
Journal of Computer and Communications, 2018, 6, 30-39
http://www.scirp.org/journal/jcc

ISSN Online: 2327-5227
ISSN Print: 2327-5219

DOI: 10.4236/jcc.2018.610003 Oct. 29, 2018 30 Journal of Computer and Communications

Big Data Flow Adjustment
Using Knapsack Problem

Eyman Yosef1, Ahmed Salama1, M. Elsayed Wahed2

1Department of Mathematics, Faculty of Sience, Bour Said University, Bour Said, Egypt
2Faculty of Computers and Informatics, Suez Canal University, Ismailia, Egypt

Abstract
The advancements of mobile devices, public networks and the Internet of
creature huge amounts of complex data, both construct & unstructured are
being captured in trust to allow organizations to produce better business de-
cisions as data is now pivotal for an organizations success. These enormous
amounts of data are referred to as Big Data, which enables a competitive ad-
vantage over rivals when processed and analyzed appropriately. However Big
Data Analytics has a few concerns including Management of Data, Privacy &
Security, getting optimal path for transport data, and Data Representation.
However, the structure of network does not completely match transportation
demand, i.e., there still exist a few bottlenecks in the network. This paper
presents a new approach to get the optimal path of valuable data movement
through a given network based on the knapsack problem. This paper will give
value for each piece of data, it depends on the importance of this data (each
piece of data defined by two arguments size and value), and the approach
tries to find the optimal path from source to destination, a mathematical
models are developed to adjust data flows between their shortest paths based
on the 0 - 1 knapsack problem. We also take out computational experience
using the commercial software Gurobi and a greedy algorithm (GA), respec-
tively. The outcome indicates that the suggest models are active and worka-
ble. This paper introduced two different algorithms to study the shortest path
problems: the first algorithm studies the shortest path problems when sto-
chastic activates and activities does not depend on weights. The second algo-
rithm studies the shortest path problems depends on weights.

Keywords
0 - 1 Knapsack Problem, Big Data, Big Data Analytics, Big Dao Ta Inconsistencies

How to cite this paper: Yosef, E., Salama, A.
and Wahed, M.E. (2018) Big Data Flow Ad-
justment Using Knapsack Problem. Journal of
Computer and Communications, 6, 30-39.
https://doi.org/10.4236/jcc.2018.610003

Received: July 3, 2018
Accepted: October 26, 2018
Published: October 29, 2018

Copyright © 2018 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2018.610003
http://www.scirp.org
https://doi.org/10.4236/jcc.2018.610003
http://creativecommons.org/licenses/by/4.0/

E. Yosef et al.

DOI: 10.4236/jcc.2018.610003 31 Journal of Computer and Communications

1. Introduction

Big data is a big deal. We read about it and its promises of insight. But we will
need a network to collect and distribute big data connected to processing loca-
tions. Many big data applications require real-time communications. Plan for
big data on your network now; don’t wait until issues arrive. Catch-up costs
money and results in delayed implementations.

The only sure predictions around big data’s impact are that the network will
be busier, need more capacity, and probably cost more. How much capacity will
be needed is only an estimate. It could wind up being far more than estimated if
the big data applications are very successful. Educated predictions on traffic may
look good now, but conditions can change and render them inaccurately.

Real-time processing of big data will require real-time data delivery; data will
already be old and historical. One of the advantages of big data, especially in re-
gard to the Internet of Things (IoT), is its enabling of a rapid response to
changing business functions and conditions such as security alerts, building au-
tomation, location tracking, etc. Big data collected quickly fosters just-in-time
decisions.

The United Nations Economic Commission for Europe predicts that data
growth will be 350% higher in 2019 than it is in 2015; Figure 1 shows the ex-
pected growth of size of data in 2019. Such volume of data means a correspond-
ing 350% growth in network traffic, which may be carried over private LANs
(wired and wireless) and WANs, the Internet, and cellular networks.

This paper proposes an applicable method to adjust the optimal path for
moving big data between source and destination depending on the size and im-
potence of this data, let us suppose that we have more data need to distribute
through given network, according to the importance or value of each data and

Figure 1. Expected growth size of data.

https://doi.org/10.4236/jcc.2018.610003
http://www.unece.org/

E. Yosef et al.

DOI: 10.4236/jcc.2018.610003 32 Journal of Computer and Communications

total capacity of the network the approach selects the suitable amount of impor-
tance data and insure that it is not exceed the total network capacity by using
knapsack problem.

2. Related Work

The proposed method is concerned with specific topics of resource allocation
that have been studied in related literatures. In1996, Yu Gang [1], studied the
Max-Min Knapsack (MNK) problem as a NP-hard for an unbounded number of
scenarios and pseudo polynomial solvable for a bounded number of scenarios.

The effective of lower and upper bounds were generated by surrogate relaxa-
tion. The ratio of these two bounds is shown to be bounded by a constant for
situations where the data range is limited to be within a fixed percentage from its
mean. A branch-and-bound algorithm has been implemented to efficiently solve
the MNK problem to optimality. In 2009, Campegiani and Presti [2], suggested a
generalization model of the classical 0/1 Knapsack Problem. They developed a
heuristic to obtain very near optimum solutions in a timely manner. In 2013,
Zhang et al. [3], proposed a new bio-inspired model to solve problems. The
proposed method has three main steps. First, the 0 - 1 knapsack problem is con-
verted into a directed graph by the network converting algorithm. Then, for the
purpose of using the amoeboid organism model, the longest path problem is
transformed into the shortest path problem. Finally, the shortest path problem
can be well handled by the amoeboid organism algorithm. Numerical examples
are giving to illustrate the efficiency of the proposed mode. In 2015, Rooderkerk
and Heerde [4], developed a robust approach to optimize retail assortments
since retailers face the difficult task of designing a portfolio of products that
balances risk and return. They proposed a novel, efficient and real-time heuristic
depends on 0 - 1 Knapsack that solves the problem and offers an optimal balance.
The heuristic constructs an approximation of the risk-return Efficient Frontier
of assortments.

3. Knapsack Problem
3.1. The Unbounded Knapsack Problem

As a typical non-deterministic polynomial-time hard (NP-hard) problem, the
unbounded knapsack problem (UKP) is defined as follows: We are given a set of
n types { }1 2, , , nO o o o=  of items without quantity restriction. Items of the
same type share a common weight wi and a common value ϕi. The problem is to
choose a subset of these items aiming to maximize their overall value, while their
overall weight does not exceed a given capacity c. Without loss of generality, it
should be assumed that all values and weights are positive, all weights are small-
er than the capacity c, and the overall weight of all items exceeds c. The model of
UKP problem can be formulated as follows:

1Maximi e ,z n
i ii xφ

=∑ (1)

https://doi.org/10.4236/jcc.2018.610003

E. Yosef et al.

DOI: 10.4236/jcc.2018.610003 33 Journal of Computer and Communications

1Constra n ,i n
i ii w x c

=
≤∑ (2)

,1ix Z i n+∀ ∈ ≤ ≤ (3)

where xi represents the number of items of type oi included in the knapsack.

3.2. Preliminaries

In this section, the model of 0 - 1 knapsack problem and the amoeboid organism
are introduced.

Mathematical model of the amoeboid organism
From the experiments on the amoeboid organism as described in [5], the me-

chanism of tube formation can be obtained: tubes thicken in a given direction
when shuttle streaming of the protoplasm persists in that direction for a certain
time. It implies positive feedback between flux and tube thickness, as the con-
ductance of the sol is greater in a thicker channel.

According to the mechanism, two rules describing the changes in the tubular
structure of the amoeboid organism are: first, open-ended tubes, which are not
connected between the two food sources, are likely to disappear; second, when
two or more tubes connect the same two food sources, the longer tube is likely to
disappear [6]. With these two rules, a mathematical model for maze solving
problems has been constructed.

The variable ijQ is used to express the flux through tube ijM from iN to

jN . Assuming the flow along the tube as an approximately poiseuille flow, the
flux ijQ can be expressed as [7]:

()ij
ij i j

ij

D
Q p p

L
= − , (4)

where ip is the pressure at the node iN , ijD is the conductivity of the edge

ijM .
Assume zero capacity at each node; hence by considering the conservation law

of sol the following equation can be obtained see [2]:

()0, 1,2 , 1, ,ijQ j i n= ≠ =∑  (5)

For the source node 1N and the sink node 2N the following two equations
hold

1 0 0,iQ I+ =∑ (6)

2 0 0,iQ I+ =∑ (7)

where 0I is the flux flowing from the source node. It can be seen that 0I is a
constant value in this model.

In order to describe such an adaptation of tubular thickness we assume that
the conductivity ijD changes over time according to the flux ijQ . The follow-
ing equation for the evolution of ijD can be used

()d
d ij ij ijD f Q rD
t

= −

 (8)

https://doi.org/10.4236/jcc.2018.610003

E. Yosef et al.

DOI: 10.4236/jcc.2018.610003 34 Journal of Computer and Communications

where r is a decay rate of the tube. It can be obtained that the equation implies
that the conductivity ends to vanish if there is no flux along the edge, while it is
enhanced by the flux. The f is monotonically increasing continuous function
()0 0f = .
Then the network Poisson equation for the pressure can be obtained from the

Equations (4)-(7) as follows [8]:

()
1 for 1,
1 for 2,

0 /

ij
i ji

ij

j
D

p p j
L

O W

− =
− = + =



∑ (9)

By setting 2 0p = as a basic pressure level, all ip can be determined by
solving Equation (9) and ijQ can also be obtained.

In this paper, it has been obtained that f is monotonically increasing conti-
nuous function satisfying ()0 0f = in Equation (8). Therefore, ()f Q Q= is
used in this paper. With the flux calculated, the conductivity can be derived,
where Equation (10) is used instead of Equation (8), adopting the functional
form ()f Q Q= .

1
1

n n
ij ij n

ij

D D
Q D

tδ

+
+−

= − (10)

3.3. Problem Description

Given an acyclic undirected network G(N,A), consisting of a set of nodes
{ }1,2, ,N n=  and m undirected arcs A N N∈ × . Each arc is denoted by or-

dered pair (i, j), where ,i j N∈ . The weight of arc (),i jt v v= is denoted by a
interval data ,i i iw t t t− + = =   . Given two nodes iv and tv , assume P is one
path from node iv to node tv in the network G. The weight of path P is the
sum of the arcs’ weight in the path and it is stated as w(p). As a result, the short-
est path problem can be formulated as follows [9]:

() ()0 min pw p w p= ∑ (11)

The following equation is defined to convert α interval data into a crisp
number [10].

{ } ()1 , 0 1i i iw t t tα α α− += = ∗ + − ∗ ≤ ≤ (12)

4. A Single-Processor Machine for the 0 - 1 Knapsack
Problem in Dynamic Programming Method [11]

Dynamic Programming (DP) solves the problem by producing “ 1 2, , , nf f f ”
sequentially. As mentioned in the previous section, ()if x is a monotone no
lessening basic step work. “ ()if x ” may be exemplified as the set iSP from
claiming rows from the coordination of that phase focuses of “ ()if x “.

The size of the set iS , (i.e. iSP), is not greater than “C + 1” and rows should
be planned in growing arrangement x while ()if x . The series of sets,
“ 10 , , , nSP SP SP ” is a history of the DP and that should be backtracked through

https://doi.org/10.4236/jcc.2018.610003

E. Yosef et al.

DOI: 10.4236/jcc.2018.610003 35 Journal of Computer and Communications

“Algorithm 1” to get the solution vector x see [12].

4.1 Algorithm 1- traditional 0-1 Knapsack Algorithm

Input Witem : Weight of each item ,Pitem: Profit of each item, C : Capacity

Output SP : array of subproblem to find an optimal solution, X : 0 or 1 select item or not

Step 1 SPij ← {0, 0} // item : number of item , TN :total number of item

Step 2 for item = 1 to TN do // Capcount: : Capacity count
For Capcount ← 0 to C do
If Witem ≤ C then // SP : subproblem
If Pitem + SPD[item -1, Capcount - Witem] > SP [item-1, Capcount] then
SPD[item -1, Capcount] ← Pitem + SP[i - 1, j - Witem]
Else
SP [item , Capcount] ← SP [item -1, Capcount] // Witem > C
Endif
End for // Capcount
End for // item

Step 3 item← TN, Capcount ← C

Step 4 while item and Capcount > 0
If SP [item - 1 , Capcount] ≠ SP [item , Capcount] then
item ← item-1, Capcount ← Capcount- Witem
Xtem = 1
else
item ← item-1
Xtem = 0
end if
Endwhile

5. Numerical Example 1

In this section, a numerical example is used to show the efficiency of the pro-
posed method.

As can be seen in Figure 2, an example of shortest path problem with interval
arcs is shown. The shortest path from node 1 to node 12 is needed to be found,

Figure 2. An example of undirected graph with 12 nodes.

https://doi.org/10.4236/jcc.2018.610003

E. Yosef et al.

DOI: 10.4236/jcc.2018.610003 36 Journal of Computer and Communications

and 0 1α≤ ≤ , but assume that α is set 0.5, Figure 3 can be obtained. The matrix
corresponding to the converted graph can be obtained as follows.

From Figure 2 we can obtain this Table 1.
From Equation (12) assume all the items’ values in the initial conductivity

matrix are set α = 0.5, the shortest path from node 1 to node 12 can be found
using the amoeboid organism algorithm and the result in Table 2 obtained from
the matlab code program applied on the and Figure 3. It can be obtained that
the shortest path is (1) → (2) → (6) → (8) → (10) → (12). If α is set 1, the shortest
path in the network is (1) → (2) → (6) → (10) → (12). If α is set 0, the shortest path
in the network is 1) → (2) → (6) → (8) → (10) → (12).

It can be seen that different shortest paths are obtained when α has different
values.

6. Numerical Example 2

Consider the problem (X) with the following given data in Table 1, where n is
number of items (n = 4) and C is the total capacity (C = 5). Each item (i) has a
knapsack weight (Wi), and a knapsack profit (Pi) obtained by allocating required
resource to the specified item i. All Pis and Wi’s are positive integer numbers.

Table 1. The expected value to activates.

0 5 6.5 7.5 0 0 0 0 0 0 0 0
5 0 5 0 7 4.5 0 9 0 0 0 0

6.5 5 0 3 0 10.5 0 0 0 0 0 0
7.5 0 3 0 0 6.5 8.5 0 0 0 0 0
0 7 0 0 0 6 0 7.5 0 6 0 8
0 4.5 10.5 6.5 6 0 5 3 4 8 0 0
0 0 0 8.5 0 5 0 0 5.5 0 0 0
0 9 0 0 7.5 3 0 0 9.5 3.5 0 0
0 0 0 0 0 4 5.5 9.5 0 6 5 0
0 0 0 0 6 8 0 3.5 6 0 0 4.5
0 0 0 0 0 0 0 0 0 5 0 7.5
0 0 0 0 8 0 0 0 0 4.5 7.5 0

L





=







 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. The converted undirected graph with 12 nodes.

https://doi.org/10.4236/jcc.2018.610003

E. Yosef et al.

DOI: 10.4236/jcc.2018.610003 37 Journal of Computer and Communications

Table 2. The shortest path to network in Figure 3 (1) → (2) → (5) → (12).

0 1.9929 0.0012 0 0 1.9929 0 0 0 0 0

0.001 0 0.001 0 1.9839 0 0 0.0011 0 0 0

0.001 0.001 0 0.001 0 0.0012 0 0 0 0 0

0.001 0 0.001 0 0 0.0011 0.0011 0 0 0 2.0141

0 0.001 0 0 0 0.001 0 0.001 0.001 0 0

0 0.001 0.001 0.001 0.001 0 0.001 0.0014 0.001 0 0

0 0 0 0.001 0 0.0012 0 0 0 0 0

0 0.001 0 0 0.001 0.001 0 0 0.0027 0 0

0 0 0 0 0 0.001 0.001 0.001 0.001 0.0012 0

0 0 0 0 0.001 0.001 0 0.001 0 0 0.0106

0 0 0 0 0 0 0 0 0.001 0 0.0011

0 0 0 0 0.001 0 0 0 0.001 0.001 0

Then, the subproblem SP[TN, Capcount] in algorithm 4 will be computed to
find optimal solution for the list (SP) of the n items.

The network in the formulation has several layers of nodes: It has one layer
corresponding to each item and one layer corresponding to a source node s and
another corresponding to a sink node t. The layer corresponding to an item i has
W + 1 nodes, 0 1, , , wi i i . Node.

The knapsack problem assuming that the knapsack has a capacity of W = 6, vj
is the value of item j, wj is the weight of item j. Figure 4 can be obtained. The
path in this graph corresponds the feasible solution of the knapsack problem.
Node S means the start node, node E means the end node. The 1st number in the
residual circles means the item’s category, the 2nd number in these residual cir-
cles states the capability of the knapsack that the solution has consumed. The
number along the arc funds the value of the consistent item. For example the
circle with rate (1, 4) in the first layer means that the item has used 4 units of the
knapsack’s capacity. At the similar time, each path from node S to node E ex-
plains a possible answer to the problem. For example, the path S − (1, 4) − (2, 6)
− (3, 6) − (4, 6) − EE means that item 1 and item 2 are involved in the knapsack,
item 3 and item 4 are omitted. It also shows that the response to the knapsack
problem match the longest track in the network.

7. Conclusion

The shortest path problem shows a substantial role in many usages. In this pa-
per, based on an amoeboid creature algorithm, a new procedure is proposed to
resolve the shortest path problems with interval bracket. A numeral example is
explained to show the qualification of the proposed method. The 0 - 1 knapsack
problem plays a substantial role in real-life applications. In this paper, based on
amoeboid creature algorithm and classic 0 - 1 Knapsack Algorithm, a new me-
thod is suggested to solve classical 0 - 1 knapsack problems. We have used the

https://doi.org/10.4236/jcc.2018.610003

E. Yosef et al.

DOI: 10.4236/jcc.2018.610003 38 Journal of Computer and Communications

Figure 4. The longest path formulation of the knapsack problem with 4 items.

benchmark problems to exam the amoeboid creature algorithm. The computa-
tional outcomes explain the efficiency of the presented approach. One of our
outstanding studies is to solve other 0 - 1 knapsack problems under additional
complex situations, such as the multi-objective shortest path problem and the
knapsack problem with more criteria.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Gang, Y. (1996) On the Max-Min 0-1 Knapsack Problem with Robust Optimization

Applications. Journal Operations Research, 44, 407-415.
https://doi.org/10.1287/opre.44.2.407

[2] Nakagaki, T., Yamada, H. and Toth, A. (2001) Path Finding by Tube Morphogene-
sis in an Amoeboid Organism. Biophysical Chemistry, 92, 47-52.
https://doi.org/10.1016/S0301-4622(01)00179-X

https://doi.org/10.4236/jcc.2018.610003
https://doi.org/10.1287/opre.44.2.407
https://doi.org/10.1016/S0301-4622(01)00179-X

E. Yosef et al.

DOI: 10.4236/jcc.2018.610003 39 Journal of Computer and Communications

[3] Campegiani, P. and Lo Presti, F. (2009) A General Model for Virtual Machines Re-
sources Allocation in Multitier Distributed Systems. ICAS ‘09. Fifth International
Conference on Autonomic and Autonomous Systems, 69, 162-167.

[4] Zhang, X., Huang, Sh., Hub, Y., Zhang, Y., Mahadevan, S. and Deng, Y. (2013)
Solving 0-1 Knapsack Problems Based on Amoeboid Organism Algorithm. Applied
Mathematics and Computation, 219, 9959-9970.
https://doi.org/10.1016/j.amc.2013.04.023

[5] Robert, R.P. and Van Heerde, H.J. (2016) Robust Optimization of the 0-1 Knapsack
Problem: Balancing Risk and Return in Assortment Optimization. European Jour-
nal of Operational Research, 250, 842-854.
https://doi.org/10.1016/j.ejor.2015.10.014

[6] Tero, A., Kobayashi, R. and Nakagaki, T. (2007) A Mathematical Model for Adap-
tive Transport Network in Path Finding by True Slime Mold. Journal of Theoretical
Biology, 244, 553-564. https://doi.org/10.1016/j.jtbi.2006.07.015

[7] Ahuja, R., Magnanti, T., Orlin, J. and Weihe, K. (1995) Network Flows: Theory, Al-
gorithms and Applications. ZOR - Mathematical Methods of Operations Research,
41, 252-254.

[8] Zhang, X.G., Zhang, Y.J. and Wei, D.J. (2012) Solving Shortest Path Problems with
Interval Arcs Based on an Amoeboid Organism Algorithm. Journal of Information
& Computational Science, 9, 2081-2088. http://www.joics.com

[9] Zhang, G.J., Yang, H.J. and Liu, Z. (2007) Using Watering Algorithm to Find the
Optimal Paths of a Maze. Computer Simulation, 24, 171-173.

[10] Nakagaki, T., Yamada, H. and Tóth, A., et al. (2000) Maze-Solving by an Amoeboid
Organism. Nature, 407, 470-471. https://doi.org/10.1038/35035159

[11] Nakagaki, T., Yamada, H. and Hara, M. (2004) Smart Network Solutions in an
Amoeboid Organism. Biophysical Chemistry, 107, 1-5.
https://doi.org/10.1016/S0301-4622(03)00189-3

[12] Deng, Y., Jiang, W. and Sadiq, R. (2011) Modelling Contaminant Intrusion in Wa-
ter Distribution Networks: A New Similarity-Based DST Method. Expert Systems
with Applications, 38, 571-578. https://doi.org/10.1016/j.eswa.2010.07.004

https://doi.org/10.4236/jcc.2018.610003
https://doi.org/10.1016/j.amc.2013.04.023
https://doi.org/10.1016/j.ejor.2015.10.014
https://doi.org/10.1016/j.jtbi.2006.07.015
http://www.joics.com/
https://doi.org/10.1038/35035159
https://doi.org/10.1016/S0301-4622(03)00189-3
https://doi.org/10.1016/j.eswa.2010.07.004

	Big Data Flow Adjustment Using Knapsack Problem
	Abstract
	Keywords
	1. Introduction
	2. Related Work
	3. Knapsack Problem
	3.1. The Unbounded Knapsack Problem
	3.2. Preliminaries
	3.3. Problem Description

	4. A Single-Processor Machine for the 0 - 1 Knapsack Problem in Dynamic Programming Method [11]
	5. Numerical Example 1
	6. Numerical Example 2
	7. Conclusion
	Conflicts of Interest
	References

