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Abstract 
Gambling is a useful analog to thermodynamics. When all players use the 
same dice, loaded or not, on the average no one wins. In thermodynamic 
terms, when the system is homogeneous—an assumption made by Boltzmann 
in his H-Theorem—entropy never decreases. To reliably win, one must cheat, 
for example, use a loaded dice when everyone else uses a fair dice; in ther-
modynamics, one must use a heterogeneous statistical strategy. This can be 
implemented by combining within a single system, different statistics such as 
Maxwell-Boltzmann’s, Fermi-Dirac’s and Bose-Einstein’s. Heterogeneous sta-
tistical systems fall outside of Boltzmann’s assumption and therefore can by-
pass the second law. The Maxwell-Boltzmann statistics, the equivalent of an 
unbiased fair dice, requires a gas column to be isothermal. The Fermi-Dirac 
and Bose-Einstein statistics, the equivalent of a loaded biased dice, can gener-
ate spontaneous temperature gradients when a field is present. For example, a 
thermoelectric junction can produce a spontaneous temperature gradient, an 
experimentally documented phenomenon. A magnetic field parallel to, and 
an electric field perpendicular to a surface produce a spontaneous current 
along the surface, perpendicular to both fields (Reciprocal Hall Effect). Expe-
rimental data collected by several independent researchers is cited to support 
the theory. 
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If the game is rigged, the best strategy is to cheat. 

1. Introduction 

Thermodynamics can be summarized as follows [1]: “You must play the game 
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(zeroth law), you can’t win, (first law), you can’t break even (second law) and 
you can’t quit the game (third law).” Obviously, the game is rigged. What to do? 
The only way to win is to cheat! In this context, the reader is asked to suspend 
the morally repugnant aspects of “cheating” and view it as stepping out of the 
box, a positive, rather than a negative and deceptive behavior. This article dis-
cusses the mathematics of “cheating” as statistical strategies aimed at breaking or 
bypassing the second law. 

The second law of thermodynamics is one of the most respected and enduring 
in physics. Heat always flows from hot to cold. Entropy never decreases. Motion 
in isolated systems always comes to a stop. Friction rules. Perpetual motion ma-
chines capable of converting ambient heat to work are impossible. Quoting 
Einstein [1 Wikiquote]: 

“It is the only physical theory of universal content which I am convinced will 
never be overthrown, within the framework of applicability of its basic con-
cepts.” 

(Note Einstein’s very circumspect underlined qualifier.) 
Unlike conservation laws, the second law is statistical. A useful analogy is 

gambling in Vegas. In equivalence to friction, the house takes a cut, and it really 
does not matter whether a dice is loaded or not. When everyone plays with the 
same dice to equalize the odds, on the average, everyone loses. Of course, some-
one with a loaded dice can win if everyone else has a fair dice. But even though 
cheating does happen, this behavior is not permitted, and the cheater, if identi-
fied, is quickly kicked out of the casino. The statistics governing the game must 
be homogeneous, that is, the same for everyone. When no one cheats, everyone 
loses (on the average). This is the second law in Vegas. 

The second law as currently proven, also requires homogeneous statistics 
throughout the system. In his H-Theorem, Boltzmann proves that entropy can 
never decrease [2]. Crucially he assumes a system comprised of homogeneously 
distributed particles [3] [4]. Gibbs, later, added the assumption of indistingui-
shability. Implied in these assumptions, is that all particles must follow the same 
statistics, in his case, the classical Maxwell-Boltzmann distribution. To be clear, 
Gibbs, in his paper “On the Equilibrium of Heterogeneous Substances”, dis-
cusses several types of heterogeneous systems under the influence of gravity or 
the electromotive force, but he omits statistically heterogeneous systems. This 
omission is understandable given that in his time, late 1900’s, gases were only 
known to follow the Maxwell-Boltzmann distribution. Quantum distributions 
such as Fermi-Dirac’s and Bose Einstein were discovered in the 1920’s. 

When all components of a system are statistically homogeneous, (the same 
dice for everyone, loaded or not) the odds are equalized, and the second law is 
upheld. 

Cheating, i.e., using a loaded dice when everyone else has a fair dice, is not 
permitted in Vegas—even though it does occur. This type of cheating can tech-
nically be described as a heterogeneous statistical strategy. Is cheating allowed in 
the physical world? In other words, can one step out of the box defined by 
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Boltzmann’s homogeneity assumption? Of course, mother nature enforces 
strictly impassable limits, but the question, as posed, is whether she allows hete-
rogeneous statistical strategies. For this to be possible, the same system must in-
clude components with different statistics. In the gambling context, does nature 
allow players to cast different dice, fair or loaded, i.e., to cheat, regardless of ca-
sino rules. 

Boltzmann never considered the possibility of multiple statistics in his proof. 
When he founded statistical thermodynamics in the nineteenth century, the 
Maxwell-Boltzmann distribution was the only known one suitable for describing 
the behavior of a gas. In other words, there was only one dice to play with. 
Thermodynamic cheating was not conceivable. With the advent of quantum 
mechanics, other distributions were discovered. Now fermions are known to 
comply with the Fermi-Dirac distribution and bosons with the Bose-Einstein 
distribution. These quantum statistics are the equivalent of loaded dice as they 
generate biased outcomes compared to the classical Maxwell-Boltzmann distri-
bution and with each other. Another distribution of interest that also operates as 
a thermodynamic loaded dice is the biased half-maxwellian distribution. It arises 
at a surface in the presence of a magnetic field and an electric field [5]. 

Can these distributions be used to cheat and therefore get around the second 
law? Not when applied singly in statistically homogeneous systems, just like a 
single loaded dice does not change the odds when all players share it. Variants of 
the H-Theorems for quantum systems have been developed by several research-
ers such as Von Neumann and Tolman [6] [7] [8], but, unfortunately just like 
Boltzmann, they assume statistical homogeneity which, from the outset, prec-
ludes cheating. This assumption is not always true in Vegas despite being a ca-
sino rule-and overly restrictive in the physical world, Boltzmann notwithstand-
ing. All H-Theorems are widely and incorrectly believed to be “proofs” of the 
second law’s universality when, in fact, they are indicators of its limitations.  

The rest of this article describes possible implementations of heterogeneous 
statistical systems and discusses under what circumstances a temperature gra-
dient arises in a gas column subjected to a downward force and whether this 
gradient can be used to break the second law. The following is a summary:  

1) A Maxwellian gas with homogeneous statistics is always isothermal.  
2) A non-Maxwellian gas with homogeneous statistics can produce a temper-

ature gradient, but this gradient is not accessible to power a heat engine that 
converts ambient heat to useful energy.  

3) Multiple non-maxwellian gases heterogeneously distributed in space and 
with different statistics can produce temperature gradients. These gradients can 
be used to generate energy, thereby bypassing the second law. 

2. Homogeneous Maxwellian Statistics-One Fair Dice Shared  
by Everyone 

One can begin the discussion with the conjecture by Johann Josef Loschmidt, a 
Boltzmann contemporary and a nineteenth century second law challenger. He 
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asserted the following [9]:  
1) A gas column such as air subjected to a vertical force such as gravity spon-

taneously develops a temperature gradient, and  
2) A heat engine connected between the top and bottom of the column, could 

use this temperature gradient to convert ambient heat to useful energy thereby 
violating the second law.  

As shall be explained below, Loschmidt was wrong, a maxwellian gas such as 
air cannot form a temperature gradient, as explained in [10]-[15] and summa-
rized below. A gas that follows the Maxwell-Boltzmann statistics has the 
well-known kinetic energy distribution.  
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   −

=    
   

                 (1) 

The derivation for the above equation can be found in [11]. If the gas is in a 
column, potential energy Ep can be inserted to express the effect of elevation. 
The distribution then becomes, 
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This equation was derived from fundamental principles in [11]. The exponen-
tial term on the right is the Boltzmann factor. It expresses occupancy per micro-
state for a given total energy Ek + Ep. The square root term which stands for the 
density of states, (i.e., the number of microstates per velocity volume in phase 
space) is proportional to velocity, hence, to the square root of Ek and is not a 
function of Ep. The remaining terms, in front, normalize the probability distri-
bution which expresses occupancy as a function of kinetic energy. 

The potential energy term can be factored out in its own exponential term as 
shown in the equation below: 
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Adding potential energy denormalized the distribution. Note that the distri-
bution at elevation z corresponding to Ep is scaled down by exp(−Ep/kBθT): 

( ) ( )unnormalized normalized
, , 0 exp p

MB k p MB k p
B T

E
f E E f E E

k θ
− 

= =  
 

      (4) 

which describes the well-known exponential density lapse with elevation, and 
confirms the validity of Equation (3).  

To recover its normalized probabilistic form of Equation (1), one needs to re-
normalize Equation (3) by dividing it by exp(−Ep/kBθT). The renormalization 
process recovers Equation (1). Therefore, the distribution at any elevation is 
identical with the one at ground level and is therefore invariant with elevation. 
The gas column is isothermal and temperature T1 and T2 in Figure 1 are identic-
al. 
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Figure 1. Maxwellian gas column subjected to a vertical force. 

 
Interestingly, temperature can be expressed as an expectation of kinetic ener-

gy for a given distribution. For the Maxwell-Boltzmann distribution one can 
write: 

( ) ( )0 normalized

2, , , d
3p T k MB k p T k

B

T E E f E E E
k

θ θ
∞

= ∫              (5) 

Substituting (3) into (5) and solving the integral yields:  

TT θ=                              (6) 

This equation is only true when the gas is maxwellian. Equations (5) and (6) 
express temperature in two ways: θT which is a parameter of the distribution, 
and T which is proportional to the expected kinetic energy. Since θT is a para-
meter for the distribution that spans the whole column, θT is invariant with ele-
vation—by definition. Furthermore, as per Equation (6), T is also invariant with 
elevation (for a maxwellian gas), the column is isothermal as could have been 
predicted by Clausius version of the second law (heat flows from hot to cold and 
at equilibrium the temperature gradient is zero). A maxwellian gas column is 
isothermal with respect to both θT and T.  

As we shall see in the next sections, depending on the distribution, T = θT is 
not always true which is the reason for using different symbols to differentiate 
between these two temperatures. The term thermodynamic temperature shall be 
avoided because of its heavy prejudicial baggage that fails to capture the differ-
ence between T and θT. Henceforth, θT shall be called statistical temperature be-
cause it is a parameter of the gas’ statistics, and T, kinetic temperature, because it 
refers to the gas’ kinetic energy. The next section covers fermions and bosons 
and describes situations in which T and θT are unequal. 

Loschmidt’s assertion, as originally formulated was wrong. Breaking the 
second law with a maxwellian gas as he had originally conjectured, just like 
cheating by using a fair dice when everyone else also uses a fair dice, is not poss-
ible. 

3. Homogeneous Quantum Statistics—One Loaded Dice  
Shared by Everyone 

Would Loschmidt have been right had he formulated his conjecture using a 
non-maxwellian gas as shown in Figure 2? 
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Figure 2. A fermion gas column, for example electrical carriers in a 
thermoelectric slab, subjected to a vertical electric field. 

 
He would have been half right: 1) a temperature gradient would spontaneous-

ly develop but 2) no second law violation would occur. This is explained below. 
The first half of Loschmidt’s assertion that a temperature gradient develops is 

correct for the following reason. The distribution for a fermion gas in a column 
is: 

( ) ( )Fermions normalized

1, , ,
1 exp

k p T p T k
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f E E A E E
E E E E

k

θ θ

θ
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The derivation of this equation from fundamental principle is available in 
[11]. The square root term represents the density of states which is solely a func-
tion of kinetic energy. As elevation increases, the insertion of potential energy in 
the Fermi-Dirac term denormalizes the distribution. In renormalization, how-
ever, Ep cannot be factored out because potential energy is not expressed as a 
pure exponential as in a maxwellian gas. Therefore, this distribution, unlike the 
normalized Maxwell-Boltzmann distribution is not invariant with elevation. 

Figure 3 illustrates the difference between the distributions. The thick red 
curve shows the distribution at ground level and the thin blue curve, at an arbi-
trary elevation. Maxwell-Boltzmann’s distribution in 1) is invariant with eleva-
tion but Fermi-Dirac’s in 2) is shifted to the left indicating a decrease in kinetic 
energy and a corresponding lowering of the kinetic temperature T. In other 
words, T1 > T2, in Figure 1.  

Note that the statistical temperature θT is always invariant because it is a pa-
rameter of the distribution and therefore constant for a given ensemble spanning 
the column. Surprisingly, the gas is isothermal with respect to θT but not with 
respect to T. The same reasoning applies to a boson gas column. 

The second half of Loschmidt’s conjecture is that this temperature gradient 
can be used to produce useful energy (for example by thermally connecting a 
heat engine such as a Seebeck device between two points at different elevations). 
This assertion is incorrect.  

As explained above, a gradient in kinetic temperature T does occur sponta-
neously in the fermion column. However, the column remains isothermal with 
respect the statistical temperature θT. This is confirmed by Tolman’s proof ([6],  
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(a)                                     (b) 

Figure 3. (a) Maxwell-Boltzmann energy distribution; (b) Fermi-Dirac energy distribu-
tion. The distributions for ground level are shown by the thick red curve and the one for 
a higher elevation, by the thin blue curve. 
 
pages 551, 552) who shows that heat flows down the statistical temperature gra-
dient, not necessarily the kinetic temperature gradient. Hence no heat flows 
along the column and the kinetic temperature gradient is not exploitable. 

In the fully homogeneous system shown in Figure 4(a) the particles in the 
thermal connections are statistically identical with those in the column. Heat 
carriers in the thermal connections develop the same temperature gradient as 
those in the column. The temperature difference across the heat engine is zero, 
the engine cannot operate and. no work is produced.  

An interesting analog is the built-in potential across a semiconductor junction 
as shown in Figure 4(b). The voltage across the leads to the junction exactly 
cancels the built-in potential. Hence, no voltage is detected by the voltmeter. 
Therefore, no energy can be extracted from a junction. A loop summation of 
voltages around the circuit yields zero because the electric field is conservative 
and scalar.  

Both cases (the non-maxwellian gas column and the junction) conform to the 
H-Theorem which assumes homogeneity and indistinguishability of particles. A 
voltage or a temperature gradient in a homogeneous system cannot be exploited 
for energy production. No cheating is possible when all players share the same 
dice, loaded or not. 

4. Heterogeneous Non-Maxwellian Statistics-Differently  
Loaded Dice for Different Players 

We can now formulate Loschmidt conjecture in a way that bypasses the second 
law. Two kinds of non-maxwellian statistics shall be discussed: 

1) Heterogeneous Quantum statistics such as the Fermi-Dirac and 
Bose-Einstein distributions. 

2) Biased half-maxwellian statistics generated near a surface by a magnetic 
and an electric field.  

4.1. Heterogeneous Quantum Statistics 

Consider the system shown in Figure 5.  
Two different types of particles are present, each with its own susceptibility to 

the electric field and its own statistics. 
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(a)                                       (b) 

Figure 4. A homogeneous thermal system (a) comprising a non-maxwellian gas column 
with connections to a heat engine, is the analog of a junction (b) with leads connected to 
a voltmeter. 
 

 
Figure 5. Statistically heterogeneous systems fall outside Boltzmann’s assumption of 
homogeneity and can bypass the second law. 
 

1) A column of charged fermions is subjected to a downward electrical field. 
The fermions could be embodied by electrical carriers in a slab of thermoelectric 
material between insulated capacitor plates. As explained above, in the section 
covering homogeneous quantum statistical systems, the fermions spontaneously 
develop a temperature difference.  

2) Neutral bosons connect the top and the bottom of the columns to a heat 
engine. The bosons can be embodied by heat phonons in a thermal connector. 
The bosons are neutral. Therefore, they are not affected by the field, and do not 
spontaneously produce a temperature difference. 

A net temperature difference results across the heat engine (for example a 
Seebeck device) thereby producing useful work.  

How does this system get around the second law? Going back to the gambling 
analogy, two differently loaded dice are available, making cheating on the second 
law possible. Switching thermal carriers around the thermal loop, from charged 
fermions (electrons or holes, susceptible to the electric field), to uncharged bo-
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sons (thermal phonons, insensitive to the field) provides the loophole that gets 
around the limitation of the conservative field. One should note that 
Boltzmann’s proof of the second law (his H-Theorem) relies on the assumption 
of homogeneity and indistinguishability of the particles. The statistically hetero-
genous system of Figure 5 falls outside of these assumptions, therefore bypass-
ing the second law, not breaking it.  

4.2. Biased Half-Maxwellian Statistics 

Quantum mechanical distributions are not the only means of biasing statistics. 
In the Reciprocal Hall Effect [5], the velocity distribution of a charged gas, which 
is normally symmetrical in space, is skewed away from the normal to a surface in 
the presence of a magnetic field parallel to the surface and an electric field per-
pendicular to it, thereby generating a current. This effect is summarized below. 

Consider low-density non-interacting charged gas particles, for example elec-
trical carriers in a lightly doped thermoelectric slab, in contact with a surface, for 
example an insulator. The gas particles are thermalized by the surface, acquiring 
its distribution. If the distribution is maxwellian, then particles outgoing from 
the surface have a half-maxwellian distribution. After equilibrium is reached, 
incoming particles also possess a half-maxwellian distribution. Both distribu-
tions, outgoing and incoming, are symmetrical images of each other, and to-
gether they form a fully symmetrical maxwellian distribution. 

If now a magnetic field B is applied parallel to the slab, the particles are forced 
into partial cyclotron orbits interrupted by the surface as shown in Figure 6 
thereby forming a current Ix flowing on the inside surface of the slab. In the ab-
sence of electric field (to be discussed below) the current flows uniformly around 
the inside surface and is not observable from the outside. 

If in addition to the magnetic field, an electric field Ez is also applied perpen-
dicular to the surface by means of capacitor plates, then the particles’ trajectories 
become truncated cycloids. The electric field pushes the electrical carriers across 
the slab, causing depletion on one side, and excess carriers on the other side. 
This asymmetry results in a current pinch-off in the first side and an actual ob-
servable voltage or current on the second side as shown in Figure 7. 
 

 
Figure 6. In the presence of a magnetic field in a slab of thermoelectric material, charged 
gas particles (electrical carriers) follow truncated cyclotron orbits interrupted by the sur-
face of the slab. The resulting current inside the slab is not accessible from the outside. 
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Figure 7. Reciprocal Hall Effect. A magnetic field parallel to a surface 
and an electric field perpendicular to the surface, cause a current per-
pendicular to both fields and along the surface. 

 
Close examination of the particle statistics at the surface, shows that both 

half-maxwellian velocity distributions (for the incoming and outgoing particles) 
become biased in the same direction away from the normal to the surface. This 
biasing is shown in Figure 8 for a range of elevations.  

The horizontal axis shows 4039 m/sec per division. These distributions were 
generated by a publicly available program [14]. 

The Reciprocal Hall Effect is caused by statistical skewing of the particles’ ve-
locity distribution: in the presence of a magnetic field parallel to a surface and an 
electric field perpendicular to it, a current is generated along the surface perpen-
dicular to both fields. (In contrast, the well-known Hall Effect generates an elec-
tric field perpendicular to a magnetic field and a current.) The statistical biasing 
is the analog of a loaded dice.  

Can energy be extracted from such an effect? Not if the whole system includ-
ing the leads is subjected to uniform electric and magnetic fields. As shown in 
Figure 5, the current would not be accessible from the outside and no energy 
would be produced. The system would be statistically homogeneous and covered 
by the H-Theorem. 

Energy can only be produced by this effect if the system is statistically hetero-
geneous. In other words, the leads closing the current loop must be positioned 
outside the electric and magnetic fields, thereby ensuring that the velocity dis-
tribution of the carriers in the leads, remains symmetrical and that no Reciprocal 
Hall Effect occurs that would nullify the current. 

5. Experimental Data 

Several researchers in different labs have conducted experiments indicating vi-
olations of the second law. These experiments include: 

5.1. Unexplained Thermoelectric Phenomena 

Spontaneous kinetic temperature gradients are usually difficult to observe be-
cause they require unusual materials. For example, a semiconductor junction 
develops a temperature difference as well as a built-in potential. In a conven-
tional semiconductor material, this temperature difference is quickly shorted by 
heat phonons traveling across the junction. However, it can be measured in high 
performance (ZT) thermoelectric materials which have a high thermal conduc-
tivity ratio between electrical carriers and thermal phonon.  
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(a)                              (b) 

    
(c)                              (d) 

Figure 8. Horizontal velocity distribution of electrons caused by the reciprocal Hall Ef-
fect, in red at elevation (a) 0 nm; (b) 100 nm; (c) 200 nm; (d) 400 nm above a surface for 
a magnetic field of 0.2 Tesla parallel to the surface. The blue curve provides a reference 
showing the distribution at zero elevation. 
 

Researchers at Caltech performing measurements of the Seebeck coefficient 
on such materials observed mysterious data [15] [16]. Despite the most meti-
culous laboratory procedures they found that the voltage/temperature Seebeck 
curve did not go through the origin indicating a voltage output without a tem-
perature difference input and a temperature difference output without any vol-
tage input in apparent violation of the second law. The experiment (inadver-
tently) replicated the conditions outlined in this paper for this phenomenon to 
occur. The gas in the thermoelectric material was non-maxwellian (fermions) 
and subjected to a built-in potential within the semiconductor. The carriers in 
the measuring apparatus (temperature probe and electrical leads), were statisti-
cally different from those in the thermoelectric, thereby rendering the system 
statistically heterogeneous. This phenomenon can be called a field-induced 
thermoelectric effect and is unlike other well-known effects (Seebeck, Peltier and 
Thomson). It was described by the author at the International Thermoelectric 
Conference in Pasadena 2017 [15].  

5.2. Epicatalysis  

This phenomenon refers to a catalytic reaction that shifts the equilibrium state 
thereby departing from the behavior of a conventional catalyst which may speed 
the reaction but does not shift its equilibrium. It violates detailed balance and 
the second law because it allows continuous cycling between different equili-
brium states with a continuous production of energy. This phenomenon is dis-
cussed by Levy [17] and has been experimentally verified in the lab (Sheehan 
[18] [19] [20] [21] [22]). Temperature differences of 126˚C were observed be-
tween a tungsten catalyst and a rhenium catalyst operating on a hydrogen gas at 
1950 K.  
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Experiments on epicatalysts have also been performed at room temperature 
by Miller [23]. He observed temperature differences in the order of 0.2C between 
catalysts operating on gases with weak hydrogen bonds such as formic acid. 

5.3. Q Machine 

This is a plasma device that also exhibits well documented epicatalytic behavior. 
[24] [25]. 

6. Conclusions 

In the early days of thermodynamics—before Boltzmann-scientists had derived 
the second law by induction. No one had ever observed heat flowing from cold 
to hot or had constructed a perpetual motion machine of the second kind. 
Therefore, they concurred that the law must be true. Induction, however, is not 
reliable, as Bertrand Russel illustrates in the farmer/chicken paradox. A chicken 
fed every morning without fail, concludes using induction, that it is safe, but 
then, one day, its throat is wrung by the farmer.  

Natural systems of particles with heterogeneous statistics are rare but they do 
exist. Their unusual behavior is usually masked by nearby homogeneous sys-
tems. As discussed in Section 5.1, the temperature gradient produced by elec-
trical carriers in a semiconductor junction is quickly shorted by thermal pho-
nons. However, it has been observed in high performance thermoelectrics, rela-
tively rare materials.  

Boltzmann provided a much needed deductive “proof” of the second law, that 
confirmed scientists inductively derived assertion. In his H-Theorem he makes 
the crucial assumption of a homogeneously distributed gas, thereby implying 
statistical homogeneity. His proof is over-restrictive as it covers homogeneous 
systems, not all possible physical systems including heterogeneous statistical 
systems. His proof highlights the limitation of the second law, not its universali-
ty. 

Three examples of heterogeneous statistical systems capable of bypassing the 
second law have been described: 1) a temperature gradient produced by a field in 
a thermoelectric material and 2) a current produced by the combination of a 
surface, a magnetic field and an electric field (the Reciprocal Hall-Effect). 3) Ep-
icatalysts. Experimental data from several independent researchers have been 
cited.  

Cheating on mother nature is impossible, but cheating on man-made casino 
rules, or on the second law deduced using over-restrictive assumptions, may be 
forbidden but not impossible. Of course, the risk, in either case, is ending up 
with some broken ribs and/or a bruised reputation. However, with enough in-
genuity, one can cheat on any laws devised by man that imperfectly portend to 
model nature. Heterogeneous statistical strategies fall outside these limits. Better 
understanding and appreciating the limits of the second law will revolutionize 
energy production and distribution. 
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Paraphrasing Einstein’s circumspect quote on the second law, such strategies 
do not fall “within the framework of applicability of its basic concepts.” 

Play fair, and what you lose in Vegas, stays in Vegas; cheat, and take your 
winnings out. Similarly, in thermodynamics, statistical homogenous strategies 
comply with the second law; heterogeneous statistical strategies bypass it and 
can be used to extract useful energy from ambient heat. But there is a difference. 
Cheating on the fair-play casino rules may leave you guilt-ridden; using hetero-
geneous statistical strategies to get around Boltzmann’s over-restrictive assump-
tion is exhilarating. When the cause is ethical and worthy, those strategies are 
simply another way to advance the common good, one step toward a cleaner, 
greener, environmentally-friendly future.  
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