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Abstract 
Tropospheric ozone (O3) is one of the pollutants that have a significant im-
pact on human health. It can increase the rate of asthma crises, cause perma-
nent lung infections and death. Predicting its concentration levels is therefore 
important for planning atmospheric protection strategies. The aim of this 
study is to predict the daily mean O3 concentration one day ahead in the 
Grand Casablanca area of Morocco using primary pollutants and meteoro-
logical variables. Since the available explanatory variables are multicollinear, 
multiple linear regressions are likely to lead to unstable models. To counte-
ract the multicollinearity problem, we compared several alternative regression 
methods: 1) Continuum Regression; 2) Ridge & Lasso Regressions; 3) Prin-
cipal component regression (PCR); 4) Partial least Square regression & sparse 
PLS and; 5) Biased Power Regression. The aim is to set up a good prediction 
model of the daily ozone in the Grand Casablanca area. These models are fit-
ted on a training data set (from the years 2013 and 2014), tested on a data set 
(from 2015) and validated on yet another data set data (from 2015). The Las-
so model showed a better performance for the prediction of ozone concentra-
tions compared to multiple linear regression and its other alternative me-
thods. 
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Statistical Forecasting, Tropospheric Ozone 

 

1. Introduction 

Tropospheric ozone (O3) is a dangerous air pollutant that threatens the human 
health [1]. Indeed, epidemiologic studies have shown that current ambient ex-
posures are associated with reduced baseline lung function, exacerbation of 
asthma and premature mortality [2]. It is a secondary trace gas in the atmos-
phere, not directly emitted from any natural or anthropogenic source, but rather 
formed through a complex set of several chemical reactions in presence of sun-
light [3].  

As all the large cities in the world, Casablanca has a serious photochemical 
tropospheric ozone (O3) air pollution problem. The urban emission pattern of 
O3-forming pollutants is caused by meteorological factors: exposure to sunshine, 
temperature and wind speed and also by a series of atmospheric reactions in-
volving precursor pollutants caused by car and industry emissions.  

Various statistical methods are available to predict daily O3 [4] [5] [6] [7] 
Multiple linear regression (MLR) is frequently used by several environmental 
protection agencies involved in air quality monitoring (e.g. [8] [9] [10] etc.). The 
prediction ability of this type of models is generally satisfactory, notwithstanding 
the fact that, very often, the predictor variables are highly collinear. In the fol-
lowing, MLR will stand as the standard method to which alternative methods 
will be compared. In order to tackle the multicollinearity issue, various methods 
are proposed in the literature [11]. Ridge Regression [12] was certainly the first 
method proposed in this context. This method of analysis is based on a regulari-
zation strategy which aims at constraining the length (as measured by the L2 
norm) of the vector of regression coefficients to be relatively small. Similarly, 
Lasso regression [13] follows the same principle as Ridge Regression, but, this 
time, the length of the regression coefficients is measured by L1 norm. Other al-
ternative methods to MLR encompass Principal Component Regression [14] and 
Partial Least Squares regression [15] [16] [17]. These latter techniques were 
combined into a single approach, Continuum Regression (CR), proposed by 
Stone and Brooks [18]. Sundberg [19] shows that CR is also related to Ridge re-
gression. Recently, a new biased regression strategy consisting in gradually 
shedding off the correlations among the independent variables was proposed by 
Qannari and El Ghaziri [20].  

In this study, we compare different regression models to predict the daily 
mean O3 concentration in the Grand Casablanca area using O3 persistence and 
meteorological variables. We follow two successive stages. In the first stage, we 
fit statistical models using two years (2013-2014, calibration sets) of pollutants 
and observed meteorological data. In the second stage, in order to choose the 
best predictive model, we compare the prediction abilities using the observed 
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dataset of 2015 (test set) and the meteorological forecasting dataset of 2015 (pre-
diction dataset test). The aim of the study is to select the best model in terms of 
prediction ability. 

2. Material and Methods  
2.1. Data 

The three years datasets used in this study are provided by the National Meteo-
rological Office of Morocco (DMN). Their collection ranged from January 2013 
to December 2015. A detailed description of the 25 available variables is given in 
Appendix A. The data consist of daily O3 pollutant concentrations, observed at 
“Jahid” monitoring site, located in the western center of the Casablanca city 
which is the most important industrial area (Figure 1). Following the DMN 
recommendation, we use in this study 23 meteorological variables such as tem-
perature, humidity, duration of sunshine, wind direction, wind speed, precipita-
tion, pressure, etc. also measured at the center of Casablanca. After a step of 
pre-processing of these data which involved in particular the imputation of 
missing values, we dispose of a dataset containing for each day the observed me-
teorological data, forecasted meteorological data acquired from the numeric 
model ALADIN-Maroc and the measured O3 concentrations. The period of the 
study is limited to the hot and sunny season (April-September) when ozone 
concentrations are at their maximum [21]. 

2.2. Exploratory Data Analysis 

Inevitably, the collected data contain missing values and it is important to tackle  
 

 
Figure 1. Map of Grand Casablanca area in the western center of Morocco. The mea-
surement station El-Jahid is an urban one located in the center of Casablanca. 
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this problem before further analyses are performed. The reasons for which a 
value can be missing are numerous. For instance, in air quality applications, data 
can be missing due to a dysfunction of the equipment or an insufficient resolu-
tion of a sensor device. Therefore, it is necessary to identify missing values and 
choose an appropriate imputation technique in order to keep as much data as 
possible e.g. [22]. Various imputation procedures are used in practice. We can 
cite for instance regression imputation, nearest-neighbour imputation, random 
hot-deck imputation [23] [24] [25]. We choose the K-nearest neighbors (KNN) 
strategy because it is simple and efficient. With this technique, the imputation is 
based on the neighboring observations to each missing value [26] [27]. More 
precisely, missing values are replaced by values extracted from cases that are 
similar to the recipient with respect to the observed (i.e. non missing) characte-
ristics.  

Once the data were imputed, we applied a standardized Principal Compo-
nents Analysis (PCA) to investigate the relationships between the variables and 
assess the degree of collinearity among the predictor variables [28] [29] [30].  

2.3. Linear Modelling Approach 

Several statistical models are available to predict tropospheric ozone concentra-
tion. Since the available explanatory variables are potentially highly correlated, 
we investigate alternative methods to the classical Multiple Linear Regression 
(MLR) that circumvent the problem of multicollinearity which is likely to lead to 
unstable models. The emphasis is put on: 1) classical regularized regression me-
thods: Principal Components Regression [14], Partial Least Squares Regression 
[16], Sparse PLS [31] [32] and Continuum Regression introduced by Stone and 
Brooks in 1990; 2) Penalized regression methods: Ridge [12] and Lasso devel-
oped by Tibshirani [13] and finally; 3) Biased Power Regression recently intro-
duced by Qannari and El Ghaziri [20]. 

2.3.1. Multiple Linear Regression (MLR) 
We assume the MLR model using Equation (1): 

13 0 1 3 2i i

p j
j i ijO O varmeteo eβ β β

− =
= + + +∑                 (1) 

where 3i
O : ozone concentration at day i; 

13i
O

−
: ozone concentration at day i − 1 

(i.e. the persistence); j
ivarmeteo : Meteorological variable j observed on day i.  

Equation (1) can be written using usual matrix format after centring of the 
response variable:  

= +y X eβ                             (2) 

where y  is an ( )1n×  vector of centered dependant variable (O3 concentra-
tions at day i), X  is a ( )n p×  matrix of standardized predictors (Observed 
meteorological variables and O3 concentrations at day i − 1), β  is an ( )1p×  
vector of unknown regression coefficients and e  is an ( )1n×  vector of ran-
dom errors. Classically, the distribution of e  is assumed to be normal with 
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mean equal to 0 and a variance covariance matrix equal to 2σ I ; where I  is 
the identity matrix.  

The usual unbiased Ordinary Least Squares (OLS) estimator is expressed by 
(3) [33]: 

( ) 1T T
OLS

ˆ −
= X X X yβ                        (3) 

The prediction of y  using OLS, OLSŷ , is given by OLS OLS
ˆˆ =y Xβ . It is well 

known that this estimator is likely to lead to an unstable model and poor predic-
tions in presence of quasi-collinearity among the predictors or in the case of the 
small sample and high dimensional setting. 

2.3.2. Principal Component Regression (PCR) 
The principal components regression (PCR) approach involves running PCA on 
the predictor variables and, thereafter, using the first m principal components 
(PC) with1 m p≤ ≤ , 1, , mF F , as the predictors in a linear regression model 
[14] [34]. 

The appropriate number, m, of first principal components to be introduced in 
the model can be determined in practice by a validation technique such as Leave 
One Out cross validation (LOO). The PCR model can be written as in Equation 
(4):  

( ) ( )PCRm m= +y F eβ                         (4) 

where ( )mF  is a matrix with m columns containing the m first PCs. The Ordi-
nary Least Squares (OLS) estimator of PCRβ  is given by:  

( ) ( )( ) ( )
1T T

PCR
ˆ

m m m

−
= F F F yβ . 

It is easy to express this model in terms of the original variables by remarking 
that ( ) ( )m m=F XU , where ( ) ( )T

pm =U U U I  is the matrix containing the m 
dominant normalised eigenvectors of TX X . It follows that ( )

T
PCR OLS

ˆ ˆ
m=Uβ β .  

PCR gives a biased estimate of the regression coefficients. If all the PCs are in-
cluded in the model, we retrieve the usual MLR estimator, OLSβ̂ . 

2.3.3. Partial Least Squares Regression (PLS) 
As with PCR, PLS regression, introduced by [35], consists in regressing y on 
components, also called latent variables, which are linear combinations of the p 
predictor variables.  

The major difference between PCR and PLS regression is that, whereas PCR 
uses only X  to construct the components to be used as regressors, PLS regres-
sion uses both X  and y  to determine such components. More precisely, the 
PLS components are determined sequentially and, at each step, we seek to de-
termine a new component, constrained to be orthogonal to the components de-
termined at the previous stages, so as to maximize the covariance between this 
component and the independent variable.  

Suppose that m PLS components are determined. Again, the number m of la-
tent variables to be introduced in the model can be selected by means of LOO 
cross validation technique in practice. These latent variables can be stacked into 
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a matrix ( )mT , ( ) ( )m m=T XW  where ( ) ( )1, , mm =W w w  is the X-weight ma-
trix. Equation (5) gives the vector of fitted values obtained by regressing y  on 

( )mT , namely:  

( ) ( ) ( )( ) ( )
1T T

PLSˆ m
m m m m

−
=y T T T T y                      (5) 

We can show in Equation (6) the expression of PLS regression coefficients as:  

( ) ( ) ( )( ) ( ) ( )( ) ( )
1 1T T T

PLS
ˆ

m m m m m m

− −
=W P W T T T yβ                (6) 

where ( ) ( ) ( ) ( )( ) 1T T
m m m m

−
=P X T T T  and ( )

T T
m =W X y X y , where  is the L2 

norm.  
PLS regression is often helpful to reduce the number of predictors to a small 

number of latent variables constructed by linear combinations of the columns of 
original predictors. It yields a biased estimate of the regression coefficients. 

2.3.4. Sparse PLS Regression (SPLS) 
The Sparse PLS method defined by [32] is a direct adaptation of the PLS regres-
sion method. It allows us to operate a dimensionality reduction using regression 
PLS.  

In SPLS regression, w  the first vector of loadings is sought as an optimal 
solution to: 

( )Tmaxw w Mw  subject to T 1=w w , 
1 η≤w , 

where T T=M X yy X , 
1w  is the L1-norm of vector w  and 0η >  is a scalar 

which controls the degree of sparsity. 
The regression coefficients estimation of y  on X  is calculated in the fol-

lowing way: The coefficients of the non-selected variables are set to 0, and the 
coefficients of the selected variables are those obtained by means of the “stan-
dard” PLS regression. We can also give an expression of the SPLS regression 
coefficients defined by (7) [32] 

( ) ( )PLS
SPLS

ˆ , if 0 and 1, ,ˆ
0 otherwise

jj
j

j m ≠ == 


w β
β              (7) 

The interest of the SPLS is two folds. On the one hand, thanks to the sparsity, 
it yields an easy to interpret model and, on the other hand, it prevents the prob-
lem of multicollinearity by using the PLS framework. SPLS estimator is biased 
comparing to OLS estimator. Moreover, SPLS is computationally efficient with a 
tunable sparsity parameter to select the important variables. 

2.3.5. Continuum Regression (CR) 
The CR prediction model is chosen from a continuum of candidates among 
which we find methods of analysis related to OLS estimation, PCR, PLSR. [19] 
gives a general overview of the continuum approach regression and shows how 
different methods relate to “least squares ridge regression”. As with PCR and 
PLS regression, CR consists in a regression upon latent variables (i.e. optimal li-
near combinations of the independent variables). More precisely, these latent 
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variables are determined in a sequential way where at each stage, a latent varia-
ble is defined so as to realize a balance between stability (as assessed by the va-
riance of the latent variable) and prediction ability (as assessed by the correlation 
between the latent variable and the dependent variable y ). The prediction of 
y  using CR, CRŷ , is given by CR CR

ˆˆ =y Xβ . The CR achieves a reduction of the 
variance of estimator at the cost of introducing a small bias [18]. 

CR aims at transforming the explanatory variables into new latent predictors 
which are orthogonal to each other and constructed as linear combinations of 
the original predictors. It makes it possible to circumvent the problem of multi-
collinearity between predictors. However, the CR regression does not specifically 
aim at selecting a subset of variables [18].  

2.3.6. Penalized Regression 
Another general strategy to circumvent the problem of multicollinearity consists 
in imposing a constraint on the vector of regression coefficients. The two most 
popular methods in this context are Ridge and Lasso regressions. 
 Ridge regression 

Ridge regression is the first regularization procedure that was proposed to 
cope with the multicollinearity problem [12]. The Ridge estimator is given by 
(8): 

( ) 1T T
R

ˆ k
−

= +X X I X yβ                        (8) 

where 0k ≥  is a constant to be selected. Note that if 0k = , the Ridge estima-
tor amounts to the least-squares estimator. 

Ridge estimator is obtained as a solution to the following least squares prob-
lem defined by (9): 

( )2

2

,

ˆ arg min where 0
pR

δ
δ

∈ ≤
= − ≥y X

β β
β β               (9) 

There is a one to one correspondence between the Ridge parameter k and the 
upper bound, δ, imposed on the vector of regression coefficients, β . From a prac-
tical point of view, these parameters can be selected by means of a cross-validation 
technique. 

The Ridge regression shrinks the OLS estimators towards 0. It yields a biased 
estimator, but with a smaller variance than that of OLS estimator. 
 Lasso regression 

The Least Absolute Shrinkage and Selection Operator, or Lasso [13] is another 
penalized regression where L2 penalty of ridge regression is replaced by an L1 
penalty: 11

p
jj β

=
=∑β . This is a subtle change that has important conse-

quences. Indeed, this constraint entails that some of the regression coefficients 
are shrunk exactly to zero. This means that this regression strategy operates de 
facto a selection of variables since the unimportant variables are discarded, their 
regression coefficients being equal to zero. Formally, the lasso estimator is given 
as a solution to the following optimization problem by (10): 
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( )
1

2
Lasso

,
ˆ arg min

p δ∈ ≤
= −y X

β β
β β ,                (10) 

where 0δ ≥ .  
The parameter δ controls the degree of sparsity and, in practice; it is determined 

by Leave One Out (LOO) cross validation procedure. The smaller this parameter 
is, the larger is the number of discarded variable. Contrariwise, if δ is larger than 

0 1
ˆp

jjδ
=

= ∑ β  (where ˆ
jβ  are the OLS estimators) then Lasso OLS

ˆ ˆ=β β . Lasso 
regression has the double effect of shrinking the β coefficients, allowing to de-
crease the variance of the regression coefficients as with Ridge regression, and, 
more importantly, to operate an automatic selection of the variables, by cancel-
ling out some jβ  coefficients.  

2.3.7. Biased Power Regression (BPR) 
Recently, a new biased regression called Biased Power regression (BPR) strategy 
was proposed [20]. It consists in gradually shedding off the correlation among 
the independent variables by means of a tuning parameter α. More precisely, the 
BPR estimator of β  is given by (11): 

( ) 1T T
BP

ˆ α−
= X X X yβ                      (11) 

where α is a tuning parameter which ranges between 0 and 1. 
In practice, α is selected using a cross validation procedure. 
Clearly, when 0α = , we retrieve the OLS estimator and as α increases, the 

variance-covariance matrix of the predictor variables is shrunk to the identity 
matrix. The prediction of y using BPR, BPŷ  is given by BP BP

ˆˆ =y Xβ . 
BP-regression shares the same properties as Ridge regression (see Section 2.3.4) 

and thus can highlight those variables whose coefficients become very small. 
However, it was not designed to select a subset of variables [20]. 

2.4. Evaluation of the Methods 

To assess the prediction ability of the various models listed above on the Grand 
Casablanca O3 data, we performed a cross validation technique on a training set 
to determine the appropriate parameters (number of components, Ridge or lasso 
constant…) to be used in the prediction models. Using these parameters, the 
performance of the different models is assessed on the basis of a fresh data set. 
More precisely, we partitioned the available data into two complementary data-
sets: 1) summer period of 2013 and 2014 (called the training set) used to adjust 
the models; and 2) summer period of 2015 (called the validation set or testing 
set) used to “test” the models obtained in the training phase. The models are fit-
ted on the training set used to predict the ozone responses for a) the observed 
meteorological data on 2015 of the validation set (obstest) and b) the forecasted 
meteorological data on 2015 for real validation (prevtest). 

The performance of the models is measured with standard indicators defined 
by Equations (12)-(14) generally used to compare statistical models [36]. 

In a first stage, an internal validation (2013 and 2014 datasets) is performed 
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on the basis of the following criteria in order to assess the quality of the model 
adjustment: 

The multiple correlation coefficient R2 allows us to assess the quality of the  

adjustment based on the training set: 
( )
( )

train

train

2
2 1

2

1

ˆn
i ii

n
ii

y y
R

y y
=

=

−
=

−

∑
∑

, where trainn  is the  

size of training sample. 
The Root Mean Squared Errors (RMSE): This is computed according to the 

following expression: 

( )train 2
1

train

1 ˆRMSE n
i ii y y

n =
= −∑                  (12) 

The smallest value of this criterion corresponds to the best adjustment of the 
model.  

For the external validation (on summer 2015 observed dataset), the following 
criterion is used to assess the prediction ability of the models [37]: 

The Root Mean Squared Errors of Prediction (RMSEP). This criterion is simi-
lar to RMSE but, this time, the validation data set is used instead of the training 
data set. 

( )obstest 2
obs 1

obstest

1 ˆRMSEP n
i ii y y

n =
= −∑               (13) 

where obstestn  is the size of the observed the validation set (obstest). 
Obviously, the best predictive model corresponds to the smallest RMSEP. 
The following criterion is used to assess the performance of the models with 

observed meteorological data (obstest) and real meteorological forecast data 
(prevtest) for summer period of 2015. 

In the same way, we define the RMSEP of prevision based on the forecasted 
dataset as: 

( )prevtest 2
prev 1

prevtest

1 ˆRMSEP n
i ii y y

n =
= −∑               (14) 

where prevtestn  is the size of the sample size of the forecasted data (prevtest). 

3. Results and Discussion 

Experiments were run on an Intel(R) Core(TM) i7-6600U CPU computer with 
2.60 GHz, 8 Go in RAM, Windows 10 Professional 64 bits. 

All the statistical analyses were performed using the free software R. 
(http://www.rproject.org/). 

3.1. Data Description  

In this study, the dataset is composed of 25 explanatory variables. Appendix A 
gives the abbreviation of these variables.  

Table 1 provides descriptive statistics of the meteorological variables and 
tropospheric ozone concentrations calculated on the data with missing values.  
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Table 1. Statistics of measured variables at Grand Casablanca area from 01 April 2013 to 
30 September 2014. 

Variable Min Max Mean St.Dev NA 

TMPMAX 16.2 37.5 24.5 3.09 0 

TMPMIN 8.20 23.50 18.35 3.02 0 

TMPMOY 12.40 29.90 21.45 2.88 0 

RRQUOT 0.00 19.30 0.39 1.98 0 

DRINSQ 0.00 13.30 9.72 2.79 0 

HUMREL06h 50.00 100.0 87.42 8.00 0 

HUMREL12h 34.00 95.00 68.32 8.78 0 

HUMREL18h 28.00 97.00 75.66 9.66 0 

PRESTN06h 9997.7 1017.3 1008.2 2.97 0 

PRESTN12h 997.7 1016.5 1008.9 2.91 0 

PRESTN18h 999 1016 1008 2.88 0 

FFVM06h 0.00 4.00 1.55 0.80 3 

FFVM12h 0.00 6.00 3.58 0.98 4 

FFVM18h 0.00 7.00 3.46 1.04 4 

DDVM06degre 0.00 360.0 176.4 117.87 3 

DDVM12hDEG 0.00 360.0 227.3 141.63 4 

DDVM18hDEG 0.00 360.0 189.2 152.21 4 

Vx06 −2.95 3.46 −0.05 1.06 3 

Vx12 −5.91 3.94 −0.59 1.98 4 

Vx18 −5.91 4.50 −0.10 1.84 4 

Vy06 −4.00 4.00 0.08 1.38 3 

Vy12 −3.06 6.00 2.75 1.39 4 

Vy18 −5.36 6.00 2.79 1.36 4 

O3veilleJahid 10.00 130.0 52.83 25.66 23 

O3Jahid 10.00 130.0 52.84 25.62 23 

 
Minimum, maximum, mean and standard deviation statistics are provided to 
describe the characteristics of the data set. 

The 2013 and 2014 studied periods are characterized by high temperatures. 
We can notice that, in the Grand Casablanca Area, the maximal temperature 
(TMPMAX) can go up to 37.5˚C and the minimal temperature is 16.2˚C. The 
maximal daily total sunshine duration is of 13.3 hours. We can also notice that 
there is almost no rain is these periods (RRQUOT). The Wind strength average 
is relatively high at 18 hours (FFVM18h = 7 m/s). The O3 concentrations are 
between 10 and 130 µg/m3. 

There are in total 90 missing values for the 366 recording days, distributed on 
14 variables. This represents around 2% of missing values to be imputed before 
the prediction models are performed. 

3.1.1. Missing Values Imputation 
As mentioned above, a strategy based on the K-nearest neighbors was per-
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formed. Different K values were used in the literature and the choice of K = 10 
led to the best results [38].  

3.1.2. Multivariate Analysis 
Figure 2 shows the scatter plots associated with pairs of the available variables. It 
highlights the pairwise correlations between these variables. We also indicate in 
Figure 2, the histograms associated with each variable and the correlation coef-
ficients between each pair of variables. For instance, we can see that there is a 
high correlation between O3veilleJahid and O3 Jahid (the two last columns) with 
a correlation coefficient equal to 0.92. We can also observe large correlations 
(around 0.94) between the first three explanatory variables (TMPMAX and 
TMPMOY, TMPMIN and TMPMOY). 
 

 
Figure 2. Scatter plots highlighting the correlations between pairs of variables. 
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The diagonal entries show the histograms associated with the various variables 
and the upper entries indicate the coefficients of correlations between pairs of 
variables.  

We also performed a PCA on the imputed dataset. PCA is run on the com-
plete data (2013 and 2014) after imputation and standardization of the variables. 
The data is composed of 366 days (from April to September of 2013 and 2014) 
and 24 variables. The first five principal components recover up to 65% of the 
total variance (Table 2). In the following, only the results related to the first two 
principal components which recover around 40% of the total inertia are shown. 

Figure 3 shows the correlations of the explanatory variables with the first two 
principal components. The variable O3 Jahid is superimposed as an illustrative 
variable with a blue arrow to depict its relationships with the explanatory va-
riables. This figure highlights the strong correlations among the variables, which 
may be harmful for the prediction models. 

The first PC is linked to wind direction (Vx06, Vx12, Vy12 and Vx18) and 
pressure variables (PRESTN at 06 h, 12 h and 18 h). We can notice, for example, 
that variables TMPMAX, TMPMIN and TMPMOY as well as PRESTN06h, 
PRESTN12h and PRESTN18h are strongly correlated. A strong correlation also 
exists between variables Vx06, Vy06, Vx18 and Vx12. O3veilleJahid variable is 
very correlated to O3 Jahid but it is not very well represented in the plan 
(PC1-PC2). 

3.2. Prediction Models 

In this section, we compare the results obtained from the different regression 
models described in section 2.3, namely: 1) the Multiple Linear Regression 
(MLR) model applied to all the variables of the dataset (24 variables), 2) the Re-
duced MLR with seven variables selected by means of Akaike Information Crite-
rion (AIC) [39] [40], 3) The Principal Component Regression (PCR) model, 4) 
PLS and sparse PLS models, 5) Continuum Regression (CR), 6) Ridge and Lasso  
 
Table 2. Percentage of total variance recovered by the principal components. 

Component Eigenvalue 
Percentage 
of variance 

Cumulative percentage 
of variance 

comp 1 4.83 23.02 23.02 

comp 2 3.67 17.47 40.49 

comp 3 1.91 9.11 49.60 

comp 4 1.77 8.43 58.04 

comp 5 1.52 7.27 65.31 

comp 6 1.30 6.19 71.51 

comp 7 1.01 4.82 76.33 

comp 8 0.99 4.73 81.06 

comp 9 0.83 3.93 84.99 

comp 10 0.64 3.05 88.05 
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Figure 3. PCA correlation circle for Grand Casablanca data. Illustrative variable (O3) is 
represented with blue dashed arrow. 
 
regressions, 7) Biased Power regression (BP-regression).  

A cross validation procedure (LOO) is applied on the data collected during 
the period extending from April 1st to September 30th in 2013 and 2014 (training 
data) to determine for each model the parameters (number of components, 
Ridge and Lasso parameters…) leading to the minimum of the Root Mean 
Squared Error (RMSE). Then, the prediction ability according to the Root Mean 
Squared Error Predicted (RMSEP) of the various models is assessed on the basis 
of: 1) observed data (test data), RMSEPobs, and 2) forecasted data, RMSEPprev 
from the summer period of 2015.  

Table 3 shows the results of the various methods according to several criteria 
(RMSE, R2, RMSEPobs and RMSEPprev). 

Concerning the adjustment of the model on training data (internal valida-
tion), not surprisingly, the MLR model leads to the lowest RMSE (9.503), but the 
other models lead to close values and take into account multicollinearity prob-
lem. However, if the goal is to get the best predictive model, the RMSE alone is 
unsufficient and we need to analyze the RMSEP to assess the predictive quality 
of each model. 

As for the criterion RMSEPobs in external validation, Lasso, Ridge, PLS, BP  
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Table 3. Comparison of different models according RMSE, R2 and RMSEP criteria. 

Model MLR 
Reduced 

MLR 
PCR PLS 

Sparse 
PLS 

CR Ridge Lasso BP Reg 

Nb var 24 7 24 24 14 24 24 11 24 

Parameter   ncp = 10 ncp = 5 
ncp = 3 
η = 0.56 

ncp = 1 
α = 0.1 

λopt = 
9.322 

Fract = 0.2 α = 0.01 

RMSE 9.503 9.587 10.521 9.59 9.703 10.11 9.537 9.676 9.535 

R2 0.862 0.859 0.831 0.859 0.858 0.872 0.818 0.829 0.834 

RMSEPobs 11.84 11.68 13.45 11.74 12.24 11.83 11.73 11.58 11.74 

RMSEPprev 15.40 14.49 15.80 13.49 14.92 15.21 14.98 12.74 14.39 

 
regressions and CR outperform the other methods. Lasso shows the best predic-
tive ability since it has the smallest RMSEPobs. Moreover, this method of analy-
sis has yet another advantage since the model is based on fewer predictive variables 
(11 variables such as TMPMAX, TMPMIN, DRINSQ, HUMREL12h, PRESTN06h, 
FFVM06h, FFVM18h, DDVM12h, Vx06h, Vy06h and O3veilleJahid) than the other 
models with the exception of the reduced model (7 predictive variables such as 
TMPMIN, TMPMOY, DRINSQ, PRESTN06, Vx06, Vx12, O3veilleJahid). Among 
these significant variables, TMPMIN and TMPMOY are strongly correlated so 
the reduced model does not solve the multicollinearity problem by comparing it 
to the Lasso model. 

Most important are the results of the RMSEPprev based on the forecasted me-
teorological data for 2015. We recall that the forecasted meteorological data will 
be the data used on daily basis to predict the O3 concentration as obtained by 
Aladin-Maroc numerical forecasted model. It turns out that Lasso has by far the 
best RMSEP_prev (equal to 12.74), a value close to its RMSEP_obs (11.58) fol-
lowed by the PLS and BP regression model. However, these last two models keep 
all the predictive variables, unlike the Lasso model, which keeps fewer variables, 
thus obtaining a model that is simple and easy to interpret. 

Figure 4 shows a good correlation (around 0.723) between observed O3 and 
forecasted O3 data one day ahead obtained with the Lasso regression model only 
in 2015. 

The most important finding (Table 3, Figure 4) is that the Lasso regression 
model has the best performance in predicting O3 concentrations in Jahid com-
pared to the other models. Moreover, it clearly gives stable regression coeffi-
cients compared to Reduced MLR model. Table A1 of explanatory variables and 
Table B1 of the coefficients estimated by the models used in this study shows 
that the explanatory variables most retained by the models are: TMPMAX, 
TMPMIN, DRINSQ, PRESTNO6h, Vx06 and O3veilleJahid. Indeed, the forma-
tion of ozone in the Grand Casablanca area is related more particularly to: 1) the 
maximum and minimum daily temperature; 2) the period of intense sunshine; 3) 
the weak wind that accumulates the massive concentration of ozone and; 4) the 
previous day’s concentration, which, to a large extent, determines the next day’s  
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Figure 4. Predicted O3 using the Lasso regression model versus observed O3. 

 
ozone concentration. 

4. Conclusions 

Starting with a multiple linear regression model, which is plagued by multicolli-
nearity among the predictor variables, we have considered nine more or less re-
cent alternative methods to relate meteorological and pollution variables. The 
emphasis was put on the prediction ability of the daily tropospheric ozone of 
these models in the Grand Casablanca area as the first comparative study of its 
type in such region.  

We proposed the selected Lasso model based on a comparison of several li-
near forecasting methods to reduce the multicollinearity problem. The results 
obtained over two years of training data (2013 and 2014), verified on observed 
data (2015) and validated on forecast data (2015) show that the Lasso model has 
the best predictive capacity O3 for the Jahid station located in Grand Casablanca 
area. Moreover, using the dataset of 2015, Lasso model still gives the best predic-
tive ability for O3 in Jahid station. The Lasso model presents the interest of be-
ing relatively simple and easily interpretable. The choice of this model is ex-
plained by the fact that it yields the best criteria in comparison to the alternative 
models discussed in this paper. These criteria include R², RMSE, RMSEPobs and 
RMSEPprev. Furthermore, besides yielding a more stable model than multiple 
linear regression, Lasso is based on a relatively small number of explanatory va-
riables. This feature presents a significant advantage for the daily prediction of 
the ozone concentration in the Grand Casablanca.  
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This contribution proposes the first linear model of daily O3 concentration 
forecast in Morocco and more particularly in the Grand Casablanca area.  

In perspective, we plan to widen our study by comparing the performances of 
the Lasso model with those of other non-parametric models and we will add 
more data (2017-2018) to ensure model validation. The most appropriate fore-
cast model will be routinely implemented by the National Meteorological Office 
of Morocco (DMN). 
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Appendix A 

Table A1. Variables abbreviation and units of measurement. 

Abbreviation Variable Unit 

TMPMAX Maximal temperature ˚C 

TMPMIN Minimal temperature ˚C 

TMPMOY Average temperature ˚C 

RRQUOT Total precipitation mm 

DRINSQ Sunshine duration heure 

HUMREL06h Relative humidity at 06 h % 

HUMREL12h Relative humidity at 12 h % 

HUMREL18h Relative humidity at 18 h % 

PRESTN06h Pressure at the station level at 06 h hpa 

PRESTN12h Pressure at the station level at 12 h hpa 

PRESTN18h Pressure at the station level at 18 h hpa 

FFVM06h Wind force at 06 h m/s 

FFVM12h Wind force at 12 h m/s 

FFVM18h Wind force at 18 h m/s 

DDVM06h Wind direction at 06 h degree 

DDVM12h Wind direction at 12 h degree 

DDVM18h Wind direction at 18 h degree 

Vx06 Horizontal wind at 06 h m/s 

Vx12 Horizontal wind at 12 h m/s 

Vx18 Horizontal wind at 18 h m/s 

Vy06 Vertical wind at 06 h m/s 

Vy12 Vertical wind at 12 h m/s 

Vy18 Vertical wind at 18 h m/s 

O3veilleJahid Ozone concentrations of the day before µg/m3 

O3veille Ozone concentrations µg/m3 
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Appendix B 
Table B1. Comparison of regression coefficients estimated by the different models. 

Variables 
Complete 

Reg 
Reduced 

Reg 
PCR PLS SPLS CR Ridge Lasso BP Reg 

TMPMAX 24.55 0.00 0.03 −1.06 −1.41 −1.74 −2.52 −0.55 21.62 

TMPMIN 30.45 6.99 1.13 1.09 1.60 2.16 2.85 0.79 27.38 

TMPMOY −51.62 −6.55 0.61 −0.001 0.08 0.17 −0.003 0.00 −45.91 

RRQUOT −0.08 0.00 0.84 0.27 0.00 0.00 −0.03 0.00 −0.08 

DRINSQ 2.15 2.11 −1.47 0.66 0.92 1.66 1.97 1.02 2.08 

HUMREL06h 0.51 0.00 −0.40 −0.43 0.00 0.10 0.36 0.00 0.48 

HUMREL12h 0.27 0.00 1.37 0.84 0.00 0.53 0.33 0.14 0.28 

HUMREL18h −0.62 0.00 −1.33 −0.36 0.00 −0.34 −0.48 0.00 −0.59 

PRESTN06h −1.46 −1.64 −0.51 −1.04 −0.65 −0.97 −1.15 −0.87 −1.42 

PRESTN12h −0.02 0.00 −0.46 −0.89 −0.41 −0.43 −0.28 0.00 −0.05 

PRESTN18h 0.08 0.00 −0.54 −0.85 −0.39 −0.15 0.06 0.00 0.06 

FFVM06h 0.27 0.00 −0.19 0.64 0.45 0.41 0.31 0.26 0.28 

FFVM12h 0.54 0.00 0.37 −0.03 0.69 0.31 0.42 0.00 0.52 

FFVM18h 0.41 0.00 0.35 0.47 1.18 0.43 0.41 0.52 0.41 

DDVM06deg 0.05 0.00 0.66 0.45 0.56 0.22 0.11 0.00 0.07 

DDVM12hDEG −0.11 0.00 −0.87 −0.60 0.00 −0.36 −0.19 −0.11 −0.11 

DDVM18hDEG −0.58 0.00 −0.18 −0.09 0.00 −0.39 −0.54 0.00 −0.56 

Vx06 −1.33 −1.35 −1.16 −1.23 −0.94 −1.34 −1.31 −0.82 −1.31 

Vx12 1.28 1.10 1.03 0.39 0.00 0.62 0.98 0.00 1.22 

Vx18 −0.70 0.00 0.38 −0.24 0.51 −0.61 −0.71 0.00 −0.68 

Vy06 0.69 0.00 −2.20 0.26 0.00 0.79 0.73 0.53 0.69 

Vy12 −0.97 0.00 1.86 0.41 0.00 −0.19 −0.69 0.00 0.91 

Vy18 0.24 0.00 1.75 1.18 0.00 0.67 0.36 0.00 0.27 

O3veilleJahid 23.36 23.26 22.34 23.03 23.31 23.21 22.75 23.14 22.97 
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