104.2672 10sδ

−×
, for the value of the active parameter 

1.724323a   . The trajectory of the homoclinic orbit is presented in Figure 4 
together with the orbit resulting after numerical integration by use of the stan-
dard algorithm of numerical integration predictor-corrector method Ad-
ams-Bashforth-Moulton (ode113 of Mathworks Matlab).  

3. Conclusion-Discussion 

An efficient custom algorithm of orthogonal collocation on finite elements im-
plemented in Mathworks Matlab has been applied to a laser model based on a 
modified version of Shimizu-Morioka system for the numerical location of a 
homoclinic orbit. An initial approximation of this orbit has become available 
through a numerical continuation of limit cycles, bifurcated from a Hopf bifur-
cation, up to a high value of the fundamental period. The efficiency of the algo-
rithm lies in the fact that all the required equations, be them the collocation 
equations, the continuity equations, the boundary conditions and the phase 
condition, are converted to Matlab functions automatically, so that integrated, 
sophisticated Matlab routines used for solving systems of nonlinear algebraic 
equations, as well as optimization routines or any other relevant, user-defined 
routines can be applied directly for the solution of the aforementioned system of 
nonlinear algebraic equations. Furthermore, the high order boundary conditions 
defined and used herein can be useful when ordinary PCs of low to moderate 
computational power are used for the location of homoclinic orbits, as they do 
not require the increase of the length of the truncation interval in order to 
achieve the precision sought for the computation. The effectiveness of the high  
 

 
Figure 4. Global homoclinic asymptotic point-to-point connecting orbit at the equili-
brium ( )0 0,0,0E  obtained by orthogonal collocation on finite elements and ode113 

( 1.724323a   ). 
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order BC is evident in Figure 2, Figure 3(a) and Figure 3(b), where a backward 
(Figure 2) or forward (Figure 3(a) and Figure 3(b)) integration of the corre-
sponding highest order approximation approaches the fixed point associated 
with the connecting orbit of interest satisfactorily. 

Last, the physical meaning of the homoclinic orbit of the laser computed 
above has already been mentioned and it concerns the description of the satura-
tion phenomenon present in this laser type. More precisely, the homoclinic 
point-to-point connecting orbit computed can be considered as a stylized repre-
sentation of a high power self-pulsation associated with the aforementioned 
phenomenon (see Figure 4). Moreover, this application serves as a validation 
study of the implemented algorithm and the whole methodology on which the 
numerical procedure is based, as well. 
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