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Abstract 
A fourth-order degenerate parabolic equation with a viscous term: 

( )( ) ( ) ( )
( ) ( )

0 in 1,1 0, ,

in 1,1 ) 0,
t x x

xx t

u m u w T

w u u Tν

 − = − ×


= − + − ×
 is studied with the initial-boundary 

conditions 0x xu w= =  on { } ( )1,1 0,T− × , ( ) ( )0,0u x u x=  in ( )1,1− . It 
can be taken as a thin film equation or a Cahn-Hilliard equation with a dege-
nerate mobility. The entropy functional method is introduced to overcome 
the difficulties that arise from the degenerate mobility ( )m u  and the viscos-
ity term. The existence of nonnegative weak solution is obtained.  
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1. Introduction 

In recent years, the research of nonlinear fourth-order degenerate parabolic 
equations has become an interesting topic. The typical examples include the 
Cahn-Hilliard equation and the thin film equation. The Cahn-Hilliard equation 
can describe the evolution of a conserved concentration field during phase 
separation. It (see [1]) has the form ( )( )( )2 0tu k u A uε ′+∇ ⋅ ∇ ∆ + =  where the 
constants k, A, 2ε  denote the atomic mobility, the free energy, the parameter 
proportional to the interface energy respectively and ( )( )2 u A uε ′− ∆ +  is a kind 
of chemical potential. For the existence and the properties of solutions, Elliott, 
Zheng and Garcke (see [2] [3]) have studied this equation with a linear and a 
degenerate mobility respectively. Xu, Zhou, Liang and Zheng (see [4] [5] [6]) 
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have applied the semi-discrete method to obtain the existence and stability 
results to this model with a gradient mobility. 

The thin film equation can analyze the motion of a very thin layer of viscous 
incompressible fluids along an inclined plane or model the fluid flows such as 
draining of foams and the movement of contact lenses. The thin film equation 
belongs to a class of fourth order degenerate parabolic equations (see [7]) and 
the first mathematic result, the existence and nonnegativity of weak solutions, 

are given by Bernis and Friedman [8] to the equation ( ) 0n
t xxx x

u u u+ = . The 

thin film equation with a second-order diffusion term was studied by Bertozzi 
and Pugh [9]. Moreover, for a generalized thin-film equation with period 
boundary in multidimensional space, Boutat et al. [10] obtained its existence. 
For other results, the readers may refer to the papers [11] [12]. 

In this paper, we study the following initial and boundary value problems for 
the viscous thin film equation:  

( )( )

( ) ( )0

0 in ,

in ,
0 on ,

,0 ,

t x Tx

xx t T

x x

u m u w Q

w u u Q
u w
u x u x

ν

 − =


= − +


= = Γ
 =

                     (1) 

where 0T > , ( )m u u= , ( )1,1Ω = − , ( )0,TQ T= Ω×  and ( )0,TΓ = ∂Ω× . 
Formally, if we substitute the second equation into the first one, we can get 

another form for this question: 

( )( )( )

( ) ( )0

0 in ,

0 on ,
,0 .

t xx t Tx x

x xxx

u m u u u Q

u u
u x u x

ν + − =
 = = Γ
 =

                (2) 

Our main result is the following theorems.  
Theorem 1. Let ( )2

0u L∈ Ω  and 0ν > . Then there exists at least one pair 
( ),u w  of (1) satisfying 

1) ( )( ) ( )( ) [ ] ( )( )1 2 2 20, ; 0, ; 0, ;u L T H L T H C T L∞∈ Ω Ω Ω  ,  
( )( )2 10, ;w L T H∈ Ω  ( )2

t Tu L Q∈ ; 
2) For any test function ( )( )2 10, ;L T Hφ ∈ Ω , it has  

d d d d 0,
T T

t x xQ Q
u x t uw x tφ φ+ =∫∫ ∫∫  

d d d d d d .
T T T

xx tQ Q Q
w x t u x t u x tφ φ ν φ= − +∫∫ ∫∫ ∫∫  

3) ( ) ( )0,0u x u x= .  
Theorem 2. Let ( )2

0u L∈ Ω  and 0ν > . Then there exists at least one pair 
( ),u w  of (2) satisfying 

1) ( )( ) ( )( ) [ ] ( )( )1 2 2 20, ; 0, ; 0, ;u L T H L T H C T L∞∈ Ω Ω Ω  , ( )2
t Tu L Q∈ ; 

2) For any test function ( )( )2 20, ;L T Hφ ∈ Ω  with ( ) ( )1, 1, 0x xt tφ φ− = = , it 
has  

d d d d d d 0.
T T T

t xx x x t xxQ Q Q
u x t u u x t uu x tφ φ ν φ+ − =∫∫ ∫∫ ∫∫  
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3) ( ) ( )0,0u x u x= .  
The following lemmas are needed in the paper: 
Lemma 1. (Aubin-Lions, see [13]) Let X, B and Y be Banach spaces and 

assume X B Y→ →  with compact imbedding X B→ . 
1) Let F  be bounded in ( )0, ;pL T X  where 1 p≤ < ∞ , and  

:f f
t t

∂ ∂ = ∈ 
∂ ∂ 

F
F  be bounded in ( )1 0, ;L T Y . Then F  is relatively compact 

in ( )0, ;pL T B ; 

2) Let F  be bounded in ( )0, ;L T X∞ , and :f f
t t

∂ ∂ = ∈ 
∂ ∂ 

F
F  be bounded 

in ( )0, ;rL T Y  where 1r > . Then F  is relatively compact in [ ]( )0, ;C T B .  

Lemma 2. (see [14] or [15]) Let V be a real, separable, reflexive Banach space 
and H is a real, separable, Hilbert space. V H→  is continuous and V is dense 
in H. Then ( ) ( ){ }2 20, ; | 0, ;tu L T V u L T V ′∈ ∈  is continuously imbedded in 

[ ]( )0, ;C T H . 
In this paper, C is denoted as a positive constant and may change from line to 

line. The paper is arranged as follows. The existence of solutions to the 
approximate problem will be proved in Section 2. In Section 3, we will take the 
limit for small parameters 0δ → . 

2. Approximate Problem 

For any 0 1δ< < , we consider the following approximate problem. In order to 
apply existence theory better, we transform (1) into a system: 

( )( )

( ) ( )0

0 in ,

in ,
0 on ,

,0

t x Tx

xx t T

x x

u m u w Q

w u u Q
u w
u x u x

δ δ δ δ

δ δ δ

δ δ

δ δ

ν

 − =


= − +


= = Γ
 =

                  (3) 

with ( ) ( )0 0u x u xδ δ= + , ( )m u uδ δ δ δ+= +  and { }max ,0u uδ δ+ = . 
Lemma 3. There exists at least one solution uδ  to (3) satisfying 
1) ( )( )2 10, ;w L T Hδ ∈ Ω ,  

( )( ) ( )( ) [ ] ( )( )2 2 1 20, ; 0, ; 0, ;u L T H L T H C T Lδ
∞∈ Ω Ω Ω  , ( )2

t Tu L Qδ ∈  and 
( ) 0,0u x uδ δ= ; 
2) For any test function ( )( )2 10, ;L T Hφ ∈ Ω , it has  

( )d d d d 0,
T T

t x xQ Q
u x t m u w x tδ δ δ δφ φ+ =∫∫ ∫∫  

d d d d d d .
T T T

xx tQ Q Q
w x t u x t u x tδ δ δφ φ ν φ= − +∫∫ ∫∫ ∫∫  

Proof. We apply the Galerkin method to prove this Lemma and so we choose 
{ } 1,2,3,i i
φ

= 

 as the eigenfunctions of the Laplace operator with Neumann 

boundary value conditions such that ixx i iφ λφ− = . Moreover, we can suppose 

that the eigenfunctions are orthogonal in the H1 and L2 spaces. We use ( ),⋅ ⋅  to 

denote the scalar product in L2 space and we can normalize iφ  such that 
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( ) 1, ,
,

0, .i j ij

i j
i j

φ φ δ
=

= =  ≠
 Besides, we can choose 1 0λ =  and 1 1φ = . 

For any positive integer M, we define ( ) ( ) ( )
1

,
M

M
i i

i
u x t c t xδ φ

=

= ∑ ,  

( ) ( )0
1

,0 ,
M

M
i i

i
u x uδ φ φ

=

= ∑ , ( ) ( ) ( )
1

,
M

M
i i

i
w x t d t xδ φ

=

= ∑ . Now we consider the 

following ordinary differential equations system:  

( ) ( )( )d , , ,
d

M M M
j x jxu m u w

t δ δ δ δφ φ= −                   (4) 

( ) ( ) ( )d, , , ,
d

M M M
j xx j jw u u

tδ δ δφ φ ν φ= − +                 (5) 

for 1, ,j M=  , which yields an initial value problem for the ordinary 
differential equations:  

( ) ( ) ( )

( ) ( ) ( )

1 1

1 1

d d ,
d d

, ,

M M

j i i i ix jx
i i

M M

i i i ix jx
i i

c c t m c t x
t t

c t m c t x

δ

δ

ν φ φ φ

φ φ φ

= =

= =

  +   
  

  = −   
  

∑ ∑

∑ ∑
 

( ) ( )00 , ,j jc uδ φ=                         (6) 

with 1, ,j M=  . A standard argument can show that this ODE has a local 

solution by Peano existence theorem since the matrix ( ) ( )
1

,
M

i i ix jx
i

m c t xδ φ φ φ
=

  
  

  
∑  

is positive definite. In order to get the global solvability, we need establish more 

energy estimates. Multiply (4) by Mwδ  to get  

( ) 2
d d .M M M M

tu w x u w xδ δ δ δδ+Ω Ω
= − +∫ ∫  

Taking M
tuδ  as the test function in (5), we have  

2
d d d .M M M M M

t xx t tu w x u u x u xδ δ δ δ δν
Ω Ω Ω

= − +∫ ∫ ∫  

Thus, we have  

( )2 2 21 d d d d 0.
2 d

M M M M
x t xu x u x u w x

t δ δ δ δν δ+Ω Ω Ω
+ + + =∫ ∫ ∫        (7) 

Therefore, for any 0 t T< ≤ , it has  

( ) ( )2 2 2

2
0

1 , d d d d d
2

d .

t t

M M M M
x t xQ Q

x

u x t x u x t u w x t

C u x

δ δ δ δ

δ

ν δ+Ω

Ω

+ + +

≤

∫ ∫∫ ∫∫

∫
     (8) 

Since d d 0
d

Mu x
t δΩ

=∫  by (4) with 1j = , we can apply Poincaré’s inequality to 

obtain the following estimates: 

( )( ) ( ) ( )( )1 2 2 10, ; , , 0, ; .M M M
t Tu L T H u L Q w L T Hδ δ δ

∞∈ Ω ∈ ∈ Ω     (9) 

By taking M
xxuδ  as the test function in (5), we have  
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2 21 dd d d .
2 d

M M M M
xx xx xu w x u x u x

tδ δ δ δν
Ω Ω Ω

= − −∫ ∫ ∫            (10) 

By integrating over ( )0,T  and applying the Höler's inequality, we have  

( )
2 2

22
0

, d d d

d d .

T

T

M M
x xxQ

M
x Q

u x T x u x t

C u x w x C

δ δ

δ δ

ν

ν

Ω

Ω

+

≤ + ≤

∫ ∫∫

∫ ∫∫
                (11) 

which yields  

( )( )2 20, ; .Mu L T Hδ ∈ Ω                     (12) 

There exists a subsequence of ( ),M Mu wδ δ  and a pair ( ),u wδ δ  such that, as 
M →∞ ,  

( )( )1weakly* in 0, ; ,Mu u L T Hδ δ
∞ Ω              (13) 

( )2weakly in ,M
t t Tu u L Qδ δ                  (14) 

( )( )2 1weakly in 0, ; ,Mw w L T Hδ δ Ω              (15) 

( )( )2 2weakly in 0, ; ,Mu u L T Hδ δ Ω               (16) 

[ ] ( )( )2strongly in 0, ; and a.e. in .M
Tu u C T L Qδ δ→ Ω       (17) 

where the last estimate is from Lemma 1. By (13)-(17), we can perform the limit 
M →∞  in a standard fashion and the strong convergence in [ ] ( )( )20, ;C T L Ω  
implies ( ) ( )0,0u x u xδ δ= .  

3. The Limit 0δ →  

In the section, we will perform the limit 0δ →  to the solutions from Lemma 3. 
For the purpose of the existence, we need establish some uniform estimates 
independent of δ . Thus, we define a convex function ( )δΦ ⋅  as following (see 
[10]): 

( )
( ) ( ) ( )
( ) ( ) ( )

2

ln 1, 0;

ln ln 1, 0.
2

δ

σ δ σ δ σ δ σ
σ σ

σ δ δ δ δ σ
δ

 + + − + + ≥
Φ = 

+ + − + <


 

Moreover, the function δΦ  satisfies 0δΦ ≥ , ( )2,
locW Rδ

+∞Φ ∈ ,  

( ) 1
δ σ

σ δ+

′′Φ =
+

. 

By applying this function, we can get the following estimates.  
Lemma 4. There exist some constants C independent of δ  such that 
1) ( )( )10, ;L T Hu Cδ ∞ Ω

≤ ; 

2) ( )TL Qu Cδ ∞ ≤ ; 

3) ( )( )2 20, ;L T Hu Cδ Ω
≤ ; 

4) ( ) 2 d d
TQ

u w x t Cδ δδ+ + ≤∫∫ ; 

5) ( )2
Tt L Qu Cδ ≤ ; 
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6) ( )2
TL Qw Cδ ≤ .  

Proof. Taking ( )uδ′Φ  as a test function in the first equation of (3), we have  

( )( ) 22d , d d 0.
d 2 x xxu x t u x u x
t δ δ δ

ν
Ω Ω

 Φ + + = 
 ∫ ∫           (18) 

Thus, it yields the results 1 - 3. We can prove 4 and 5 from (8). By choosing 
wδ  as a test function in the second equation of (3), we get  

22 2

2

1d d d d d d d d
2
1 d d .
2

T T T T

T

xx tQ Q Q Q

Q

w x t w x t C u x t C u x t

w x t C

δ δ δ δ

δ

≤ + +

≤ +

∫∫ ∫∫ ∫∫ ∫∫

∫∫
     (19) 

We have completed the proof of this lemma.  
Lemma 5. There exists a pair ( ),u w  such that, as 0δ → ,  
1) ( )( )1weakly* in 0, ;u u L T Hδ

∞ Ω ; 
2) ( )2weakly int t Tu u L Qδ  ; 
3) [ ] ( )( )2strongly in 0, ;u u C T Lδ → Ω  and a.e. in TQ ; 
4) ( )2weakly in Tw w L Qδ  ; 
5) 0u ≥  a.e. in TQ .  
Proof. By Lemma 4, we can get the results 1 - 2 and 4 directly. Lemma 1 yields 

3. By applying the definition of ( )δΦ ⋅  and (18), we get  

( ) ( ) ( )210 , d d ln , d .
2

u x t x u x u x t x Cδ δ δ δδ δ δ δ− −Ω Ω Ω
≤ ≤ Φ − +∫ ∫ ∫  

It yields  

( )0 ln , d .u x t x Cδδ −Ω
≤ − +∫  

Letting 0δ → , we obtain ( )2 , d 0u x t x−Ω
=∫  which completes the proof of 6. 

Proof of Theorem 1 and Theorem 2. Taking ( )( )2 2
00, ;L T Hφ ∈ Ω  as a test 

function in Lemma 3, we have  

d d d d 0,
T T

t x xQ Q
u x t uw x tφ φ+ =∫∫ ∫∫                 (20) 

d d d d d d ,
T T T

xx tQ Q Q
w x t u x t u x tφ φ ν φ= − +∫∫ ∫∫ ∫∫             (21) 

which yields Theorem 1. 
On the other hand, by integrating by parts, it implies  

d d d d d d 0.
T T T

t x x xxQ Q Q
u x t wu x t uw x tφ φ ν φ− − =∫∫ ∫∫ ∫∫          (22) 

Thus, it has  

d d d d d d

d d d d 0.
T T T

T T

t xx x x xx xxQ Q Q

x t x t xxQ Q

u x t u u x t uu x t

u u x t uu x t

ϕ φ φ

ν φ ν φ

+ +

− − =

∫∫ ∫∫ ∫∫
∫∫ ∫∫

          (23) 

It gives Theorem 2.                                                

4. Conclusions 

Through this paper, two forms of a viscous thin film equation are studied (see 
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the Equations (1) and (2)) and we give the corresponding existence theorems of 
weak solutions (see Theorem 1 and Theorem 2). For any test function φ , we 
have proved that the weak solutions satisfy the equalities:  

d d d d 0,
T T

t x xQ Q
u x t uw x tφ φ+ =∫∫ ∫∫  

d d d d d d .
T T T

xx tQ Q Q
w x t u x t u x tφ φ ν φ= − +∫∫ ∫∫ ∫∫  

Since the thin film equation is a degenerate parabolic equation, it is hard to 
give the existence of strong solutions. On the another hand, the viscous term 
affects the regularity of solutions and we have shown that ( )2

t Tu L Q∈ . 
We can expect that we can show that the existence results would be true with 

some conditions in high-dimensional space. 
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