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Abstract 
Public benchmark datasets have been widely used to evaluate multi-target 
tracking algorithms. Ideally, the benchmark datasets should include the video 
scenes of all scenarios that need to be tested. However, a limited amount of 
the currently available benchmark datasets does not comprehensively cover 
all necessary test scenarios. This limits the evaluation of multitarget tracking 
algorithms with various test scenarios. This paper introduced a computer si-
mulation model that generates benchmark datasets for evaluating mul-
ti-target tracking algorithms with the complexity of multitarget tracking sce-
narios directly controlled by simulation inputs such as target birth and death 
rates, target movement, the rates of target merges and splits, target appear-
ances, and image noise types and levels. The simulation model generated a 
simulated video and also provides the ground-truth target tracking for the 
simulated video, so the evaluation of multitarget tracking algorithms can be 
easily performed without any manual video annotation process. We demon-
strated the use of the proposed simulation model for evaluating track-
ing-by-detection algorithms and filtering-based tracking algorithms. 
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1. Introduction 

A multi-target tracking problem is to estimate the trajectory of multiple targets 
as they move and interact with each other in a sequence of images, estimating 
targets’ locations and velocities [1] [2]. A multi-target tracking problem was 
driven primarily by aerospace and defense applications, such as radar, sonar, 
guidance, and navigation [1] [3] [4]. With the advancement in high performance 
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computing and the availability of inexpensive sensors and cameras, multi-target 
tracking problem has become popular, and it has grown into an established dis-
cipline [5] [6] [7]. Currently multi-target tracking algorithms find many applica-
tions in computer vision [2], oceanography [8] [9], robotics [10] [11], and re-
mote sensing [12]. 

Many multi-target tracking approaches have been extensively studied. A pop-
ular approach is a tracking-by-detection method that uses an existing target de-
tection algorithm to detect targets in images and solves an optimization problem 
for associating and tracing the detected targets over a time horizon [13]-[22]. 
Another popular approach is a filtering-based approach, which explicitly models 
the behavior of targets with a linear or non-linear state space model and esti-
mates the system states (typically target locations) using Kalman filtering [23] 
[24] [25], particle filtering [26] [27] [28] or other MCMC samplers [29] [30] [31] 
[32]. 

The performances of the existing approaches vary depending on the com-
plexities and types of the video scenes which they applied to, and there is no 
single method that universally works best for all test videos. It is often very 
difficult to choose a good tracking algorithm among many algorithms that 
can handle the video complexities existing in an application of interest. The 
best way of evaluating and choosing a multitarget tracking algorithm is to use 
test video datasets collected directly from the application of interest. Howev-
er, the evaluation with the test video is often very time-consuming because 
mostly no ground-truth is available for the test video datasets, for which users 
may need to spend significant time on manually tracking and annotating targets 
in the test video. The manual annotation is subject to many human operators’ 
errors. Using public benchmark datasets coming with ground-truth, such as 
PETS [21] [33] [34], ETH dataset [35] [36], and Technical University of 
Darmstadt (TUD) dataset [37] [38] [39], might be an alternative, but the 
benchmark datasets sometimes do not give any good guidance on the evaluation, 
because the types of targets and the complexities of the tracking events in the 
public benchmark datasets are not comparable to those existing in the applica-
tion of interest. In addition, the ground-truth of the public benchmark datasets 
was manually annotated by human operators using video annotation tools, and 
the quality and information in the ground-truth vary significantly [40]. 

In this paper we propose a simulation model that generates benchmark data 
for multitarget tracking with a fully controlled setting of target appearances, mo-
tion, target split and merge, target birth and death, and noise level in video 
scenes. Each generated benchmark data include a simulated video, and the groud 
truth target tracking, including individual target locations and the time traces of 
their merge and split events. We believe that using the benchmark dataset simu-
lated with the complexity comparable to the application of interest would lead to 
a more accurate evaluation of the existing multitarget tracking algorithms and 
thus a better choice of the algorithm for the application. 
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The remaining of this paper is organized as follows. In Section 2, we review 
the public benchmark datasets popularly used for multitarget tracking, and the 
performance metrics that have been used for evaluating multitarget tracking al-
gorithms. In Section 3, we describe our simulation model. In Sections 4 and 5, 
we present an example of applying the simulator for evaluating a multitarget 
tracking algorithm. 

2. Limitation of Public Benchmark Datasets  

There are public benchmark datasets in computer vision for testing and evaluat-
ing multitarget tracking algorithms. This section will briefly review some of the 
popular benchmark datasets as listed below:  
• Performance Evaluation of Tracking and Surveillance (PETS) [21] [33] [34];  
• Technical University of Darmstadt (TUD) [37] [38] [39].  
• ETH dataset:   
- BIWI Walking Pedestrian dataset [35] [36];  
- Pedestrian Mobile Scene Analysis [41] [42] [43];  
• Caviar [33] [44] [45].  

The first dataset has been provided as a part of the paper competition for the 
International Workshop on Performance Evaluation of Tracking and Surveil-
lance. Every year different test video scenarios are provided, which are mostly 
for video surveillance. For example, PETS 2000 and PETS 2001 datasets are de-
signed for tracking outdoor people and vehicles. PETS-ECCV 2004 has a num-
ber of video clips recorded for the CAVIAR project, including people walking 
alone, meeting with others, window shopping, fighting and passing out, and 
leaving a package in a public place. The PETS 2006 dataset is the surveillance 
data of public spaces for detecting left luggage events. The PETS 2007 dataset 
considers both volume crime (theft) and a threat scenario (unattended luggage). 
The datasets for PETS 2009, PETS 2010 and PETS 2012 consider crowd image 
analysis and include crowd count and density estimation, tracking of individu-
al(s) within a crowd and detection of separate flows and specific crowd events. 
Many of the datasets consists of three or four video scenarios categorized by the 
levels of object tracking difficulties. 

The second dataset is maintained by Technical University of Darmstadt 
(TUD) in Germany. Video frames in TUD dataset are taken by a single camera, 
which include three video sequences of multiple pedestrians at different places. 
The splits and merges among objects often occur due to overlapping pedestrian 
images from a single camera view. 

The third dataset is maintained by the Department of Electrical and Computer 
Engineering at ETH. There are two popular data in the ETH dataset. The first 
one is a video of walking pedestrians. The video is taken from the top of a hotel; 
therefore, it has a bird-eye-view. Similar to the dataset in the TUD, this dataset is 
taken with a single camera. Due to the limited view angle of the single camera, 
the appearance and disappearance of targets occur almost every frame in the da-
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ta. The merging and splitting event is also differentiable in this data, and they 
appear less than the TUD dataset (about one per four frames). The second data 
from the ETH is the video of walking pedestrians recorded from the frontal 
viewpoint instead of the bird-eye perspective. This data is mainly used for detec-
tion purpose. However, it can be used for testing multi-target tracking algo-
rithms as well. Similar to the first data, this data is also taken by a single camera; 
the birth and death of targets occur every frame, and the merging and splitting 
events do not occur at all. Comparing to both the PETS and TUD datasets, the 
ETH datasets have simpler split and merge patterns among targets. If the mul-
ti-target tracking algorithm focuses on handling the birth and death of targets 
only, the ETH dataset will be an ideal choice for testing the algorithm. 

The last dataset is the Caviar dataset. It is maintained by the computer vision 
research group at University of Edinburgh. Comparing to previous datasets, this 
dataset gives a fewer number of targets, one person or two people per scene. 
Target merges, splits, births and deaths sequentially occurs. The Caviar datasets 
have lower level of difficulty than the aforementioned datasets, because there are 
only two targets per frame. With a known number of targets (i.e., two people), 
and sequential events, the Caviar dataset is a good choice to test multi-target 
tracking algorithms at the first time before testing with PETS, TUD, or ETH da-
tasets. 

Although users can test and evaluate multitarget tracking algorithms with 
these datasets, they are unable to modify these datasets in order to produce the 
similar complexity of video scenarios that exist in the multitarget tracking ap-
plication of their interest. The simulation model proposed in this paper can 
overcome this challenge. Our simulation model allows users to control the tar-
get’s appearance, number of targets, and target’s motion. In addition, users can 
generate different events, such as merging, splitting, birth and death as well as 
control the frequency of these events. 

3. Discrete Event Simulator for Generating Multitarget  
Tracking Benchmark   

As depicted in Figure 1, the simulator for generating benchmark data is a 
discrete event simulator which is described by a system state tS  at time t and 
its state transition events with discrete time steps { }0,1,2, ,t T∈  . The system 
state tS  is a collection of the state vectors for each target i,   
• ( ), ,,i t i tx y : a centroid coordinate of target i,  
• iB : a vector of a finite number of ( ),x y -coordinates that represents the 

outline of target i,  
• ,i tθ : a rotation angle of the appearance of target i,  
and the system-level state variables of,   
• tn : the number of targets at time t, and  
• tG : a symmetric matrix for merging states; ( ) 1t ij

=G  implies targets i and j 
are merged at time t and ( ) 0t ij

=G  otherwise.  
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Figure 1. Discrete event simulation model for generating benchmark datasets. 
 

For time t, a synthetic image tI  is generated from the system state tS  with 
different imaging conditions; see details in Section 3.7. The system state tS  is 
recorded and used to generate the groudtruth of the simulated image sequence. 

At time 0, the system state variables are initialized with 0n  specified by a 
simulator user, 0G  as a 0 0n n×  matrix of zeros, and the target-level state 
vectors initialized randomly by the following q functions,  

( ) ( )
( )
( )

,0 ,0 ,

,0

,i i x y

i

i

x y q

q

q
θθ

=

=

= BB

 

The details on the q functions are described in Section 3.1 and Section 3.2. 
The system state is changed from tS  to 1t+S  at time 1t +  by generating a 

series of the following events sequentially.  
1) Consider a Split event for each of the merge events occurred at time t. 

When a split condition is satisfied for a merge case occurred at time t, split the 
merged target into target i and target j, which resets ( ) ( )1 1 0t tij ji+ += =G G . The 
split condition will be described in Section 3.5.  

2) For each target i, Motion f and Rotation g make changes on  

( ) ( )
( )

, 1 , 1 , ,

, 1 ,

, ,i t i t i t i t

i t i t

x y f x y

gθ θ
+ +

+

=

=
 

More details on f and g are described in Section 3.3.  
3) Merge of target i and target j that exist at time t occurs when the merging 

condition described in Section 3.4 is satisfied, and it sets ( ) ( )1 1 1t tij ji+ += =G G .  
4) Birth sets 1t t tn n b+ = +  with the number of birth events tb , which 

increases the number of system state variables by tn . In the discrete event 
simulation, a birth process has been modeled by a Poisson arrival process with 
α  as the mean birth rate per unit time interval, where the inter-birth time in 
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between two consecutive birth events follows an exponential distribution with 
mean 1 α  [46]. The rate parameter can be changing in time, which is denoted 
by tα . Following the approach, we sample tb  from  

( )~ Poisson ,t tb α  

where tα  is the expected number of birth events occurred at time t and it can 
be specified by simulator users to change the level of birth events. The state 
vector for each of the tb  born targets is initialized by the q functions,  

( ) ( )
( )

( )

, 1 , 1 ,

, 1

,

,

i t i t x y

i t

i

x y q

q

q
θθ

+ +

+

=

=

= BB

 

and 1t+G  is augmented by appending tb  columns and tb  rows of zero values 
to tG .  

5) Death of target i occurs when the new centroid ( ), 1 , 1,i t i tx y+ +  is out of a 
pre-specified image region [ ] [ ]0, 0,m n× . When it occurs, it would reduce 1tn +  
by one and would make the removal of the corresponding target-level state 
vectors.  

3.1. Appearance Function qB 

The appearance function qB  is a random process that generates the image 
coordinates on the outline of a target. By default, our simulator generates the 
circular outline of a target with a random radius r,  

( ) ( )( )cos ,sin ,r=B a a  

where ( )~ ,mean sigr r r  and a  is a vector of equally spaced numbers in [ ]0,2π . 
When users want to customize target boundaries, users can give a set of N 

candidate target boundaries ( ) ( ) ( ){ }1 2, , , N
B B B . The appearance function qB  

randomly chooses one of the boundaries for each target with the chosen 
boundary index sampled from ( )Unif 1, N , where ( )Unif 1, N  is the uniform 
distribution over integer numbers in 1, N. 

3.2. Initial Scene Function qx,y and qθ 

At time 0, the initial scene function determines the initial location and 
orientation of a target by  

( ) ( )

( )

0

,0 ,0

,0

1

mod
, if 0
, otherwise

, , 1 , 1

~ Unif 0,2π ,

i i

i

u n

v i u
v v

p
u

ix y m w n w d p
u

θ

 = − 
=

≠
= 


  = − + − + + − −    

 

which evenly distributes 0n  targets over [ ] [ ], ,m m n n− × −  on grid points with 
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distance d, and margin w. At time 0t > , the initial scene function determines 
the initial location and orientation of a newly born target by  

( ) ( ) ( ), , ,0~ Unif 0, , ~ Unif 0, and ~ Unif 0,2π .i t i t ix m y n θ  

3.3. Motion Function f and Rotation g 

The motion function f determines each target’s location at time step t in the 
simulation. Users have two choices among the Brownian motion [47] [48] [49],  

( ) ( ), 1 , 1 , ,

0
, ~ , , .

0
x

i t i t i t i t
y

x y x y
σ

σ+ +

  
     

  

and the stochastic diffusion process [50],  

( ) ( )( ), 1 , 1 , ,, ~ , , ,i t i t i t i tx y x y+ +  Σ  

where Σ  is a two-by-two positive definite covariance matrix which determines 
the overall movement direction. 

The rotation function g determines the random rotation angle of target i at 
time 1t +  by  

( ), 1 ~ Unif 0,2π .i tθ +  

Once ( ), 1 , 1,i t i tx y+ +  and , 1i tθ +  are sampled, the outline of target i at time 1t +  
is determined by the rigid body transformation of iB ,  

( ) ( )
( ) ( ) ( ), 1 , 1

, 1 , 1
, 1 , 1

cos sin
, ,

sin cos
i t i t

i i t i t
i t i t

x y
θ θ

θ θ
+ +

+ +
+ +

 
+ 

−  
B 1  

where 1  is a column vector of ones which has the same size as the row size of 

iB . 

3.4. Merging Condition 

The merge event occurs at time t in between target i and j if they spatially 
overlaps after the motion and the rotation applied. Since the target i’s outline 
would be  

( ) ( )
( ) ( )

, , ,
, ,

,, ,

cos sinˆ ,
sin cos

i t i t i t
i t i t

i ti t i t

x
y

θ θ

θ θ

   
= +   

−    
B B  

the overlap of targets i and j would occur only if  

( ), ,
ˆ ˆ, 0,H i t j td =B B  

where ( ),Hd A B  is the Hausdorff distance between A  and B . If the 
condition holds, the merge matrix tG  is updated by setting its (i, j) and (j, i) 
elements set to one. Once they merge, the simulator applies the same motion for 
the two targets so that they can move together before they split. 

3.5. Split Condition 

Each merged case is considered for being re-split into individual targets. The 
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probability of split is represented by a binomial distribution of the probability of 
split p. 

3.6. Determination of the Number of Birth Events bt 

The number of birth events at time t is determined by  

( )~ Poisson ,t tb α  

where tα  is the average number of event occurrings. The initial state of each 
new born target is randomly sampled from qB , qθ  and ,x yq . 

3.7. Image and Noise Generation Function 

For time t, a synthetic image tI  is generated from the system state tS . It is a 
m n×  grayscale image where all targets outlined by ,i tB  with centroid ( ), ,,i t i tx y  
and orientation ,i tθ  are colored black (i.e. image intensity = 0), and the remaining 
background is colored white (i.e. image intensity = 255). We add the following 
noise components on the synthetic images to simulate different signal-to-noise 
ratios:   
• Gaussian random noise: ( )2

, ~ 0,x y σ    for each image pixel at ( ),x y .  

• Non-uniform illumination: ( ), ,x yH f x y=  for each image pixel ( ),x y , and 
( ),f x y  is the function defined by users. The output image tL  at time t 

follows [51]  

, , , , ,x y t x y x y tH= ∗L I  

for each image pixel at ( ),x y .  
• Both Gaussian random noise and non-uniform illumination: The output 

image tL  at time t follows  

, , , , , ,x y t x y x y t x yH= ∗ + L I  

for each image pixel ( ),x y . ,x yG  and ,x y  are the non-uniform illumination 
and Gaussian random noise generated above, respectively.  

4. Performance Evaluation with the Simulator   

The synthetic images generated by the simulator are used as inputs to a multi-target 
tracking algorithm to be tested, and the state vectors { }; 0,1, 2, ,t t T= S  are used 
as a ground-truth to compute the performance metrics of the algorithm. 

If the algorithm being tested is a tracking-by-detection algorithm [14] [15] 
[22], target detections are first obtained for all image frames either by obtaining 
target boundaries with true system state tS  or by choosing and running an 
existing target detection algorithm on simulated images. A tracking-by-detection 
algorithm associates the detections to target identities via one-to-one, one-to-many 
or many-to-one associations, which will output the data association tJ  for 
every time frame t, which is a 2tn ×  matrix with the detection identifier in the 
first column and the corresponding target identifier in the second column for 
each row. The output association can be compared with the groud-truth association 
generated using tS ; in particular, each target location ( ), ,,i t i tx y  and the merge 
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state matrix tG  are used. The popular performance metric for this type of the 
algorithm is the accuracy of one-to-one, one-to-many (split) and many-to-one 
(merge) data associations in terms of the false positive (FPR) and false negative 
rates (FNR), which is defined by the following equations [52],   

FPR FP
FP TN

=
+

                        (1) 

FNR FN
FN TP

=
+

                        (2) 

where FP is the number of false positives, FN is the number of false negatives, 
TN is the number of true negatives, and TP is the number of true positives. 
The false positive and false negative rates can be obtained by comparing tJ  
with the ground truth ( ){ }, ,, ,i t i t tx y G . tG  contains all merge and split 
information and ( ), ,,i t i tx y  contains the trace of individual targets. Therefore, one 
can extract all one-to-one, one-to-many and many-to-one associations by tracking 
( ){ }, ,, ,i t i t tx y G , which can be directly compared with tJ  for FPR and FNR. 
If the algorithm being tested is a filtering-based algorithm that estimates each 

target’s location at each time step [27] [28], its estimates can be compared with 
the ground-truth ( ){ }, ,,i t i tx y  in order to compute the popular CLEAR MOT 
metrics [53], the multiple object tracking precision (MOTP) and the multiple 
object tracking accuracy (MOTA). The MOTP is a measure of the overall target 
location estimation, which is computed by   

,
,MOTP

i t
i t

t
t

d

c
=
∑

∑
                      (3) 

where ,i td  is the Euclidean distance between the location estimate and the true 
target’s location ( ), ,,i t i tx y  for target i at time t, and tc  is the number of the 
cases that the estimates are with a certain small range from the true target’s 
location, at time t. The MOTA is   

( )
MOTA 1

t t t
t

t
t

FN FP MM

g

+ +
= −

∑
∑

             (4) 

where tFN , tFP , and tMM  are the number of false negatives, false positives, 
and missed matches respectively for t, and tg  is the total number of 
ground-truth targets at time t.  

5. Demonstration 

In this section, we demonstrate the use of our simulator in generating bench-
mark data and evaluating multitarget tracking algorithms with the benchmark 
data.  

5.1. Simulate Benchmark Datasets with Our Simulator 

For the demonstration purpose, we simulated a benchmark dataset with the 
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following input parameters, total number of image frames: T; initial number of 
targets: n0; target appearance: circle of a radius with mean meanr  and standard 
deviation sigr ; spatial distance in between targets at the first frame: d; image size: 
2 2m n× ; temporal change in target locations: xσ  along x-direction and yσ  
along y-direction; average number of birth events per time: tα ; image noise: 
white noise with noise variance 2σ   and non-uniform illumination with ( ),f x y ; 
probability of split: p.  

Figure 2 shows example images generated with 10T = , 0 5n = , 1meanr = , 
0.1sigr = , 6d = , 13m = , 13n = , 0.5x yσ σ= = , 1tα = , 0.09σ = ,  

( )
2 2

2 2,
1

x yf x y
x y
+

=
− −

, and 0.8p = . 

5.2. Testing and Evaluating Tracking-by-Detection Algorithms 

We demonstrate the use of our simulator to evaluate the multiway data 
association [22] and the linear programming approach [21]. For the evaluation, 
we designed the experiment by a 23 factorial design of three variables, the initial 
distance in between two closest targets (d), target movement speed ( xσ  and 

yσ ), and target birth rate ( tα ), as seen in Table 1. We fixed the other simulation 
inputs to 10T = , 0 10n = , 1meanr = , 0.1sigr = , 13m = , 13n = , 0.09σ = , 
( ), 1f x y = , and 0.8p = .   
For each design, we performed ten simulation runs with the same design va-

riables for replicated experiments to reduce any random effects on the evalua-
tion outcomes. For each simulation run, we recorded the numbers of merging 
events, splitting events, target births, and target deaths occurred during the si-
mulation run. Table 2 shows the average numbers for ten replicated experi-
ments for each design. As observed in Table 2, the complexity of the simulated 
tracking scenarios change as we vary simulation inputs. For example, when we 
decrease the distance d and/or increase the temporal variation of target location, 

xσ  and yσ , more merging and splitting events occur. With the increased birth 
rate tα , more birth events occur. 

For each replication, we input the images generated by our simulator ten  
 
Table 1. Design of experiments for evaluating tracking-by-detection algorithms. 

 d xσ , yσ  tα  

Design 1 2 0.15, 0.15 0.3 

Design 2 1.5 0.15, 0.15 0.3 

Design 3 2 0.25, 0.25 0.3 

Design 4 2 0.15, 0.15 0.5 

Design 5 1.5 0.15, 0.15 0.5 

Design 6 1.5 0.25, 0.25 0.3 

Design 7 2 0.25, 0.25 0.5 

Design 8 1.5 0.25, 0.25 0.5 
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Table 2. Average number of target split, merge, birth and death events occurred per an 
experimental run. 

Design 1-2 split 1-3 split 2-1 merge 3-1 merge Birth Death 

1 6 0 36 0 15 2 

2 21 0 160 3 24 6 

3 10 0 78 0 19 2 

4 10 0 64 0 41 4 

5 26 0 154 2 32 1 

6 25 5 222 23 19 0 

7 12 0 110 4 29 1 

8 21 10 86 16 35 5 

 

 
Figure 2. Simulated video frame. 
 
simulations to each of the multiway data association [22], and the linear pro-
gramming approach [21]. The outcomes of the two methods were compared 
with the ground-truth given by our simulator. The popular performance metric 
for a tracking-by-detection algorithm is the accuracy of one-to-one, one-to-many 
(split) and many-to-one (merge) data associations in terms of the false positive 
(FPR) and false negative rates (FNR) as we summarized in Section 4. The com-
parison results were summarized by the average false positive (FPR) and false 
negative rates (FNR) over ten simulation runs for each design. Table 3 and Ta-
ble 4 show comparative results. The multiway data association [22] performed 
better than the linear programming approach [21] in handling birth events for 
all experiments. In terms of the capability of handling death events, the multiway 
data association [22] had a better performance than the linear programming ap-
proach [21] with the exception of Design 4 and 6. The multiway data association 
[22] detected better 2-1 merging and 1-2 splitting events than the linear pro-
gramming approach [21] for most of the designs except Design 1. The linear 
programming approach failed to track 3-1 merging and 1-3 splitting events, 
while the multiway data association [22] was able to track 3-1 merging and1-3 
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Table 3. The average false positive rate (FPR) and false negative rate (FNR) for the mul-
tiway data association [22] and the linear programming approach [21] over ten replicated 
simulations for Designs 1 through 4. 

 Multiway data association Linear programming approach 

Design 1 FPR FNR FPR FNR 

1-to-1 0.0202 0.0041 0.0202 0.0041 

1-to-2 0.1111 0.0000 0.1111 0.0000 

2-to-1 0.0000 0.0000 0.0000 0.0000 

1-to-3 0.0000 0.0000 0.0000 0.0000 

3-to-1 0.0000 0.0000 0.0000 0.0000 

Birth 0.0000 0.0000 0.0000 0.0000 

Death 0.0000 0.0000 0.0000 0.0000 

Design 2 FPR FNR FPR FNR 

1-to-1 0.0263 0.0032 0.0305 0.0033 

1-to-2 0.0000 0.1000 0.0689 0.1333 

2-to-1 0.0000 0.0222 0.0000 0.0227 

1-to-3 0.0000 0.0000 0.0000 0.0000 

3-to-1 0.0000 0.0000 0.0000 1.0000 

Birth 0.1363 0.0952 0.2400 0.1000 

Death 0.5000 1.0000 0.6667 1.0000 

Design 3 FPR FNR FPR FNR 

1-to-1 0.0184 0.0011 0.0184 0.0011 

1-to-2 0.0000 0.0000 0.0000 0.0000 

2-to-1 0.0000 0.0000 0.0000 0.0000 

1-to-3 0.0000 0.0000 0.0000 0.0000 

3-to-1 0.0000 0.0000 0.0000 0.0000 

Birth 0.0769 0.0000 0.07969 0.0000 

Death 0.5000 0.0000 0.5000 0.0000 

Design 4 FPR FNR FPR FNR 

1-to-1 0.0370 0.0119 0.0370 0.0119 

1-to-2 0.3636 0.1764 0.3636 0.1764 

2-to-1 0.0555 0.1500 0.0555 0.1500 

1-to-3 0.0000 0.0000 0.0000 0.0000 

3-to-1 0.0000 0.0000 0.0000 0.0000 

Birth 0.0869 0.2857 0.0869 0.2857 

Death 0.5000 0.0000 0.5000 0.0000 

 
Table 4. The average false positive rate (FPR) and false negative rate (FNR) for the mul-
tiway data association [22] and the linear programming approach [21] over ten replicated 
simulations for Designs 5 through 8. 

 Multiway data association Linear programming approach 

Design 5 FPR FNR FPR FNR 

1-to-1 0.0332 0.0021 0.0343 0.0021 

1-to-2 0.0550 0.0801 0.0550 0.0801 
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Continued 

2-to-1 0.0000 0.0416 0.0212 0.0416 

1-to-3 0.0000 0.0000 0.0000 0.0000 

3-to-1 0.0000 0.0000 0.0000 1.0000 

Birth 0.0000 0.0416 0.0000 0.0416 

Death 0.0000 0.0000 0.5000 0.0000 

Design 6 FPR FNR FPR FNR 

1-to-1 0.0567 0.0286 0.1048 0.0279 

1-to-2 0.2264 0.3050 0.3114 0.2881 

2-to-1 0.1212 0.2739 0.2428 0.3424 

1-to-3 0.5000 0.5000 0.0000 1.0000 

3-to-1 0.0000 0.0000 0.0000 1.0000 

Birth 0.1428 0.2352 0.7000 0.2352 

Death 1.0000 0.0000 1.0000 0.0000 

Design 7 FPR FNR FPR FNR 

1-to-1 0.0332 0.0082 0.0422 0.0073 

1-to-2 0.1290 0.0689 0.1379 0.1379 

2-to-1 0.0000 0.0882 0.7638 0.0882 

1-to-3 0.0000 0.0000 0.0000 0.0000 

3-to-1 0.2500 0.0000 0.0000 1.0000 

Birth 0.0000 0.2000 0.2105 0.2000 

Death 1.0000 1.0000 1.0000 1.0000 

Design 8 FPR FNR FPR FNR 

1-to-1 0.0910 0.0389 0.1125 0.0366 

1-to-2 0.2250 0.4833 0.2682 0.5000 

2-to-1 0.1428 0.3731 0.2678 0.3880 

1-to-3 0.5000 0.7143 0.0000 1.0000 

3-to-1 0.3333 0.5454 0.0000 1.0000 

Birth 0.2083 0.3200 0.5000 0.3200 

Death 0.8000 0.6667 0.9444 0.6667 

 
splitting evets. Overall, the multiway data association [22] performed better than 
the linear programming approach [21] in detecting all merging and splitting 
events.  

Evaluating Filtering-Based Algorithms 
In this section, we use our simulator to evaluate a simple Kalman filtering-based 
algorithm [1] [54] [55] to see how it performs with different levels of image 
noises and different numbers of targets. We performed a 22 factorial design of 
two factors 0n  and σ   as described in Table 5, while controlling the other 
factors to 10T = , 1meanr = , 0.1sigr = , 13m = , 13n = , 0.15xσ = , 0.15yσ = , 

5d = , ( ), 1f x y = , 0.3tα =  and 0.8p = .   
For each design, we performed ten simulation runs with the same factor levels. 

Figure 3 shows some of the generated images under Design 1 and Design 2.  
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Table 5. Design of experiments for evaluating a Kalman filtering-based algorithm. 

 0n  σ   

Design 1 5 0 

Design 2 5 0.5 

Design 3 20 0 

Design 4 20 0.5 

 
Table 6. Average MOTA and MOTP metrics. 

 MOTA MOTP 

Design 1 0.3406 154 

Design 2 0.2350 135 

Design 3 0.3010 138 

Design 4 0.1717 102 

 

 
Figure 3. Simulated video frame. (a) Design 1; (b) Design 2. 
 

For each experiment run, the Kalman-filtering-based algorithm first read in 
simulated images, detects each target in the scene and finally estimates each 
target’s position with the Kalman filter. We computed the MOTP and MOTA 
metrics in order to evaluate the accuracy of the estimation. Table 6 summarizes 
the average MOTP and MOTA metrics over ten simulation runs for each design, 
where high values implies higher accuracy for both of the metrics [53]. The 
performance degradation of the algorithm was significant with the increased 
level of noises, but the effect of the number of targets on the performance was 
not significant.   

6. Conclusion  

We presented a novel simulation model that simulates video frames containing 
the movements and interactions of multiple targets with fully controlled 
complexities of target motion, target appearance, image noise levels, target birth 
and death rates, and target merge and split rates. The simulator also generates 
the groundtruth locations of the targets for the simulated video frames, which 
makes the simulation model an ideal tool for generating benchmark datasets to 
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evaluate multitarget tracking algorithms. We demonstrated the use of the 
proposed simulation model to evaluate two tracking-by-detection algorithms 
and one filtering-based algorithm. In addition, the simulator can generate new 
public benchmark datasets with high-degree of interactions and complexity with 
ease from the user’s inputs.  
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Nomenclature 
ETH: Eidgenssische Technische Hochschule 
FN: False Negative 
FNR: False Negative Rate 
FP: False Positive 
FPR: False Positive Rate 
MCMC: Markov Chain Monte Carlo 
MOT: Multiple Object Tracking 
MOTA: Multiple Object Tracking Accuracy 
MOTP: Multiple Object Tracking Precision 
PETS: Performance Evaluation of Tracking and Surveillance 
TN: True Negative 
TP: True Positive 
TUD: Technical University of Darmstadt 
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