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Abstract 
We investigate the flow induced by annihilation of a pair of defects in liquid 
crystals using the Doi theory with the Marrucci-Greco potential, in which the 
orientation state is described with the orientational distribution function. We 
have numerically studied both the transient behaviors of two defects with 
different structures and their velocity field, and estimated the magnitude of 
the induced velocity. A defect with positive strength moves faster than one 
with negative strength. The long-range order of the molecular orientation 
field has a large effect on the annihilation time, and the annihilation time is 
reduced by increasing the long-range order. We find that flows are induced 
during the annihilation of a pair of defects and that several vortices are gen-
erated in the vicinity of the defects. The maximum velocity is predicted to 
develop spatially between the two defects just after their annihilation in time. 
In our simulation, the maximum induced velocity reaches an order of 10 
μm/s. The induced velocity increases with increasing long range-order and 
nematic potential strength. 
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1. Introduction 

At present, liquid crystals are widely used as displays (low-molar-mass liquid 
crystals) and high-strength engineering plastics (liquid crystalline polymers) by 
applying their anisotropy of material constants. On the other hand, because a 
liquid crystal has both solid and liquid properties, it has a possibly much wider 
range of applications, as do solid and liquid. Therefore, studies on new applica-
tions of liquid crystals are needed. 

When a nematic liquid crystal is observed under a polarizing microscope, a 
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region in which molecules orient parallel or perpendicular to the direction of 
polarization appears as a dark field, a region in which molecules orient ±45˚ to 
the direction of polarization appears as a bright field, and a region in which mo-
lecules orient in the other direction appears as a gray field. Figure 1(a) is a pho-
tograph of a nematic state right after the phase transition from an isotropic state 
of N-(p-methoxybenzylidene)-p’-butyl-aniline (MBBA), a typical low-molar-mass 
nematic liquid crystal. We observe the Schlieren texture peculiar to liquid crys-
tals. There are some points in Figure 1(a) where black lines intersect with each 
other. These points are called defects [1] [2], around which spatial distortions of 
molecular orientation fields are generated. Figure 1(b) shows the representative 
defect orientation states. At the defect cores, the direction of orientation is dis-
continuous, and the orientation state is singular. 

The defects often generated in manufacturing liquid crystal products cause 
degradation of the productivity and performance of the products. However, it is 
experimentally known that a pair of defects such as those in Figure 1(b), which 
have different molecular orientations, attract and finally annihilate each other 
[2]. This defect annihilation changes the orientation direction, so that a flow is 
expected to be generated [3]-[8]. Applying thermal energy induces defect gener-
ation because the orientation order at defects is lower. Therefore, generating de-
fects artificially at arbitrary locations by applying thermal energy would inevita-
bly generate flows there, leading to the development of a new type of microactu-
ator that converts thermal energy into kinetic energy. 

A theory that is able to describe the molecular orientation state satisfactorily 
should include the effects of long-range and short-range molecular order as well 
as the effect of flow. Two theories, the Leslie-Ericksen theory [9] [10] and the 
Doi theory [11] [12], are well-known and have been widely used for predicting 
the dynamics of liquid crystals. From the aforementioned viewpoint, however, 
the Leslie-Ericksen theory, which does not include the short-range order effect, 
and the Doi theory, which does not account for the long-range order effect, are 
out as candidates. Marrucci and Greco [13] have expanded the Maier-Saupe po-
tential [14] used in the Doi theory to include both the short-range and long-range  
 

 
Figure 1. Liquid crystal defect structures. (a) A photograph of a nematic state of MBBA. 
(b) Molecular orientation configurations around defect cores: Ellipses represent the mo-
lecules, and small circles are the defect cores. 
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order effects and applied it to the original Doi theory [15]. Feng et al. [16] have 
proposed an expression for the stress tensor and to complete the theory. 

Our objectives are to study the flow induced by the annihilation of a pair of 
defects and to estimate its magnitude using the aforementioned theory as a con-
stitutive equation. A number of studies have simulated the liquid crystal flow 
during the annihilation of paired defects [17] [18] [19] [20]. Experiments for the 
moving speed of defects under electric fields have also been performed [21] [22]. 
However, they do not aim to develop actuators but focus on the movement of 
defects rather than the liquid crystal flow. 

To calculate the orientational distribution functions (ODFs) at many points in 
a physical space, we have to account for both computational accuracy and time. 
In this paper, we: 1) approximate the ODF with a series of spherical harmonic 
functions, 2) study the minimum number of expanded terms required to simu-
late the orientation state properly, and 3) finally estimate the magnitude of the 
induced flow during the annihilation of a pair of defects to obtain useful data 
that can contribute to developing new actuators. 

2. Computations 
2.1. Governing Equations 

The evolution equation for the ODF f is written as 

( ){ }:u
u u u

f Vf D f f
t kT

∇∂  = ∇ ⋅ ∇ + −∇ ⋅ ⋅ − ∂  
u uuuκ κ .       (1) 

Here, t is the time, k the Boltzmann constant, T the absolute temperature, u 
the unit vector parallel to a liquid crystal molecule, u∇  the differential operator 
on a unit sphere, and κ the velocity gradient tensor. D  and V are the rotary 
diffusivity and Marrucci-Greco nematic potential [13] expressed as 

231 :
2

D D
−

 = − 
 

S S ,                     (2) 

and 
2

23 :
2 24

ilV UkT
 

= − + ∇ 
 

S S uu                  (3) 

where D is the rotary diffusivity in an isotropic state, ∇  the differential opera-
tor in physical space, and S the order parameter tensor defined as 

1
d

3 3
f

=

 = − Ω ≡ − 
 ∫u

S uu uuδ δ .              (4) 

δ is the unit tensor. 
The conservation equations for the isothermal slow flow of liquid crystals are 

the continuity and linear momentum equations 

0∇ ⋅ =v ,                         (5) 

and 
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p
t

ρ
∂

= −∇ +∇ ⋅
∂
v

τ ,                     (6) 

where v is the velocity vector, ρ is the fluid density, and p is the pressure. τ is the 
extra stress tensor derived by Feng et al. [16] expressed as 

( )

( ) ( )

2
2 23 : :

24

: : :
4 4 2

iUl
ckT U

c ζ
Τ

 = − ⋅ − − ⋅∇ − ∇ 
∇ ∇ ∇∇ + − +


A A A A Q A A Q A

A A A A Q

τ

κ

     (7) 

Here, c is the number density of liquid crystal molecules, U the dimensionless 
nematic potential intensity, li a parameter indicating the long-range order effect 
of molecules, ζ the drag coefficient of rotary molecules. A and Q are the second 
and fourth moments of the ODF f, respectively, expressed as 

1
df

=
= Ω ≡∫u

A uu uu ,                    (8) 

and 

1
df

=
= Ω ≡∫u

Q uuuu uuuu .                 (9) 

2.2. Computational Procedure and Boundary Conditions 

Let us consider a two-dimensional square area with a side length of H, shown in 
Figure 2, and put a pair of defects with different orientational states on two 
points whose coordinates are P (0.3H, 0.5H) and Q (0.7H, 0.5H). For the coor-
dinate system in Figure 2, the components of the velocity gradient tensor κ and 
order parameter tensor S are 

0

0 0 0

0

u u
x z

w w
x z

∂ ∂
∂ ∂

=
∂ ∂
∂ ∂

κ ,                    (10) 

and 

0
0 0

0

xx xz

yy

zx zz

S S
S

S S
=S ,                   (11) 

where u and w are the x and z components of the velocity vector v. 
For computation of the orientation field, we substitute Equation (10) and Eq-

uation (11) into Equation (1) to obtain the ODF f. In this study, we approximate 
f with a finite series of spherical harmonic functions Ylm(u) [23] [24] [25]. 

( ) ( ) ( )
max

0
, , , , ,

l l

lm lm
l m l

f t x z C t x z Y
= =−

= ∑ ∑u u .           (12) 

Here, Clm(t, x, z) are coefficients, and lmax is the maximum of the azimuthal 
quantum number on which the number of terms of the series solution depends.  
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Figure 2. Flow geometry and coordinate system. The coordinates of a pair of defects are 
P (0.3H, 0.5H) and Q (0.7H, 0.5H). A defect with positive strength exists at point P and a 
defect with negative strength exists at point Q. Line segments mean the initial distribu-
tion of the director (Equation (18)). 
 
Since the head and tail of a liquid crystal molecule are indistinguishable, we have 
( ) ( ), ,f t f t= −u u . From the parity of the spherical harmonic functions, that is, 

( ) ( ) ( )1 l
lm lmY Y− = −u u ,                  (13) 

the expression (–1)l =1 is obtained, which restricts l to even values. We have 
non-dimensionalized Equation (1) with 1/D, multiplied the resulting equation 

by the complex conjugate of spherical harmonic functions, ( )( )* –1 m
lm lmY Y= , 

and integrated over the unit sphere to get the ordinary differential equations 
with respect to Clm (see Appendix 1). The orthonormality of the spherical har-
monic functions [26] 

*
1

dlm l m ll mmY Y δ δ′ ′ ′ ′=
Ω =∫u

                   (14) 

has been used.  
To compute the velocity field, we eliminate p from Equation (6) to obtain the 

vorticity transport equation 
2 22

1
2 2
xz zxN

t x z x z
τ τω

ρ
∂ ∂∂∂

= − +
∂ ∂ ∂ ∂ ∂

,               (15) 

where ( )u z w xω = ∂ ∂ − ∂ ∂  is the vorticity, and N1 (=τxx − τzz) is the first nor-
mal stress difference. Stresses N1, τxz, and τzx are explained in the Appendix 2. 

We have used the finite-difference scheme to discretize the equations and the 
implicit Euler method for time integration. Equation (15) is solved using an iter-
ative procedure with the convergence criterion that the average relative error at 
each node is less than 10−5. We use periodic boundary conditions. 

Values of the physical quantities are the fluid density ρ = 103 kg/m3, the abso-
lute temperature T = 320 K, the rotary diffusivity in an isotropic state D = 5.2 × 
103 s−1, the number density of molecules c = 2.25 × 1024 m−3, the drag coefficient 
of rotary molecules ζ = 8.89 × 10−24 kgm2/s, and the side length of the computa-
tional domain H = 1 μm. The computational parameters we select are the ne-
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matic potential intensity U = 5.0, 5.5, and 6.0, and the long-range order effect il
∗  

(=li/H) = 0.02 − 0.1 with a step of 0.01. The choice of lmax is important, and we 
have determined it by accounting for both the computational accuracy and load. 
We report the details in the following chapter. 

The mesh size is set to ( ) ( )* * 210x x H z z H −∆ = ∆ = ∆ = ∆ = , and the time step 
Δt* (=ΔtD) is varied depending on il

∗ ; for example, Δt* = 5 × 10−4 when 0.1il
∗ = . 

2.3. Initial Values 

The initial velocity vector v is 0. The initial values of Clm are obtained as follows: 
We multiply Equation (12) by *

lmY , integrate over the unit sphere, and use Equa-
tion (14) to get 

( ) ( ) ( )*
1

0, , 0, , , dlm lmC x z f x z Y
=

= Ω∫u
u u .           (16) 

Assuming that f is in an equilibrium state (no flow) at t* = 0, f is expressed as [12] 

( )
1

0, , , exp exp dV Vf x z
kT kT=

   = − − Ω   
   ∫u

u .         (17) 

We use the denominator to normalize f in Equation (17). Since f has uniaxial 
symmetry in the absence of both flow and external field, the order parameter 
tensor, Equation (4), is rewritten as 

3
S  = − 
 

S nn δ ,                     (18) 

where n is a unit vector describing the average local molecular orientation, called 
the director, and S is the scalar order parameter ranging from 0 in a random 
orientation state to 1 in a perfect alignment, defined as 

3 :
2

S = S S .                        (19) 

The symbol “:” means the double dot product of two tensors. Substituting 
Equation (3) and Equation (18) into Equation (17), expanding exponential terms 
into a power series, and expressing the power by the spherical harmonic func-
tions give 

( )
( )

( ) ( ) ( ) ( )
*

0 0

3 32 !
2 20, ,

! 2 !! 2 1 !! 2 1 !

p q

lm lm
p q

US p US
C x z Y

p p l p l q q

∞ ∞

= =

   
   
   =
− + + +∑ ∑n .  (20) 

where ( ) ( )( )2 !! 2 2 2 4 2n n n= − ⋅ , ( ) ( )( )2 1 !! 2 1 2 1 3 1n n n+ = + − ⋅ , 0!! = 1 (n 
is 0 or even number). In Equation (20), n and S are functions of x and z. We 
have determined both values (see Appendix 3). 

3. Results and Discussion 
3.1. Determination of lmax 

Before computing the velocity and orientation fields, we must determine the 
value of lmax. Let us consider a liquid crystal to which simple shear flow is ap-
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plied. Setting li = 0, Equation (3) reduces to 

3 :
2

V UkT= − S uu ,                    (21) 

which is the Maier-Saupe nematic potential [14]. The coordinate system is 
shown in Figure 3. The flow is in the x direction, and the velocity gradient is 
in the z direction. The polar and azimuthal angles of the unit vector u are θ 
and ϕ, respectively. For simple shear flow, the velocity gradient tensor is ex-
pressed as 

0 0
0 0 0
0 0 0

γ
=



κ ,                      (22) 

where γ  is the shear rate. Equation (11), Equation (21), Equation (22) are 
substituted into Equation (1) to obtain the ODF f. Equation (20) can be used 
as an initial value of Clm, but it is a function only of time t. At t* = 0 the direc-
tor n is assumed to orient in the x direction, so that we set θm = π/2 and ϕm = 
0, where θm and ϕm are the polar and azimuthal angles of the director, respec-
tively. 

The azimuthal angle of the director ϕm is always 0 because the director is in 
the x-z plane in Figure 3. The polar angle θm is obtained from S as follows: 

2
tan 2 xz

m
zz xx

S
S S

θ =
−

.                   (23) 

Figure 4 shows the transient behaviors of θm and S at lmax = 4 − 10 (no 
convergent solution was obtained at lmax = 2) when the potential intensity U = 
5 and the dimensionless shear rate ( )* 1Dγ γ= =   and 40. In Figure 4(a), the 
director rotates and the order parameter oscillates about the equilibrium val-
ue S = 0.615. The behaviors at lmax = 8 are almost the same as those at lmax = 10, 
and the behaviors at lmax = 6 have smaller periods compared with those at lmax 
= 8 and 10. At lmax = 4, steady-state instead of periodic behaviors are obtained. 
In Figure 4(b), the director and the order parameter reach their steady state 
values in a short time at lmax = 6, 8, and 10, whereas the predictions at lmax = 4 
are even qualitatively different from the results at other lmax. Thus, lmax = 4 is 
not available, lmax = 6 is qualitatively acceptable, and lmax ≥ 8 is quantitatively 
 

 
Figure 3. Coordinate system. 
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Figure 4. Transient behavior of preferred angle θm and order parameter S for the potential in-
tensity U = 5. No convergent solution was obtained at lmax = 2. The lines at lmax = 10 overlap with 
those at lmax = 8. (a) * 1γ = . The director rotates and the order parameter oscillates about the 
equilibrium value S = 0.615; (b) * 40γ = . Both the director and the order parameter reach their 
steady state values. 

 
satisfactory. Expansion terms required to approximate the ODF depend on 
the potential intensity and shear rate. When U and *γ  are large, more terms 
are necessary because the ODF becomes steep and non-uniaxial. 

3.2. Orientation Fields 

Since the flows induced by annihilation of a pair of defects are not large, and 
the selected potential intensity U in the present study is not high (5, 5.5, 6), 
we have used lmax = 6 for the following computations. 

Figure 5 shows a sequence of predictions of transmitted light intensity ob-
served under crossed nicols for 0.1il

∗ = . The transmitted light intensity I is 
evaluated using 

( )2
0 sin 2 mI I θ= .                    (24) 

Here, I0 is the incident light intensity, and θm is the polar angle of the di-
rector obtained by Equation (23). A pair of defect cores attracts each other 
with time, and brushes connecting the defects become short. Finally the de-
fects are annihilated at t* = 3.85. Since the initial orientation profile is sym-
metric with respect to z* = 0.5, the defect cores move along this line. After fi-
nishing the annihilation, the orientation state does not become homogeneous 
immediately, but slightly gray areas are discernible at t* = 5. A completely 
homogeneous orientation state is achieved at t* = 6.05. 

Figure 6 shows the profiles of S for the same parameters and times as 
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Figure 5. A time series of the molecular orientation fields at 0.1il

∗ = . The transmitted 
light intensity is numerically predicted. The horizontal axis is x* (=x/H) and the ver-
tical axis is z* (=z/H). The polarizing and analyzing directions are ±45˚ with respect to 
the x* axis. A field where the director orients to the polarizing or analyzing directions 
is dark, and a field where it orients parallel to the x* or z* axis is bright, while the other 
field is gray. 
 
Figure 5. Since the order parameters near the defect cores are low, the profile 
of S looks like an inverted cone. The two inverted cones gradually approach 
and coalesce laterally with each other as time advances. The two sharp ends 
merge into a single end at t* = 3.85, which coincides with the time the defects 
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Figure 6. Time series of the order parameter fields at 0.1il

∗ = . 

 
annihilate in Figure 5. Just after the annihilation, we can see slight inhomo-
geneity in S. 

Figure 7(a) plots the locations of a pair of defect cores before annihilation 
for several il

∗ . The defect cores approach at a constant speed, but they slow 
down just before the annihilation. The defect core with the strength s = +1/2 
(at point P in Figure 2) moves slightly faster than that with the strength s = 
−1/2 (at point Q in Figure 2). Thus, the annihilation takes place at a position 
slightly over x* = 0.5. 

Figure 7(b) shows the relationship between the time at
∗  required for the 
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Figure 7. (a) Time series of locations of a pair of defects. Symbols “×” are the positions at which 
the two defect cores coalesce with each other; (b) Relationship between the time at

∗  required for 

the annihilation process and il
∗ . 

 
annihilation process and the long-range order parameter il

∗ . A large il
∗  

gives a short annihilation time because the attractive force between defects be-
comes strong for large il

∗ . For example, 190at
∗ =  at 0.02il

∗ = , and 3.85at
∗ =  at 

0.1il
∗ =  (refer to Figure 5 and Figure 6); that is, increasing il

∗  by a factor of 5 
decreases at

∗  by a factor of 50. Therefore, il
∗  has a large effect on annihilation. 

3.3. Velocity Fields 

Figure 8 shows the velocity distributions at t* = 1, 3.85, and 5 for 0.1il
∗ =  as 

well as the locations of defect cores. An arrow at the bottom of each figure is the 
reference velocity vector. It is confirmed that flows are induced during annihila-
tion of a pair of defects. Since the molecular orientation state is symmetric with 
respect to z* = 0.5, the velocity distribution is also symmetric. Flows to the right 
are observed in the vicinity of z* = 0.5. As a result, a counterclockwise vortex in 
the upper half region and a clockwise one in the lower half region are generated. 
Four vortices (two in each half region) are generated at t* = 1 and 3.85. By com-
paring the velocity vectors near the left and right defect cores at t* = 1, we find 
that the velocity vector and vortex on the left side are larger, and that the veloci-
ty distributions depend on the defect structure. Both right and left vortices rotate 
in the same direction at t* = 1, so that they coalesce into a larger vortex at t* = 
3.85. Since the induced velocity vector is maximum spatially on the line con-
necting the defect cores (z* = 0.5), it is efficient to use the flow between defects 
when using the flow induced during their annihilation. We have checked the 
velocity profiles at times different from those of Figure 8 to verify that the ve-
locity vector has its maximum value when annihilation finishes (t* = 3.85). 

We define vmax as the maximum velocity value in the computational region at 
the time when annihilation finishes. Figure 9(a) plots the relationship between 
vmax and il

∗ . When il
∗  increases, the induced velocity also increases. However, 

the effect of il
∗  on the velocity is not large compared with that on the annihilation 
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Figure 8. Velocity profiles for 0.1il

∗ = . Red circles are the locations of defect cores. 

 

 
Figure 9. Relationship between maximum velocity vmax and il

∗  and U. (a) Effect of il
∗ ; (b) Effect of U 

for 0.1.il
∗ =  

 
time at

∗ ; the relationship between vmax and il
∗  is almost linear. Figure 9(b) 

plots vmax against the nematic potential intensity U for 0.1il
∗ = . The induced 

velocity increases with increasing U. We explain this result as follows: Since an-
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nihilation stems mainly from the spatial gradient of S, an increase in U corres-
ponds to an increase in S, resulting in a steep spatial gradient for S. Thus, a liq-
uid crystal with higher liquid crystallinity (a low-temperature liquid crystal) may 
generate a faster flow. 

4. Conclusion 

In this study we have predicted flows induced by the annihilation of a pair of 
liquid crystal defects using the Doi theory with the Marrucci-Greco potential 
and the constitutive equation of Feng et al. The long-range order effect on the 
time required for the annihilation process of a pair of defects is remarkable; 
when the long-range order is large, the annihilation time becomes short. We 
have shown that a flow is induced by the annihilation and that several vortices 
are generated in the vicinity of the defects. The maximum flow is obtained on 
the line connecting the two defect cores in space, and at the time, the annihila-
tion is just finished. The maximum value of the induced velocity is on the order 
of 10 μm/s in our study. The induced velocity becomes large when the long-range 
order and nematic potential strength are high. 
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Appendix 1 

The time evolution equation for coefficients Clm is expressed as 

( )( ) ( )

( ) ( ) ( ){

( )

2 22 2

22 2 2 20

31 1 1
4

2π 4π 8π1 , 1;2,1; , , 1;2, 1; ,
15 45 15

, 1;2,1; , , 1;2, 1; , 2 , ;2, 2; , , ;2, 2;

lm lm lm
lm

m
l m

l m

C C Cu w l l S C U S
t x z

D D D C A l m l m l m l m

B l m l m l m l m m l m l m l m l

− −

′ ′−
′ ′

∂ ∂ ∂
= − − − + − − −

∂ ∂ ∂
   ′ ′ ′ ′× + − − − + − − + − 
  

′ ′ ′ ′ ′ ′ ′− − − − − − − − − − − −

∑

( )}

( ) ( ) ( ){

( ) ( )}

22 2 2 20

,

2π 4π 8π1 , 1;2,1; , , 1;2, 1; ,
15 45 15

, 1;2,1; , , 1;2, 1; , 2 , ;2, 2; , , ;2, 2; ,

m
l m

l m

m

D D D C A l m l m l m l m

B l m l m l m l m m l m l m l m l m

′ ′−
′ ′

′

   ′ ′ ′ ′− + + − − − + + − + − 
  

′ ′ ′ ′ ′ ′ ′ ′− − − + − − − + − − − −

∑

 

( ) ( )

( )( ) {

( ) ( )

20

21 2 1

16π 32π1 , 1;2, 1; , , 1;2,1; ,
45 15
2π 8π2 1 , 1;2, 2; , , 1;2, 2; ,
15 15

3, ;2,1; , , ;2, 1; , , 1;2,0; , , 1;2,0; ,
2

m
l m

l m

m
l m

l m

D C A l m l m B l m l m

D D C A l m l m B l m l m

m l m l m l m l m A l m l m B l m l m

′ ′
′ ′

′ ′−
′ ′

′ ′ ′ ′+ − − + − + − −

′ ′ ′ ′− − − − + − − − −

′ ′ ′ ′ ′ ′ ′ ′+ − + − − − − + − − −

∑

∑

* * *

* * *

π π π, ;2,1; , 1 , ;2,1; , 1 , ;2, 1; , 1
30 30 30

π 2π 2π, ;2, 1; , 1 , ;2, 2; , , ;2, 2; ,
30 15 15

l m
l m

u C A l m l m B l m l m A l m l m
x

B l m l m m l m l m m l m l m

′ ′
′ ′





∂ ′ ′ ′ ′ ′ ′ ′ ′ ′− − − + − − −∂ 

′ ′ ′ ′ ′ ′ ′ ′ ′+ − + − + −

∑

 

 

( )

* * *

* *

* * *

4π 6π 6π, ;2,0; , , ;2, 2; , , ;2, 2; ,
5 5 5

4π 4π, ;2,0; , 1 , ;2,0; , 1
45 45

2π 6π, ;2,1; , , ;2, 1; , , ;2,1; , , ;2, 1;
15 5

l m
l m

l m l m l m l m l m l m

u w C B l m l m A l m l m
z x

m l m l m l m l m l m l m l m

′ ′
′ ′


′ ′ ′ ′ ′ ′+ − − − 


∂ ∂   ′ ′ ′ ′ ′ ′− + + − − ∂ ∂  

′ ′ ′ ′ ′ ′ ′+ + − + − −

∑

( )

( )

*

*
1 1

* *

,

1 1 2π , ;2,1; , 1
6 3 15

2π 16π, ;2, 1; , 1 , ;2,0; ,
15 5

lm lm l m
l m

l m

u w wAC BC C A l m l m
z x z

B l m l m l m l m

′ ′− +
′ ′

′ ′ 


∂ ∂ ∂  ′ ′ ′− − − + −  ∂ ∂ ∂  


′ ′ ′ ′ ′+ − + + 


∑

      

 

where 
2 2 2 2

2
2 224 24

i lm lm i
lm lm lm lm

l C C lD C C C
x z

 ∂ ∂
= + + = + ∇ 

∂ ∂ 
 

1 1 2 2 3 31 1 2 2 3 3 1
, ; , ; , dl m l m l ml m l m l m Y Y Y

=
= Ω∫u

 

1 1 2 2 3 3

* *
1 1 2 2 3 3 1
, ; , ; , dl m l m l ml m l m l m Y Y Y

=
= Ω∫u

 

2 3 :
2

S = S S  

https://doi.org/10.4236/ojfd.2018.84022


S. Chono, T. Tsuji 
 

 

DOI: 10.4236/ojfd.2018.84022 358 Open Journal of Fluid Dynamics 
 

( )( )1A l m l m= + − +  

( )( )1B l m l m= − + +  

( )( )1A l m l m′ ′ ′ ′ ′= + − +  

and 

( )( )1B l m l m′ ′ ′ ′ ′= − + +  

The non-zero components of the order parameter tensor S and fourth-order 
tensor Q are expressed in terms of Clm as 
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Appendix 2 

The first normal stress difference N1 and the shear stresses τxz and τzx are ex-
pressed in terms of S and Q as 
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The difference between τxz and τzx is only the underlined term. 

Appendix 3 

With respect to the director n, let us define the angle between n and the x axis as 
θc, so that the angular momentum equation of the Leslie-Ericksen theory with 
the one-constant approximation of the elastic constants in the molecular field 
reduces simply to 

2 0cθ∇ =                            (A1) 
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in an equilibrium state [2]. When defects are included, a fundamental solution 
of Equation (A1) is 

1tanc
zs
x

θ −  =  
 

,                       (A2) 

where s is the defect strength. Since Equation (A1) is linear, the superposition of 
solutions is effective. Thus, when a defect with s = +1/2 exists at P (x1, z1) and a 
defect with s = −1/2 exists at Q (x2, z2) in Figure 2, the director distribution 
around the defect cores is 

1 11 2

1 2

1 1tan tan
2 2c

z z z z
x x x x

θ − −− −
= −

− −
.              (A3) 

Finally, we have modified the values of Equation (A3) so that they fit the pe-
riodic boundary condition. We denote the initial distribution of the director by 
line segments in Figure 2. 

For the scalar order parameter, we set S = 0 at defect cores and S = Seq at the 
other region. Seq depends only on the nematic potential intensity U, and is ob-
tained from Equation (1) without flow terms. For example, Seq = 0.615 at U = 5. 
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