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Abstract 
This paper mainly researches on the signless laplacian spectral radius of bi-
partite graphs ( )1 2 1 2, ; ,rD m m n n . We consider how the signless laplacian 

spectral radius of ( )1 2 1 2, ; ,rD m m n n  changes under some special cases. As 

application, we give two upper bounds on the signless laplacian spectral radius 
of ( )1 2 1 2, ; ,rD m m n n , and determine the graphs that obtain the upper bounds. 
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1. Introduction 

Let ( ) ( )( ),G V G E G=  be a connected graph of order 1n ≥  with vertex set 
( ) { }1 2, , , nV G v v v= 

 and edge set ( )E G  is considered in this paper. In spec-
tral graph theory, one usually uses the spectrum of related matrices to character-
ize the structure of graphs. The most studied matrix associated with G appears to 
be the adjacency matrices ( ) ( )ijA G a=  with 1ija =  when there’s an edge be-
tween iv  and jv , otherwise 0ija = . Some other well studied matrices are the 
Laplacian matrix and the signless Laplacian matrix of G. The former is defined 
by ( ) ( ) ( )L G D G A G= −  where ( ) ( ) ( )( )1 , , nD G diag d v d v=   is the degree 
diagonal matrix, whereas the latter is defined as ( ) ( ) ( )Q G D G A G= − . For po-
lynomials of ( )f x  with only real roots, let ( )( )f xτ  be the largest root of 
( )f x ; the maximum eigenvalue of the (unsigned) Laplace of graph G is denoted 

as ( )Gτ , δ  and ∆  respectively represent the minimum and maximum de-
grees of the graph. 

The actical [1] studied the bipartite graph ( )1 2 1 2, ; ,D m m n n  with the fixed 
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order of n and the size of m, and the graph with the largest Laplace spectrum ra-
dius in the graph class was determined, as well as the upper bound of the Laplace 
spectrum radius of ( )1 2 1 2, ; ,D m m n n . The actical [2] studies the bipartite graph 
of the fixed order of n and the size of ( )0n k k+ > , and describes the structure 
of the bipartite graph with maximum adjacency spectrum radius. Reference [3] 
is to determine the structure of the bipartite graph of the fixed order of n and the 
size of m after removing the given k edges. In Reference [4], by studying the 
signless Laplacian spectrum, the structure of the maximum spectrum of bipartite 
graphs with fixed order and size is determined, and the upper and lower bounds 
of the spectrum are given again. 

Inspired by the above results, this paper studies the bipartite graph
( )1 2 1 2, ; ,rG D m m n n= . We fix the order and the size of the bipartite graphs G, 

and observe what influence may have on the signless Laplacian radius of G after 
transforming the neighborhood of some vertexes. 

Before giving the main conclusion of this paper, we first introduce the bipar-
tite graph ( )1 2 1 2, ; ,rD m m n n , and then give the definitions of equitable division 
and quotient matrix that need to be used in the later proof: 

Definition 1.1. Let G be a connected bipartite graph with two vertex sets of U 
and V, each vertex set has the following partition, 1 2 1 2,U U U V V V= =  , and 
every vertex in 1U  is connected to all vertexes in 1V  and 2V , every vertex in 

2U  is connected to all vertexes in 2V , every vertex in 1V  is connected to all 
vertexes in 1U  and 2U , each vertex in 2V  is connected to all vertexes in 1U , 
showing in Figure 1. If the number of vertexes in 1 2 1 2, , ,U U V V  is 1 2 1 2, , ,m m n n  
respectively, and the induction sub-graphs of 1 2 1 2, , ,U U V V  are all r-regular, 
then denoting ( )1 2 1 2, ; ,rD m m nG n= . For convenience, the order and the size of 
G are n and m, that is 

( )1 2 1 2 1 1 2 2 1,n m m n n m m n n m n= + + + = + +            (1) 

 

 
Figure 1. ( )1 1 2 1 2, ; ,D m m n n . 
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Definition 1.2. Let G be a connected graph, the vertex set ( )V G  of G is di-
vided into ( ) 1 2 KV G V V V=  

. If every vertex in iV  has the same number 
of adjacent vertex in jV , for any { }, 1, 2, ,i j k∈ 

, such partitions 

1 2 KV V V   are called equitable division of G. 

Definition 1.3. Let A as real symmetric matrix, and its row and column are 
divided equally. The matrix formed by elements that is the average row sum of 
each sub-blocks, according to the position of its sub-blocks is called the quotient 
matrix of A. 

Lemma 1. [5] The spectral radius of G must be the eigenvalue of any quotient 
matrix of G. 

Lemma 2. [5] For any graph G, let ( )Gτ  be the maximum (signless) Laplace 

eigenvalue of G, then ( ) ( ){ }max , ,u vG d d u v E Gτ ≤ + ∈ . 

Lemma 3. Let ( )1 2 1 2, ; ,rD m m n n  be a connected bipartite graph and defined 
in definition 1.1, then 1 2 1 2, , ,U U V V  is an equitable division. 

Proof: Because every vertex in 1U  is connected to all vertexes in 2 1,U V  and 

2V , so every vertex of 1U  has the same number of adjacent vertexes in 

2 1 2, ,U V V . Similarly, every vertex in 2U  has the same number of adjacent ver-
texes in 1 1 2, ,U V V , every vertex of 1V  has the same number of adjacent vertexes 
in 1 2 2, ,U U V , every vertex of 2V  has the same number of adjacent vertexes 
with 1 2 1, ,U U V . So 1 2 1 2U U V V    is an equitable divide. 

2. Regular 

In this section, we mainly discuss the graph ( )0 1 2 1 2, ; ,D m m n n , that is, the in-
duction sub-graphs of 1 2 1 2, , ,U U V V  are all independent sets and are all 
0-regular graphs. For such figure ( )0 1 2 1 2, ; ,D m m n n , we observe the change of 
the maximum eigenvalue of the graph by taking neighborhood transformation, 
and then determine the structure of the graph when the graph achieve the max-
imum spectral radius. 

Lemma 2.1. Let ( ) ( )0 1 2 1 2 0 1 2 1 2, ; , , , ; ,D m m n n H D m a m n a nG = + −= , when 

1 1 0a m n− + < , ( ) ( )G Hτ τ< . 
If 1 1 0a m n− + > , ( ) ( )G Hτ τ> , else ( ) ( ).G Hτ τ=  
Proof: Since 1 2 1 2, , ,U U V V  is an equitable division of G, 1Q  and 2Q  are a 

quotient matrix of Q(G) and Q(H), 

1 2 1 2

1 1
1

1 2 1 2

1 1

0
0 0

0
0 0

n n n n
n n

Q
m m m m
m m

+ 
 
 =
 +
 
 

               (2) 

1 2 1 2

1 1
2

1 2 1 2

1 1

0
0 0

0
0 0

n n a n a n
n a n a

Q
m a m m m a
m a m a

+ + + 
 + + =
 − + −
 

− − 

          (3) 

The characteristic polynomials of 1Q  and 2Q  are obtained by calculation as 
follows: 
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( ) ( )
( )
( )

4 3
1 1 1 1 2

2 2 2
1 2 1 1 1 2 2 1 2 2 1 2 1 1

2 2
1 1 1 1 1 2 1 1 1 2

2 2

3

f x x m m n n x

m m m n m n m n m n n n m n x

m n m n m m n m n n x

= + − − − −

+ + + + + + + +

− + + +

  (4) 

( ) ( ) (
) (

)

4 3
2 1 1 1 2 1 1 1 2 1 2

2 2 2 2 2 2
1 2 1 1 1 2 1 2 1 1 1 1

2 2 2 2 2 2
2 1 1 2 1 1 1 1 1 2 1 2

2 1 1 2 1 2 1 1 1 2

2 2 3

 

f x x m m n n x am an m n m n

m n m n m n n n a m n x a m am

a m an a n a n m n m n am m am n
am n an n m m n m n n x

= + − − − − + − + +

+ + + + − + + + −

+ + + + − − − −

+ + − −

 (5) 

( ) ( ) ( ) ( )( )3 1 2 1 1 1 2 1 2f x f x f x ax a m n x m m n n= − = − + − − − −    (6) 

The largest root of ( ) ( )1 2,f x f x  is denoted as ( )( ) ( )( )1 2,f x f xτ τ . By 
Lemma 3, it’s easily to know ( )( )1 1 2 1 2i jf x d d m m n nτ < + < + + + ,  

( )( )2 1 2 1 2i jf x d d m m n nτ < + < + + + , so 1 2 1 2 0x m m n n− − − − < , then  
When 1 1 0a m n− + < ,  

( ) ( ) ( ) ( )( ) ( )( )( )3 1 2 1 1 1 2 1 2 2 1f x f x f x ax a m n x m m n n f f xτ= − = − + − − − − = −  

so ( )( )( )2 1 0f f xτ < , then ( ) ( ) ( ) ( )1 2 ,f f G Hτ τ τ τ< < . 
When 1 1 0a m n− + > ,  

( ) ( ) ( ) ( )( ) ( )( )( )3 1 2 1 1 1 2 1 2 1 2 0f x f x f x ax a m n x m m n n f f xτ= − = − + − − − − = <  

so ( )( ) ( )( ) ( ) ( )1 2 ,f x f x G Hτ τ τ τ> > . 
When 1 1 0a m n− + = ,  

( ) ( ) ( ) ( )( )3 1 2 1 1 1 2 1 2 0f x f x f x ax a m n x m m n n= − = − + − − − − =  

so ( )( ) ( )( ) ( ) ( )1 2 ,f x f x G Hτ τ τ τ= = . 

3. Complete Graph 

The induction sub-graphs of ( ), 1, 2; 1,2i iU V i j= =  studied in the second sec-
tion are all independent sets, namely 0-regular graphs. Based on the second sec-
tion, this section continues to study the situation 1 2 1 2, , ,U U V V  that are all com-
plete graphs. For convenience, this paper write this graphas ( )1 2 1 2, ; ,D m m n n . 

Lemma 3.1. Let ( ) ( )1 11,1; ,1 , 1,1; ,1G D n H D a n a= = + − , ( ) ( )G Hτ τ>  will 
be constant when 2n a> +  and 8n ≥ . 

Proof: Since 1 2 1 2, , ,U U V V  is an equitable division of G, 1Q  and 2Q  are a 
quotient matrix of Q(G) and Q(H) 

1 1

1 1
1

1

1 0 1
0 0
1 1 2 0
1 0 0 1

n n
n n

Q
n

+ 
 
 =
 
 
 

                  (7) 

1 1

1 1
2

1

1 0 1
0 0

1 1 2 0
1 0 0 1

a n n a
n a n a

Q
a n a
a a

+ + − 
 − − =
 + −
 

+ + 

             (8) 
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The characteristic polynomials of 1Q  and 2Q  are obtained by calculation as 
follows: 

( ) ( ) ( )
( )

4 3 2 2
1 1 1 1

3 2 3 2
1 1 1 1 1

4 2 5 5

2 5 3 2 2

f x x n x n n x

n n n x n n

= − + + +

+ − − + + −
            (9) 

( ) ( ) ( )
( )

4 3 2 2
2 1 1 1 1

2 2 3 2
1 1 1 1 1

3 2 2 3 2
1 1 1 1

4 2 5 2 3 5

3 2 7 3 2 5 3

4 3 2 2

f x x a n x n a an n x

a an an a n n n x

a a an an n n

= + − − + − − +

+ − + + − − − +

− − − + + −

      (10) 

( ) ( ) ( )
( ) ( )

3 1 2

3 2 2 2
1 1 1

3 2 2 2
1 1 1

2 3 3 2 7 3

3 4 3

f x f x f x

ax a an x a an an a x

a a n a an an

= −

= − + + + − − +

+ − + + −

     (11) 

First of all need to prove ( )3 12f nτ < , because  

( ) ( ) ( )3 2 2 2 2
3 1 1 1 1 1 12 3 3 2 7 3 3 4 3f x a x n x a n n x a an a n n = − + + + − − + + − + + −   

Set 

( ) ( ) ( )3 2 2 2 2
1 1 1 1 1 1 12 3 3 2 7 3 3 4 3g x x n x a n n x a an a n n= − + + + − − + + − + + −  (12) 

There is a common factor constant a in ( )3f x , and a does not affect the root 
of ( )3f x . Therefore, for the convenience of discussion, we study the polynomi-
al ( )1g x , ( )1g x  after elimination of a is equal to the root of ( )3f x , because 

2 2
1 1 13 4 3a an a n n− + + −  can be viewed as a unary quadratic equation about a, 

what’s more 2 2
1 14 7 1 6 0b ac n n∆ = − = − + + < , so 2 2

1 1 13 4 3 0a an a n n− + + − >  
is constant. Let  

( ) ( ) ( )3 2 2
2 1 1 12 3 3 2 7 3g x x n x a n n x= − + + + − − +            (13) 

the root of ( )2g x  are  

1 1
1 2 3

3 2 3 20, ,
2 2

n nx x x+ − ∆ + + ∆
= = = , and ( )2

1 8 12 48n a∆ = − + −  

Because ( )2 2
1 1 1 1 18 8 12 48 8 16 2n n a n n n− < ∆ = − + − < − + = − , So the  

range of the largest root of ( )2g x  is ( )1 12 3,2n n− . Moreover  
2 2

1 1 13 4 3 0a an a n n− + + − > , so we assume the largest root of ( )1g x  is 

( )3 , 0x k k+ > . 

Next proof ( )( )1 3 12g x x k nτ = + < . We know  

( ) ( )2 2
2 1 1 13 4 6 3 2 7 3g x x n x a n n′ = − + + + − − +  

and  
2
1 112 36 52 36 0n n a∆ = − + + >  

by calculation the root of ( )2g x′  is 
2

1 1 1
1

6 4 12 36 52 36
2

6
n n n a

n
+ ± − + +

< , so 

( )1 2g n  is monotonically decreasing in  
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2
1 1 1

1

6 4 12 36 52 36
,2

6
n n n a

n
 + + − + +
 
 
 

 

and since ( )1 2 0g n <  when 2n a≥ + , so ( )( )1 3 12g x x k nτ = + < , then  
( )3 3 12f x k nτ = + <  proofed. 
Finally proof ( )( )1 12f x nτ > , ( )( )2 12f x nτ > , by calculation  

( ) 3 2
1 1 14 4 0f x n n= − + <  

and 

( ) ( ) ( )3 2 2 3
2 1 14 2 4 3 3 0f x n a n a a n a a= − + + − − − − <  

when 12x n= , so ( )( )1 12f x nτ > , ( )( )2 12f x nτ > . 
Because ( ) ( ) ( )3 1 2f x f x f x= − , and ( )( )2f xτ  is the largest root of the cha-

racteristic polynomial ( )2f x . There have  

( )( )( ) ( )( )( ) ( )( )( ) ( )( )( )3 2 1 2 2 2 1 2 0f f x f f x f f x f f xτ τ τ τ= − = <  

so ( )( ) ( )( )1 2f x f xτ τ> . 
Lemma 3.2. Let ( )1,1; ,G D n n= , ( )1, 1; ,H D a a n a n a= + + − − , then  
( ) ( )G Hτ τ<  is constant. 
Proof: Since 1 2 1 2, , ,U U V V  is an equitable division of G, 1Q  and 2Q  are a 

quotient matrix of Q(G) and Q(H) 

1

2 0
0 0
1 1 2 0
1 0 0 2 1

n n n
n n

Q
n

n

 
 
 =
 
 

− 

                  (14) 

2

2 0
0 0

1 1 2 0
1 0 0 2 1

a n n a n
n a n a

Q
a n a
a n a

+ − 
 − − =
 + −
 

+ + − 

             (15) 

The characteristic polynomials ( )1g x , ( )2g x  of 1Q  and 2Q  are obtained 
by calculation as follows: 

( ) ( ) ( )
( )

4 3 2 2
1

3 2 4 3 2

1 7 18 8

20 18 2 8 12 4

g x x n x n n x

n n n x n n n

= + − + −

+ − + − + − +
         (16) 

( ) ( ) ( )
( )

4 3 2 2 2
2

2 2 3 2

2 3 4 3 2

1 7 3 3 18 8

2 2 2 20 18 2

12 4 8 8 12 4

g x x n x a an a n n x

a n a a n n n x

an an an n n n

= + − + − − + + −

+ − + − + −

+ − − + − +

      (17) 

let 

( ) ( ) ( )1 2h x g x g x= − , 

( ) ( ) ( )2 2 2 2 2

3 2

3 3 2 2 10 12 2

8 12 4

h x a an a x a n a an an a x

an an an

= − + + − + − +

− + −
    (18) 
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because 23 3 0a an a− + > , we obtain that ( )h x  is an open up quadratic func-
tion, and ( )( )2 2 2 2 3 24 1 2 8 2 1 0a n a n a an an a n n n∆ = − − + − + + + − − > , be-
cause of ( )24 1 0a n − > , we let 2 2 2 3 2

1 2 8 2 1a n a an an a n n n∆ = − + − + + + − − , 
and get the derivative for a and n, ( ) ( ) 2

1 2 2 8 2 2 0a n a n n′∆ = − − + + > ,  
( ) 2 2

1 4 8 2 3 1n a an a n n′∆ = + − + + − , so 0∆ > . Let the two roots be 1x  and 2x  

respectively, and 1 2x x< . By the root formula 
2

bx
a

− ± ∆
= , ( )22 1a n∆ < − , 

( )2

2

2 1
2

b a n
x

a
− + −

<  both can be calculated. 2x  is monotonically increasing 

with respect to a, so 2 2 1x n< − . When 1a = , then  

( ) ( )( )2 2

2

5 1 3 8

3 2

n n n n n n
x

n

− + − + −
=

−
 

the four roots of ( )1g x  are 2 2n n± , 2n , 1n −  and 2 2 2x n n> − . When 
2 1x n> − , then ( ) ( )1 2g x g x> . when 2 1x n< − , then ( )1g x , ( )2g x  have 

two intersections, and ( )1g x  haven’t gotten to the maximum yet, so ( ) ( )G Hτ τ<  
is constant. 

4. Conclusion 

It can be seen from the above conclusions, the structure of the graph 
( )0 1 2 1 2, ; ,D m m nG n=  is ( )0 1 1 2 21, ;1,D m n m n+ −  when the signless laplacian 

spectral radius of G has reached maximum. Similarly, the structure of the graph 
( )11,1; ,1G D n=  is ( )11,1; ,1D n , when the signless laplacian spectral radius of G 

has reached maximum, and the structure of the graph ( )1,1; ,G D n n=  is 
( ), ;1,1D n n , when the signless laplacian spectral radius of G has reached maxi-

mum. 
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