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ABSTRACT 

Multiobjective Programming (MOP) has become famous among many researchers due to more practical and realistic 
applications. A lot of methods have been proposed especially during the past four decades. In this paper, we develop a 
new algorithm based on a new approach to solve MOP by starting from a utopian point, which is usually infeasible, 
and moving towards the feasible region via stepwise movements and a simple continuous interaction with decision 
maker. We consider the case where all objective functions and constraints are linear. The implementation of the pro-
posed algorithm is demonstrated by two numerical examples. 
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1. Introduction 

During the past four decades, many methods and algo-
rithms have been developed to solve Multiobjective Pro-
gramming (MOP), in which some objectives are con-
flicting and the utility function of the Decision Maker 
(DM) is imprecise in nature. MOP is believed to be one 
of the fastest growing areas in management science and 
operations research, in that many decision making prob-
lems can be formulated in this domain. For some engi-
neering applications of MOP problems the interested 
reader is referred to [1,2]. Decision making problems 
with several conflicting objectives are common in prac-
tice. Hence, for such problems, a single objective func-
tion is not sufficient to seek the real desired solution. 
Because of this limitation, an MOP method is needed to 
solve many real world optimization problems [3].  

Although different solution procedures have been in-
troduced, the interactive approaches are generally be-
lieved to be the most promising ones, in which the pre-
ferred information of the DM is progressively articulated 
during the solution process and is incorporated into it [4]. 
The purpose of MOP in the mathematical programming 
framework is to optimize r different objective functions, 
subject to a set of systematic constraints. A mathematical 
formulation of an MOP is also known as the vector 
maximization (or minimization) problem. Generally, 
MOP can be divided into four different categories. 

The first and the oldest group of MOP need not to get 
any information from DM during the process of finding 

an efficient solution. These types of algorithms rely 
solely on the pre-assumptions about DM's preferences. In 
this category, L-P Metric methods are noticeable, algo-
rithms whose objectives are minimization of deviations 
of the objective functions from the ideal solution. Since 
different objectives have different scales, they must be 
normalized before the process of minimization of devia-
tions starts. Therefore, a new problem is minimized 
which has no scale [5].  

The second group of MOP includes gathering cardinal 
or ordinal preferred information before the solving proc-
ess initiates. In the method of utility function [6], for 
example, we determine DM's utility as a function of ob-
jective functions and then we maximize the overall func-
tion under the initial constraints. The other method in this 
group, which is extensively used by many researchers, is 
Goal Programming (GP) [7] in which DM determines the 
least (the most) acceptable level of Max (Min) functions. 
Since attaining these values might lead to an infeasible 
point, the constraints are allowed to exceed, but we try to 
minimize these weighted deviations.  

The third group of MOP provides a set of efficient so-
lutions in which DM has the opportunity to choose his 
preferred solution among the efficient ones. Although 
finding an efficient solution in MOP is not difficult, but 
finding all efficient solutions to render DM is not a trivial 
task. Many papers have discussed this important issue 
[8–11]. The set of all efficient feasible solutions in a 
Multiobjective Linear Programming (MOLP) can be 
represented by convex combination of efficient extreme 
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points and efficient extreme rays in the feasible region. 
Therefore, the set of efficient extreme points and effi-
cient extreme rays can be regarded as the solution set for 
an MOLP problem. Ida [8] develops an algorithm to find 
the structure of efficient solutions in an MOLP using all 
efficient extreme points and extreme rays. Pourkarimi et 
al. [9] represent the structure of efficient solutions as 
maximal efficient faces. Youness and Emam [11] inves-
tigate the relationships among some efficient solutions in 
the objective space and then obtain all efficient solutions 
of the MOLP and their structure in the constraint space. 
Steuer and Piercy [10] use regression analysis to estimate 
the number of efficient extreme points in MOLP. Even 
though the final solution among the efficient solutions is 
usually chosen by DM, but Gass and Roy [12] propose a 
mathematical method for ranking the set of efficient ex-
treme solutions in an MOLP. The idea is to enclose the 
given efficient solutions within an annulus of minimum 
width, where the width is determined by a hypersphere 
that minimizes the maximum deviation of the points 
from the surface of the hypersphere.  

Finally, the last group of MOP problems provides so-
lutions based on a continuous interaction with DM and 
tries to reach the preferred solution at the end of the al-
gorithm. Based on this sound idea, there are many de-
veloped methods categorized in this group [13–21]. Dif-
ferent procedures may be better suited for different types 
of decision makers, for different types of decision situa-
tions, or for different stages in the decision making proc-
ess [22]. Homburg [16], for instance, proposed a hierar-
chical procedure which consists of two levels, a top-level 
and a base-level. The main idea is that the top-level only 
provides general preference information from DM. Tak-
ing this information into account, the base-level then 
determines a compromise solution via interaction with 
DM by using an interactive procedure. As another exam-
ple, Tchebycheff metric based approaches have become 
popular in this category for sampling the set of efficient 
solutions in a continuous interaction with DM to narrow 
his choices down to a single most preferred efficient so-
lution. The interaction with DM proceeds by generating 
smaller subsets of the efficient set until a final solution is 
located [19]. The proposed method by Engau [14] de-
composes the original MOP problem into a collection of 
smaller-sized subproblems to facilitate the evaluation of 
tradeoffs and the articulation of preferences. A priori 
preferences on objective tradeoffs are integrated into this 
process, and DM is supported by an interactive procedure 
to coordinate any remaining tradeoffs. 

There are many advantages on using interactive 
methods such as: 

- There is no need to get any information from DM 
before the solving process initiates, 

- The solving process helps DM learn more about the 
nature of the problem, 

- Only minor preferred information are needed during 
the solving process, 

- Since DM continuously contributes via analyst to the 
problem, he is more likely to accept the final solution, 

- There are fewer restricting assumptions involved in 
these types of problems in comparison with other groups 
of MOP methods. 

However, there are some drawbacks associated with 
these types of algorithms that the most important ones 
are as follows: 

- The accuracy of the final solution depends entirely 
upon DM's precise answers. In other words, if DM does 
not carefully interact with the analyst, the outcome(s) of 
the final solution may be undesirable, 

- There is no guarantee to reach a desirable solution 
after a finite number of iterations, 

- DM needs to make more effort during the process of 
these algorithms in comparison with other groups. 

During the past decades, many researchers have tried 
to review or to discuss the strengths, the weaknesses, and 
the comparative studies on the existing methods. Borges 
and Antunes [23] deal with the sensitivity analysis of the 
weights in MOLP. Buchanan [24] has an excellent paper 
that reviews and comments on ten famous methods in-
cluding [25–27]. Each description is followed by a de-
tailed analysis of the method which consists of comments 
about the underlying approach, technical aspects and 
practical considerations. All methods are compared in 
terms of some important features such as applicability, 
convergence, and difficulty of questions. Also, Buchanan 
and Daellenbach [24] describe a laboratory experiment 
which compares the performance from the user’s point of 
view of four different methods for MOP problems. 
Reeves and Gonzalez [22] compare the computational 
performance and the quality of the solutions generated by 
two similar and yet contrasting interactive procedures. 
Sun [4] investigates the solution quality in interactive 
MOP. They include value functions used, weights as-
signed to the objective functions in the value functions, 
the size of the efficient set, and the number of objective 
functions. The feasibility and existence of the ideal and 
nadir points are also discussed. The work of Vander-
pooten [28] is a very good reference to review the main 
concepts in interactive procedures. After briefly intro-
ducing the interactive procedures, a general technical 
framework for the understanding of existing methods is 
presented.  

The main goals of the mentioned papers are to intro-
duce some criteria to measure the efficiency of various 
algorithms and to introduce the characteristics of a good 
method. According to Reeves and Franz [29], the main 
characteristics of a proper interactive algorithm can be 
numerated as follows: 

1) Minimum amount of information be required from 
DM, 

Copyright © 2009 SciRes                                                                                 JSEA 



A New Interactive Method to Solve Multiobjective Linear Programming Problems 239

2) The nature of decision making be simple, 
3) If DM provides his answers improperly in some in-

teractions, he can have the opportunity to compensate it 
in the following interactions, 

4) The number of iterations to reach the final solution 
be reasonable, 

5) DM be familiar with the nature of judgments he is 
asked for, 

6) The algorithm be suitable for solving large scale 
problems. 

In this paper, we propose a new algorithm which is 
mainly in the group of interactive methods. However, we 
also need to get some information from DM before 
problem solving initiates; therefore, this algorithm is 
neither a pure interactive method nor a pure method in 
the second category. In addition, the proposed algorithm 
is based upon a novel approach to the problem, starting 
from an infeasible utopian point and moving towards the 
feasible region and then the final efficient point. The 
remaining of this paper is organized as follows. Section 2 
provides some of the necessary definitions we need to 
use in this paper. In section 3, the problem statement and 
the proposed algorithm are explained. Two numerical 
examples are demonstrated in section 4 to illustrate the 
proposed algorithm. Finally, conclusion remarks appear 
in section 5 to summarize the contribution of the paper. 

2. Definitions 

Consider an MOLP problem defined as follows, 
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where, 
)(Xfk : is the kth objective function, 

kC : is the vector of coefficients in the kth objective 

function, 
X: is an n-dimensional vector of decision variables, 

iA : is the ith row of technological coefficients, 

ib : is the RHS of the ith constraint, and 

M: is the feasible region. 
A solution MX   is efficient if and only if there 

does not exist another MX   such that )()( XfXf kk   

for all  and rk ,...,2,1 )()(Xfk  Xfk  for at least one k. 

Then, the vector,  

},...,2,1);({ rkXfZ k              (2) 

is called a non-dominated criterion vector. All efficient 
solutions in M form the efficient set E. Although some 
interactive algorithms search the entire feasible region M, 
the majority of them are designed to search only the effi-

cient set E. The vector, 

},...,2,1);(max)(|)({ *** rkXfXfXfZ kkk  (3) 

is called the ideal point or the ideal criterion vector. It 
should be mentioned that the ideal criterion vector, and 
so the ideal solution , does not usually exist. The 
vector, 

*X

},...,2,1);(max)(|)({ ****** rkXfXfXfZ kkk  (4) 

is called a utopian vector or a utopian point. Unlike the 
ideal criterion vector, there exist many utopian vectors. 
Nevertheless, their corresponding **X ’s are most likely 
infeasible. 

3. Problem Statement 

The majority of methods proposed in the domain of in-
teractive procedures search the feasible region M or the 
efficient set E through interaction with DM in order to 
attain the final solution. Here, we develop a new algo-
rithm to solve MOLP problems by starting from a uto-
pian point **X  (which is usually infeasible) and mov-
ing towards the feasible region M and then the efficient 
set E via stepwise movements and a plain continuous 
interaction with DM in order to be in line with his pref-
erences. Since there are many utopian points outside the 
M, we choose the cl st **ose X  to M as the start point, by 
considering the least sum of weighted deviations from 
the constraints.  

3.1 The Proposed Algorithm 

The proposed algorithm attains an efficient solution of an 
MOLP through the following steps: 

Algorithm: 
Step 1. Ask DM to determine , the maximum ac-

ceptable reduction in the amount of  in any interac-

tion. Also, ask him to determine , a penalty for devia-

tion of each unit from the ith constraint. In the next step, 
we find a utopian point allowing some deviations from 
the constraints , in that the utopian point maybe a 

point with some negative ’s. However, we also con-

sider a big penalty, 

ka

iw
kf

0jx

w
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 , for each unit of such deviations. 
Step 2. Maximize each  with consideration of 

the feasible set M as follows, 
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Step 3. Let  be the optimal solution for )( *Xfk
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each . Solve the following GP prob-

lem, 
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where,  represents the deviation from the ith con-

straint. In this step, we allow our solution to go outside 
the feasible region. Suppose X is the solution for (6). Set 

XX 
ik

0  and go to step 4. 
Step 4. Let   be the angle between  and . 

Calculate 
if kf

iksin  as follows, 

||.||
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Now, we can determine a small step δ by which we 
move towards the feasible region in each iteration as, 
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Step 5. Consider constraints  which 

remain active. Now ask DM to see which active objec-
tive has the least desirability. Let l be the index for the 

 which has the least desirability. 

)()( *0 XfXf kk 
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Step 6. Solve the following optimization problem in 

which we take a step δ from 0X  towards the feasible 
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where, |.| is the 2-norm. In this step there is no change 
in the value of  but we usually expect that the other 

objective functions get worse, but not necessarily. In 
other words, we might encounter a situation in which the 
values of some active or inactive  get better. 

lf

kf
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Step 8.  implies that we are in-

side the feasible region, but most likely not on the 
boundary. Therefore, we take a smaller step to be 
stopped on the boundary by solving, 
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There is no guarantee that the solution of step 8 is a 
non-dominated one. So, we move on the boundary to 
reach a non-dominated solution. Set XX 0 , 

},...,2,1{ rS  , and go to step 9. 

Step 9. Ask DM to see which objective in S has the 
least desirability. Let l be the index for the  which 

has the least desirability. Solve the following optimiza-
tion problem in which we take a step at most with the 

amount of δ from 

lf

0X  on the boundary of the feasible 
region while we keep the amounts of , rkf k 1;  ,...,2,

},...,2,1;,...,2,1;,...,2,1;0
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Step 10. If  then set )()( 0XfXf ll  },...,2,1{ rS   

and go to step 9, otherwise set  and go to step 
11. 

lS S

Step 11. If S  then choose X as the final efficient 

solution, otherwise set XX 0  and go to step 9. 

End. 
It should be noted that steps 1-8 help us to reach to the 

feasible region M by starting from the closest utopian 
point in line with DM’s preferences, whereas steps 9-11 
guarantee that the final solution is an efficient one, i.e., 
the final solution is in E. 

3.2 Some Lemmas to Determine δ 

Here, we show how to choose δ in Step 4 of the proposed 
algorithm with the following three lemmas. 

Lemma 1: Any step δ along gradient vector  will 

result a decrease (or increase) of 
kC

|| kC  in . kf

Proof: Let kj  be the angle between  and axis kC

jx . Therefore, 
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where,  is the jth unique vector in an n-dime- 

nsional space. The angle between 
jx

kC  and jx  helps us 

to compute the projection of kC  over the axis jx , i.e., 
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if we take a step δ along vector kC , the amount of 

change in each element of jx  is kj cos  or 

)cos( kj   depending on the direction we choose. 

Figure 1 depicts the gradient vector kC  and its projec-

tion in a 2-dimensional space. 
Therefore, 
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Therefore, we can compute the change in the amount 

of  as follows, 
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We now present a generalized form of Lemma (1). 
Lemma 2: Any step δ along  which makes the 

angle lk  with  will result a decrease (increase) of kC

lkkC  cos||  in . kf

Proof: It is clear that taking a step δ along  which 

makes the angle 
lC

lk  with  is the same as taking a  kC

 

Figure 1. The gradient vector kC  and its projection 

 
    (a)                          (b) 

Figure 2. Demonstration of taking a step δ on  in a 

2-dimensional space 
lH

step lk cos  along . Using the results of Lemma(1) 

yields, 
kC

||cos|| klkk Cf                (16) 

Lemma 3: Let  be a hyperplane which is or-

thogonal to l  and  makes the angle 
lH

lCC lk  with . 

Any step δ on the hyperplane  in any direction will 

result a decrease (increase) of 

kC

lH

sin || klk C  in . kf

Proof: We prove this lemma in two steps. In the first 
step, let 2/0   lk , then taking any step δ on 

lH  in any direction is the same as taking a step δ in 

the direction whose angle with  is lC 2/  and there-

fore makes the angle lk 2/  with . Figure 2(a) 

demonstrates the situation in a 2-dimensional space. 
kC

According to lemma (2), taking any step δ along the 
direction which makes the angle lk 2/  or lk 2/  

with  will result a change with the amount of kC

2/ ||)cos( klk C   or ||)2/ lkcos( kC   in . 
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Now, in the second step, suppose   lk2/

kC

. 

Taking any step δ on  in any direction is the same as 

taking a step δ in the direction whose angle with  is 
lH

2/ lk  or lk 2/3 . Figure 2(b) demonstrates the 

situation in a 2-dimensional space. Using similar argu-
ment used in the first step yields, 
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Now, we are ready to determine the amount of δ prop-
erly. Suppose DM determines that he wouldn't expect 
any reduction more than  in the amount of  in 

any interaction. When we perform step (4) in the algo-
rithm, actually we keep  unchanged. In order to 

ka

lf
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achieve this goal, we have to take step δ on . Ac-

cording to lemma (3), the step leads to an increase (de-
crease) 

lH

||sin klk C  in . There is no problem in 

our approach in case  increases. However, we must 

ensure that the step δ would not worsen  more than 

, which suggest to keep the following condition, 
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Holding (19) in all interactions throughout the algo-
rithm guarantees that there would be no reduction in any 

 more than . Since DM is entitled to keep 

the amount of any , the following condition must 

hold in order to obtain an appropriate δ,  
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Finally, we are about to determine the best amount of 
δ with consideration of DM’s intentions and concurrently 
reaching to the feasible solution by doing as fewer inter-
actions as possible. Thus, we have, 
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4. Numerical Examples 

In this section we demonstrate implementation of the 
proposed method using two numerical examples. 

4.1 Example 1 

Consider the following MOLP problem with two objec-
tive functions, 
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We first ask DM to specify his sensitivity about the 
constraints and the objectives. As we already defined, 

’s are the penalties associated with the constraints and 

’s are the permitted amounts of reduction on the ob-

jective functions in each iteration. For the sake of sim-
plicity suppose that all constraints have equal sensitivity, 

i.e., 
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4,...,1;1  iwi . Next, we have to determine the 

acceptable amount of reduction on the objectives 1z  

and 2z . For this example, suppose DM specifies 2 and 3 

for  and , respectively. The appropriate value for 

δ can be determined as the following, 
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Then, we must find  and . Solving two distinct 

LP problems with consideration of  and  yields 

*
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1z 2z

)49.1(,( 1 .5,95)2 xx  with 86.34*
1z  and )47.1,50), 2 .6(( 1 xx  

with , respectively. In the next step, we ob-

tain the utopian point in which both objectives are satis-
fied at least with their optimal values, while we reach to 
a common point. Hence, we have, 
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The optimal solution for (28) is  

with 

)96.4,10.5(),( **
2

**
1 xx

)43.35,86.34(,* z

2z

z  and . In the 

next step, the DM is asked to select the objective which 
has the least desirability for him. Suppose in the first 
interaction the DM adopts . Therefore, we must solve 

the following problem, 

02.39** D
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 (29) 

The optimal solution for (29) is  

with  and . Table 1 

summarizes the results of implementation of the pro-
posed algorithm during the next iterations. 

)61.4,24.5(),( 21 xx

65.34D)43.35,89.32(),( 22 zz

As one can observe, we have reached to the feasible 
region after 8 iterations. The final step by which we 
reach to the feasible region is from  1 2,x x   (4.04, 

4.10) to  with feasible amounts 

. So, in order to reach to the fea-

s i b l e  r e g i o n  b y  a  s m a l l e r  s t e p  w e  s o l v e , 

)75.3,18.4(),( 21 xx

)38.28,65.26(),( 21 zz

 
Table 1. The detailed information for implementation of the 
proposed method for example 1 

Iteration Objective x1 x2 D z1 z2 

0 max z1 1.95 5.49 0 34.86 20.73 

0 max z2 6.5 1.47 0 15.32 35.43 

0 utopian 5.1 4.96 39.02 34.86 35.43 

1 keep z2 5.24 4.61 34.65 32.89 35.43 

2 keep z2 5.38 4.25 30.27 30.88 35.43 

3 keep z1 5.01 4.32 20.9 30.88 33.69 

4 keep z2 5.17 3.91 15.87 28.63 33.69 

5 keep z1 4.8 3.97 6.5 28.63 31.94 

6 keep z1 4.42 4.04 4.28 28.63 30.18 

7 keep z1 4.04 4.1 2.14 28.63 28.38 

8 keep z2 4.18 3.75 0 26.65 28.38 

9 min delta 4.17 3.75 0 26.69 28.38 

10 max z1 4.17 3.75 0 26.69 28.38 

11 max z2 4.17 3.75 0 26.69 28.38 
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Problem (30) leads to , with )75.3,17.4(),( 21 xx

)38.28,69.26(),( 21 zz  and 37.0 , which is the first 

feasible point on the boundary of the feasible region. 
Then, the DM is asked to determine the objective func-
tion which has the least desirability. Suppose he 
adopts , so we solve,  1z
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Problem (31) leads to  with )75.3,17.4(),( 21 xx

)38.28,69.26(),( 21 zz

}2{

. As one can see,  cannot be 

improved by moving from . So, we 

have 

1z

)75.3,17.4(), 21 xx(

S 2z and  is chosen to get improved. We 

solve,  
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Problem (32) leads to  with )75.3,17.4(),( 21 xx

)38.28,69.26(),( 21 zz . As one can see,  cannot be 

improved by moving from . So, 
2z

)75.3,17.4(),( 21 xx
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S

21, zz

 and with  

is the final efficient feasible solution. 
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4.2 Example 2 

Consider the following MOLP problem with three objec-
tive functions, 
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Suppose that the values 12, 5, 45, 2, and 6 are speci-
fied by the DM for , and , respectively 

and we consider . Also, 300, 50, and 30 are 
determined as the acceptable amount of reduction for 

, and . The optimal value for δ is determined as 
follows, 
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Now, , and  must be found. Solving three 

LP problems with consideration of , and  sepa-

rately yields 
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 with 

, and  with 

, respectively. Then, we obtain the utopian 

point in which three objectives are satisfied at least with 
their optimal values while we reach to a common point. 
Therefore, we have, 
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The optimal solution is  

with 
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. In the next step, the DM is asked to 
select the objective which has the least desirability for 
him. Since the constraint associated with 2  is not ac-
tive, the DM is allowed to select one of the objectives 

 or  to keep its value. Suppose in the first iteration 

the DM adopts . Therefore, the following problem 
should be solved, 
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Table 2. The detailed information for implementation of the proposed method for example 2 

Iteration Objective x1 x2 x3 x4 D z1 z2 z3 

0 max z1 17.22 35.05 0 0 0 2976.2 348.67 -37.49 

0 max z2 16.66 4.52 10.2 0 0 783.2 386.6 233.08 

0 max z3 36.82 0 0 3.98 0 431.88 252.76 310.48 

0 utopian 57.56 30 0 0 33380.43 2975.6 555.36 310.48 

1 keep z3 56.74 28.29 -0.17 0 31484.82 2826.35 534.22 310.48 

2 keep z3 55.92 26.58 -0.33 0 29613.44 2677.35 513.33 310.48 

3 keep z1 54.4 27.09 -1.35 0 27726.82 2677.35 482.28 283.55 

4 keep z3 53.58 25.38 -1.52 0 25860.25 2528.2 461.14 283.55 

5 keep z3 52.76 23.67 -1.68 0 23988.88 2379.2 440.25 283.55 

6 keep z3 51.94 21.96 -1.85 0 22118.36 2229.95 419.11 283.55 

7 keep z3 51.12 20.25 -2.02 0 20244.01 2080.7 397.97 283.55 

8 keep z1 49.6 20.76 -3.04 0 18351.77 2080.7 366.92 256.52 

9 keep z1 48.08 21.27 -4.06 0 16465.06 2080.7 335.87 229.57 

10 keep z3 47.26 19.56 -4.23 0 14599.55 1931.65 314.73 229.57 

11 keep z3 46.44 17.85 -4.39 0 12728.18 1782.65 293.84 229.57 

12 keep z3 45.62 16.14 -4.56 0 10857.66 1633.4 272.7 229.57 

13 keep z1 44.1 16.65 -5.58 0 8965.42 1633.4 241.65 202.59 

14 keep z1 42.58 17.16 -6.6 0 7078.71 1633.4 210.6 175.64 

15 keep z3 41.12 16.21 -5.83 0 5830.92 1562.25 214.44 177.95 

16 keep z3 39.75 15.32 -4.86 0 4855.56 1501.6 224.24 183.08 

17 keep z3 38.38 14.43 -3.88 0 3882.43 1441.2 234.29 188.33 

18 keep z2 37.01 13.54 -2.91 0 2906.67 1380.55 244.09 193.46 

19 keep z2 35.64 12.65 -1.93 0 1933.53 1320.15 254.14 198.71 

20 keep z1 33.95 12.59 -1.07 0 1066.54 1320.15 265.08 195.81 

21 keep z1 32.26 12.53 -0.2 0 203.27 1320.15 276.27 193.03 

22 keep z1 30.45 12.59 0 0.52 0 1320.15 274.99 182.73 

23 min delta 31.86 12.52 0 0 0 1320.2 278.8 192.28 

24 max z1 31.86 12.52 0 0 0 1320.2 278.8 192.28 

25 max z2 31.85 12.52 0 0 0 1320.2 278.8 192.28 

26 max z3 31.86 12.52 0 0 0 1320.2 278.8 192.28 

 
The optimal solution for (35) is  

 with  

),,,( 4321 xxxx

)0,17.0,29.28,74.56( 

)43.310,22.534,35.2826(),,( 321 zzz  and .  82.31484D
Table 2 summarizes the results of implementation of 

the proposed algorithm for example 2. Note that the con-
straint associated with  is not active till iteration 8. 

Therefore, he is allowed to choose 
2z

2z  as the objective 

whose desirability is the least amount from iteration 8. 
According to Table 2, we reach to the feasible region 

in iteration 22. So, solving the following problem helps 
us to attain the boundary of the feasible region, 4,...,1;0
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The optimal solution for (36) is ),,,( 4321 xxxx

)28.192,8.278,2.

 

with  
and 
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 .  

Suppose the DM adopts  as the objective to get 
improved. Hence, 

1z
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The optimal solution for (39) is ),,,( 4321 xxxx

)28.192,8.278,

 

)with . 
Since 

0,0,52.12,86.31(

1

2.1320(),,( 321 zzz
z  does not change, we have . Then, }3,2{S

2z  is adopted by the DM to get improved, which leads 
to, 
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The optimal solution for (40) is ),,,( 4321 xxxx

)28.192,8.278,2.
 

 with . 

Obviously, 
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z  remains unchanged; so, . The 

only remaining objective is  and we have, 
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The optimal solution for (41) is ),,,( 4321 xxxx

)28.192,8.278,2.

3z

 

) with . 

Since similar to  and , the amount of  remains 

unchanged, we have 

0,0,52.12,86.31( 1320(),,( 321 zzz

2z1z

S

(),,,( 4321 xxxx

)28.192,8.278,2.1320

. Therefore, the final efficient 

feasible solution is  

with 

)0,0,52.12,86.31

(),,( 321 zzz .  

5. Conclusions 

We have proposed a new interactive algorithm to solve 
MOLP in which we need some initial information about 
DM's preferences. Unlike the majority of interactive 
methods, the proposed method starts from the utopian 
point, which is usually infeasible, and moves towards the 
feasible region and the efficient set. Based on the results 
of some proved lemmas, we are able to specify the 
amount of steps towards the feasible region. Our method 
satisfies most of the characteristics that a good interac-
tive method needs, such as simplicity of the nature of 
judgments for DM, having the opportunity to compensate 
improper decisions in previous interactions, and handling 
his nonlinear utility. Implementation of the proposed 
method has been demonstrated by using two numerical 
examples. 
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