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Abstract 
The free relativistic particle, by definition, has to move in an inertial reference 
frame with uniform velocity less than the speed of light. The corresponding 
movement of a material quantum particle describes a wave packet, composed 
of matter waves—solutions of the Schrödinger equation. The maximum of 
packet, corresponding to the largest probability to find the particle, has to 
move with the same uniform velocity, defined by the initial condition. It has 
been shown that the traditional definition of the quantum momentum oper-
ator i.e. taking it to correspond to the special relativity theory, relativistic 
momentum, cannot produce precise description of a relativistic matter par-
ticle. Different definitions are investigated and one that solves this issue is 
found. Obtained original expression of relativistic kinetic energy operator 
creates new possibilities for relativistic quantum systems theory. 
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1. Introduction 

The fundamental and at the first glance the simplest problem of quantum 
mechanics is description of moving in vacuum free particle. However, careful 
investigation of this problem has shown that well known and present in 
numerous textbooks, recipes for this task solution are not successful and have to 
be corrected. 

Traditionally, the quantum mechanical momentum operator i− ∇  is 
associated with the classical relativistic momentum p mvγ= , present in the 
energy expression 

2 4 2 2 ,E m c p c= +                        (1) 
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where, as usual, 2 21 1 v cγ = − . The main argument for this association is the 
photon energy definition E pc= , producing after Schrödinger equation 
solution the electromagnetic waves, whose packet moves with the speed of light 
and defines the probability distribution of a photon. 

However, this definition, applied to a free particle, whose 0,m ≠  leads to a 
result not consistent with fundamental conditions, following from the inertial 
reference system definition, stating that a free particle in an arbitrary, such 
system has to move with uniform velocity, defined by the initial condition and 
less than speed of light. The maximum of the packet, composed of matter 
waves—solutions of Schrödinger equation—has to move specifically with this 
velocity. Moreover, the traditional definition of the momentum operator 
produces a kinetic energy operator, present in the Schrödinger equation, whose 
expectation values at any momentum give upper bounds for relativistic kinetic 
energy, larger than the corresponding nonrelativistic energy and not consistent 
with this equation’s definition as nonrelativistic. 

Another definition of this operator as corresponding to the nonrelativistic 
classical momentum 0p mv=  restores nonrelativity of Schrödinger equation, 
because the corresponding kinetic energy operator expectation values are 
equal, as necessary, to the lower bounds of relativistic kinetic energy. However, 
the expectation values of this operator have to satisfy the condition for 
classical nonrelativistic momentum to be less than mc . As a consequence, the 
nonrelativistic matter wave packet, satisfying mentioned conditions, cannot be 
obtained integrating matter waves in the finite region ( )0mc p mc− < <  of 
momentum. 

The objective of this work is to examine the consequences of different 
definitions of the quantum momentum operator’s correspondence to classical 
parameters with momentum dimension and to present a developed problem 
solving approach. 

In Section II, we provide the problem, applied terms and notations. In 
Section III, the matter waves and packets produced during the application of 
the quantum momentum operator, corresponding to the classical momentum, 
are investigated. Section IV is devoted to the traditional model with this 
operator corresponding to the relativistic classical momentum. From our 
considerations it follows that both definitions cannot produce packets, 
satisfying the mentioned conditions. A problem-solving method is presented 
in Section V. The characteristic feature of the method is based on the defined 
original correspondence of quantum mechanical momentum operator to a 
new parameter of classical relativity theory, producing a simple expression of 
relativistic kinetic energy operator. The conclusions provide the recommendations 
for the developed method application. 

2. Formulation of the Problem 

Really, the only particles, not having yet the known structure, are quarks, the 
photon and leptons. Protons, neutrons, atomic nuclei, ions of atoms and 
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molecules, moving in colliders and cosmos, are bound quantum systems, whose 
center of inertia (center of mass) moves as particle. Therefore, the relativistic 
generalization of Schrödinger equation has to start with one written in a 
laboratory reference frame for a many-particle quantum system  

( ) ( ) ( )1 2 0 1 2 1 2
ˆ, , , , , , , , , , , .N N Ni t H t

t
ρ ρ ρ ρ ρ ρ ρ ρ ρ

∂
Ψ = Ψ

∂
   

     (2) 

Here jρ  marks the set of one-particle variables (spatial radius vector jr  and 
internal degrees of freedom jτ  like mass, charge, spin, isospin and so on for 
every particle). As usual, the operators are marked with accent above the letter 
and vectors are present in bold face. The Hamiltonian is independent of time, so 
the formal solution of (2) is 

( ) ( )1 2 0 1 2
ˆ, , , , exp , , , .N N

it H tρ ρ ρ ρ ρ ρ Ψ = − Φ 
 

 



          (3) 

The stationary states of (2) correspond to the eigenfunctions of the 
Hamiltonian: 

0
ˆ .H EΦ = Φ                           (4) 

The stationary Schrödinger Equation (4) is written in a laboratory reference 
frame. Even in the nonrelativistic approximation the wave functions dependent 
on one-particle spatial variables are not good enough for a precise description of 
the quantum system. These do not satisfy Galilean invariance and, in many cases, 
the wave functions of this model contain uncontrolled center of mass excitations. 
For the best illustration of this statement, let us consider a two-particle system. 
The potential energy operator is translationally invariant, i.e. independent of the 
center of mass coordinate, hence the only problem is the kinetic energy. No one 
applies the corresponding wave function written in one-particle spatial variables, 
because the elimination of the center of mass kinetic energy operator in a 
two-particle Hamiltonian is an easy task. Elimination of the center of mass 
kinetic energy operator is not complicated for a system of N particles either. 
However, after this the Hamiltonian of the quantum system appears as a 
function of ( )3 1N −  internal spatial variables and N sets of individual degrees 
of freedom of composing the system (or some subsystem like electrons in atom) 
identical fermions, hence the anti-symmetrization of eigenfunctions of this 
operator becomes a very complex problem (see [1] and [2]). However, after long 
investigations the simplest possible solution of this problem, reducing 
significantly the dimensions of basic functions, present in expansions, was found 
[3]. Thus, the principal problems cannot appear, and for the center of mass of 
quantum system separation one needs to perform the transformation of operator 
present in the stationary Schrödinger equation to internal Hamiltonian. 

For a quantum system composed of point particles with pair interaction, the 
Hamiltonian is  

( ) ( )
2

0 1 1 2 2
1 1

, , , , .
2

N N

N N j k j j k
j k jj

H V
m

τ τ τ τ τ
= > =

= − ∆ + −∑ ∑r r r r r

         (5) 
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As usual, for every particle here is present only the first member of relativistic 
kinetic energy 2T E mc= −  expansion 

( )( ) 1 222 2 2
0

2 2 4
2 0 0 0

3 21

1 1

2 3
2 2 8

k

k

T mc mc mc p mc

k p p pmc
k mc m m c

γ
−

∞

=

 = − = − −  

  = = + +  
  

∑ 

           (6) 

applying instead of classical momentum the quantum mechanical momentum 
operator 

0ˆ .p i= − ∇                           (7) 

The classical momentum is defined in the usual way 0p mv= , where v is the 
velocity of the particle in the laboratory reference frame. 

Having in mind that one has to generalize the Schrödinger equation for 
relativistic dynamics, it is useful to add the rest energies of particles to the 
Hamiltonian. The modified Hamiltonian is 

( ) ( )
2

2
1 1 2 2

1 1

ˆ ˆ, , , , .
2

N N

N N j j k j j k
j k jj

H m c V
m

τ τ τ τ τ
= > =

 
= − ∆ + −  

 
∑ ∑r r r r r


   (8) 

Now one can separate the center of mass and internal Hamiltonians. The 
best choice are internal Jacobi variables, defined as vectors connecting the 
centers-of-mass of two clusters of particles, while the reduced mass, corresponding 
to the given coordinate is defined by the conventional expression, using masses 
of clusters. The Jacobi variable system is generated by splitting down the system 
and later on each subsystem of single particle coordinates into two clusters with 
any number of particles. For example, if the system of N particles is split into 
clusters, where first contains the first k and second—the rest N k−  coordinates, 
corresponding Jacobi variable is defined as 

1 11 2

1 1 ,
k N

j j j j
j j k

m m
M Mα

= = +

= −∑ ∑r rξ                  (9) 

where 

1 2
1 1

, ,
k N

j j
j j k

M m M m
= = +

= =∑ ∑                   (10) 

and, as mentioned above, corresponding reduced mass equals 

1 2

1 2

.M M
M Mαµ =

+
                       (11) 

Defined in this way Jacobi variables ( )1, , 1Nα α = −ξ  together with center 
of mass radius vector 

0
10

1 N

j j
j

m
µ =

= ∑ rξ                        (12) 

and sum of particles masses as corresponding reduced mass 

0
1

N

j
j

mµ
=

=∑                           (13) 
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compose the system of variables, transforming the kinetic energy operator, 
present in Ĥ , to analogous expression without mixed derivatives: 

( )

1

1 0

1 1 .
N N

j
j jm α

α αµ

−

= =

∆ = ∆∑ ∑                       (14) 

Now the Ĥ  takes the form with separated variables 

( )

2

0
0

ˆ ˆ ,
2 intH H
µ

= − ∆ +
                       (15) 

where the internal Hamiltonian is defined as 

( ) ( )
21

2
0 1 2 1 1 2

1

ˆ ˆ .
2

N

int N NH c Wα
α α

µ τ τ τ
µ

−

−
=

= − ∆ + +∑ 

 ξ ξ ξ          (16) 

Ŵ  is potential energy operator, dependent only on intrinsic spatial variables. 
Having in mind that eigenvalues of ˆ

intH  without rest mass 2
0cµ  equal the 

binding energy B with opposite sign and the quantum system is stable with 
respect to breakup into composing particles if B is positive, the eigenvalue of 
modified Hamiltonian corresponds to the rest energy of quantum system under 
consideration 2 2

0c c Bµ µ= − . Due to binding produced by interaction it is less 
than sum of rest energies of particles 2

0cµ . 
Later on we will consider the application of relativistic dynamics to quantum 

systems defined this way. All particles, composing the system, move in the same 
inertial frame, hence any transformations of radius vector and time coordinate 
or energy and momentum of a given particle between different inertial systems 
are not necessary. The energy of a stationary state is defined precisely, hence 
the relativistic energy and momentum conservation law is senseless in a fixed 
reference frame defined for a quantum system by its internal Hamiltonian. 
Moreover, at a precisely defined energy the time coordinate is completely 
uncertain, therefore it is not necessary as an argument of wave function. At the 
same time in formalisms, operating with one particle coordinates, all inertial 
systems have to be equivalent and invariance of formalism with respect to 
Lorentz transformations is necessary. The space-time interval, defined by the 
scalar product of four-dimensional vectors and invariant with respect to 
transformations between different inertial frames, requires every particle to have 
different spatial and time variables. The problems of wave functions presented 
this way are well known (lattice QCD; for a review, see [4]). In our formalism we 
don’t have to worry about interval and mass invariance in different inertial 
reference systems. Instead, the only problem is modification of the internal 
Hamiltonian by introducing the relativistic kinetic energy operator instead of 
the nonrelativistic one for every internal spatial coordinate. 

Thus, after these modifications the Schrödinger equation can be written as 

( ) ( )
2

1 2 1 1 2 00
0

ˆ , 0.
2 int N Ni H t

t
τ τ τ

µ −

 ∂
+ ∆ − Ψ = 

∂ 



  ξ ξ ξ ξ        (17) 

Again, this operator is with separated variables, hence the eigenfunctions are 
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equal the products of two functions—one dependent on set of internal variables 
and other—dependent on center of mass radius-vector and time, i.e. 

( ) ( ) ( )1 2 1 1 2 0 1 2 1 1 2 0, .N N N Nt tτ τ τ ψ τ τ τ φ− −Ψ =   ξ ξ ξ ξ ξ ξ ξ ξ     (18) 

Here ψ  is eigenfunction of ˆ
intH , corresponding to the eigenvalue, equal to 

the rest energy of system 
2ˆ

intH cψ µ ψ=                        (19) 

and φ  is an eigenfunction of the operator, dependent on time and center of 
mass radius-vector, corresponding the same eigenvalue: 

( )

2
2

0
0

.
2

i c
t

φ µ φ
µ

 ∂
+ ∆ = 

∂ 



                  (20) 

The last modification of this equation is the exchange of mass 0µ , present in 
the nonrelativistic kinetic energy operator and equal to the sum of masses of 
particles, with the mass of quantum system µ , obtained after equation with 
intrinsic Hamiltonian (19) solution or by real rest mass of quantum system 
under investigation. Finally, the equation, describing the movement of the center 
of mass takes the form 

( )

2
2

0 .
2

i c
t
φ µ φ

µ
 ∂

= − ∆ ∂  



                  (21) 

The operator, present in right-hand side of this equation, equals the 
nonrelativistic approximation of the energy of the particle. The generalization of 
this equation for relativistic dynamics is  

( ) ( ) ( )0 0 0
ˆ .i t H t

t
φ φ∂

=
∂
 ξ ξ ξ                 (22) 

This equation looks exactly as the well-known Schrödinger equation for a 
free particle, however now it is obtained by separating the center of mass and 
intrinsic parts of quantum system’s Hamiltonian. The introduced internal 
Hamiltonian, whose eigenvalues are equal to the rest energy of the system, is 
separated from the center of mass degree of freedom, whose movement      
is independent of intrinsic excitations of quantum system. The developed 
technique is useful for precise separation of center of mass and internal degrees 
of freedom when quantum system enters an external field. Moreover, the 
Equation (22) is basic for further modifications and relativistic dynamics of free 
particle investigation taking different expressions of the free particle energy 
operator ( )0Ĥ ξ . 

Let me present here the slightly modified, in comparison with traditional 
consideration (see [5], [6], [7]), main points of this solution, necessary for 
further modifications, taking into account relativistic dynamics. 

The Hamiltonian ( )0Ĥ ξ  is independent of time, hence the fundamental 
system of Equation (22) solutions are products of eigenfunctions of two 
operators, present in opposite sides of equation, corresponding to the same 
eigenvalue: 
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( ) ( ) ( )0 0 ,E Et tφ χ η=ξ ξ                  (23) 

where 

( ) ( ) ( )0 0 0
ˆ

E EH Eχ χ=ξ ξ ξ                 (24) 

and 

( ) ( ).E Ei t E t
t
η η

∂
=

∂


                  (25) 

The last modification is presentation of relativistic energy in terms of 
momentum. Introducing in this expression instead of momentum the quantum 
mechanical momentum operator creates differential equations for mentioned 
fundamental solutions. Obviously, the square-integrable and satisfying the initial 
condition solution of Equation (22), giving the free quantum particle description, 
can be expressed as a linear combination of these fundamental solutions. 

The easiest energy expression in terms of momentum is for a particle whose 
rest mass equals zero. In special relativity theory it is defined as E c= p . 
Therefore the corresponding operator is 

( ) ( )0 0Ĥ i c= − ∇ξ                     (26) 

and the wave function equals 

( ) ( )( )0 0exp .it pctφ  = − − ⋅  
p



ξ ξ             (27) 

By definition, the inertial reference frame is defined as one, where the free 
particle moves with uniform velocity. Taking the z axis of the reference frame to 
be along the vector p , one finds that 

( ) ( )exp ,p
izt p ct zφ  = − −  

                (28) 

where ( )0 z
z = ξ . The phase velocities of these harmonic plane waves are 

independent of p and equal the speed of light. The linear combination of waves  

( ) ( ) ( )dpzt f p zt pψ φ
+∞

−∞
= ∫                  (29) 

represents the wave function of the relativistic particle, whose rest mass equals 
zero. The maximum of the probability distribution ( ) 2

ztψ  of the square 
integrable packet moves with the velocity of the particle, equal to the speed of 
light. 

For a particle, whose rest mass does not equal zero, there are different energy 
expressions in terms of momentum and possible different momentum definitions, 
therefore this problem needs separate investigation. 

3. Matter Waves and Packets with Nonrelativistic  
Momentum Operator 

Let us start the investigation of Equation (21) for a nonrelativistic free particle. 
The corresponding Hamiltonian equals the nonrelativistic approximation of the 
energy expression 

https://doi.org/10.4236/jamp.2018.610172


G. P. Kamuntavičius 
 

 

DOI: 10.4236/jamp.2018.610172 2013 Journal of Applied Mathematics and Physics 
 

22
2 0

2
0

,
2

1

pcE c
p
c

µ
µ

µ

µ

= = + +
 

−  
 

                 (30) 

where 0 µ=p v  is the classical momentum of the particle. Defining the quantum 
mechanical operator i− ∇  as corresponding to the classical momentum, the 
nonrelativistic Hamiltonian of a free particle is  

( )
2

2 0
0

ˆˆ .
2
pH cµ
µ

= +ξ                     (31) 

Eigenfunctions of this operator coincide with eigenfunctions of the momentum 
operator 0p̂  and equal 

2
2 0exp .

2
pi c tµ
µ

  
− +  
   

                  (32) 

Here 0p  is the eigenvalue of the momentum operator. The matter wave is 

( ) ( )
0

2
2 0

0 0 0exp exp .
2
pi it c t tφ µ
µ

   = − ⋅ −   
     

p p
 

ξ ξ         (33) 

The wave function of the packet, satisfying the normalization condition 

( ) 2
0 0d 1,tψ =∫ ξ ξ                     (34) 

equals a linear combination of matter waves: 

( ) ( ) ( )
00 0 0 0d .t f tψ φ= ∫ pp pξ ξ               (35) 

Let us mark the components of 0ξ  as ,x y  and z. The spectral function 
( )0f p  can be defined by the initial condition 

( ) ( )
2 2 2

0 0 02 2 20 exp exp .
4 4 4 i

x y z

x y z iNψ
σ σ σ

   = − − − ⋅       
p



ξ ξ      (36) 

Here N is the norm, ,x yσ σ  and zσ  are spatial extensions of the packet 
along axes of the reference frame and 0i µ=p v  is the momentum of the initial 
packet, defining the center of mass velocity. As mentioned, a free particle in an 
arbitrary inertial reference frame moves with constant velocity, hence the initial 
condition can be simplified taking the direction of z axis of the reference system 
to coincide with the direction of the initial momentum 0ip . Now the initial 
condition converts to the normalized one-dimensional form: 

( ) ( )
2

02

10 exp exp ,
42π

i
z iz p zψ
σσ

   = −      

         (37) 

because the momentum projections, hence also the corresponding extensions 
along x and y axes equal zeroes. According to Heisenberg principle, these spatial 
extensions approach infinity, hence the corresponding exponents of the initial 
condition equals unities. For the sake of simplicity here zσ  is marked without 
subscript as σ . 
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The spectral function ( )0f p  after this suggestion is not correlated along 
different axes, hence presentable as product of components: 

( ) ( ) ( ) ( )0 0 0 0 .x x y yf f p f p f p=p               (38) 

From initial condition for packet wave function it follows: 

( ) ( )
( ) ( )

0 0

0 0

,

.
x x x

y y y

f p p

f p p

δ

δ

 =


=
                     (39) 

Normalized in necessary way the spectral function equals  

( ) ( )22
0 0

0 2

2π exp .
π

ip p
f p

σσ  −
 = −
 
  

             (40) 

From this exponent, present as 

( )2
0 0

2exp
4

i

p

p p
σ

 −
 −
 
 

                      (41) 

it follows that momentum extension equals 

2pσ
σ

=
                            (42) 

hence the product of spatial and momentum extensions satisfy Heisenberg’s 
uncertainty relation 

.
2pσσ ≥
                            (43) 

The wave function of packet (35) after explicit integration takes the form 

( )
( )

( )
( ) ( )( )

2

2

1, exp exp , .
42π

z vt
z t i z t

tt
ψ φ

σσ

 −
 = −
 
 

         (44) 

The probability density distribution ( ) 2
,z tψ  is 

( )
( )

( )

2

2

1 exp .
22π
z vt

tt σσ

 −
 −
 
 

                    (45) 

The spatial extension of the packet 

( )
2

21
2

ttσ σ
µσ

 
= +  

 



                     (46) 

increases with time. The function ( ),z tφ  determining the phase of the carrier 
wave, equals 

( ) ( ) ( ) ( )
2 2

2
0 2 2

2

1,
2 8

1 arctan .
2 2

i
v tz t t t p z vt z vt

t

t

µ
φ µσ

µσ σ

µσ

  
= − + + − −      

−







   (47) 

The description of a free nonrelativistic particle, obtained without any 
approximations after explicit integration of fundamental quantum mechanical 
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expressions, gives the best possible result predicting comparable with experimental 
observations spreading of packet and its maximum, moving with the velocity of 
particle. 

This result, together with arguments about the origin of quantum mechanical 
momentum operator (independence of speed of light; suggested by Dirac 
derivation from classical Poisson brackets; de Broglie waves, defined as solutions 
of Schrödinger equation with momentum operator, corresponding the classical 
momentum of particle; definition of momentum operator as translations in 
three-dimensional space generator), present in [8], shows that the quantum 
momentum operator i− ∇  corresponds to the classical ( 0 m=p v ) rather than 
the relativistic ( 0γ=p p ) momentum. Moreover, this correspondence defines 
the kinetic energy operator, present in the Schrödinger equation, as a completely 
nonrelativistic operator. The expectation value of the relativistic kinetic energy, 
as necessary, is larger than the corresponding nonrelativistic expectation value. 

However, the deeper investigation and an attempt to apply it for the relativistic 
free particle has shown that the defined momentum operator correspondence is 
not so successful. The problem is that (45) produces a wave packet for all values 
of the particle’s nonrelativistic momentum, including velocities larger than the 
speed of light. At the same time the relativistic energy operator (30) is [8]: 

2
2 0

0

2 ˆˆ .
2

k

k

k
H c

k c
µ

µ

∞

=

  
=   

  
∑ p

                (48) 

It is present in terms of the momentum operator, hence both have the same 
system of eigenfunctions 

( )0 0exp i ⋅ 
 

p


ξ                     (49) 

with different eigenvalues. As mentioned, if the 0p̂  eigenvalue is 0p , the 
eigenvalue of Ĥ  equals 

2 2
2 20 0

0

2
1 .

2

k

k

k p pc c
k cc

µ µ
µµ

∞

=

    
= −    

   
∑           (50) 

The problem, following from this expression, is that the momentum 
eigenvalue 0p  for a matter particle has to be less than cµ . The consequences 
of this condition for two particle quantum systems with different potentials are 
considered in [9]. This condition also changes significantly the obtained 
nonrelativistic result for the free particle, because the integration over 0p  is 
performed using infinite limits of integrals. Taking this into account produces a 
packet not corresponding to the main condition that the maximum of the packet 
has to move with a uniform initial velocity of the particle. The velocity of the 
packet maximum appears as a nonlinear function of parameters 0ip  and σ  
defined by the initial condition. 

Now let us investigate the relativistic particle description. The relativistic 
kinetic energy operator, expressed in terms of the nonrelativistic momentum 
operator, is 
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( )
2

2 0
0

1

2 ˆˆ ˆ .
2

k

k

k
T c

k c
µ

µ

∞

=

  
=   

  
∑ pp                (51) 

Now the matter wave, defined like one for the nonrelativistic packet, equals 

( ) ( )
0

2
0 0exp exp .p

i izt c t p z T p tφ µ   = − −       

         (52) 

Definitions of the packet wave function (35) and initial condition (37) are the 
same as for the nonrelativistic particle, hence the same expressions are obtained 
for spectral functions (39) and (40). However, now the analytical presentation of 
the packet wave function is not possible, but simple enough numerical 
integration gives complete information about the movement of the wave packet. 

This investigation has shown that the construction of a packet, moving in a 
given reference frame with uniform initial velocity, is not possible for this 
definition of the momentum operator. The velocity of the maximum of the 
packet appears dependent in a nonlinear way on the initial momentum 0ip . 
Another phenomenon is caused by fact that at small values of σ , present in the 
spectral function (40), the tile of the Gausoid enters the forbidden momenta 
region 0p cµ≥ , and the packet’s expansion loses corresponding momenta. As a 
result, the velocity of the packet does not correspond to the particle’s velocity. At 
different combinations of these parameters it can be smaller or larger than 
necessary. 

Concluding, one has to state that the nonrelativistic quantum momentum 
operator definition is not applicable to the description of a free particle, moving 
in an inertial reference frame. 

4. Matter Waves and Packets with Relativistic Momentum  
Operator 

Now we will apply another possibility-relativistic energy presentation in terms of 
the relativistic momentum like the one applied for a photon. This can be derived 
from the fundamental energy definition 2E cγµ= , after presenting the factor γ  
in terms of the relativistic momentum p instead of the known presentation in 
terms of 0p  like in Equation (30). From the definition of the relativistic 
momentum, 

0
2

01

pp
p
cµ

=
 

−  
 

                        (53) 

it follows 

0 2
.

1

pp
p
cµ

=
 

+  
 

                       (54) 

Having in mind that by definition 0p pγ= , we get the following expression 
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of γ   
2

1 .p
c

γ
µ

 
= +  

 
                     (55) 

Therefore, the relativistic energy can be present as 
2

2 1 .pE c
c

µ
µ

 
= +  

 
                   (56) 

The square of this expression gives the well known 
2 2 4 2 2 ,E c p cµ= +                     (57) 

however we will apply (56) to avoid problems with an undefined sign taking 
square root of the squared expression. 

The converging at p cµ≤  series expansion of the energy in terms of the 
relativistic momentum is 

( ) ( )
( )

22 2
2

1

2 1 !!
1 .

2 2 2 !!

k
k

k

kp p pE c
k c

µ
µ µ µ

∞

=

−  
= + + −  +  

∑          (58) 

Considering this expansion as quantum mechanical Hamiltonian with 
ˆ i= − ∇p  , the second member of the right-hand side of the equation coincides 

with the nonrelativistic kinetic energy operator. However, this leads to a strange 
conclusion that the expectation value of the kinetic energy operator ( )2ˆ 2µp , 
present in the “nonrelativistic” Schrödinger equation gives, according to the 
definition (56), an upper bound for the relativistic kinetic energy. At the same 
time, it is obvious that the expectation value of the relativistic kinetic energy has 
to be larger than the nonrelativistic at all values of the momentum. On the other 
hand, this means that the Schrödinger equation is not the nonrelativistic, 
because the present kinetic energy operator produces a kinetic energy of the 
particle larger than the relativistic one. 

Moreover, the construction of the wave packet, moving, as necessary, with 
uniform velocity, given by the initial condition, is at all impossible. First, let us 
consider the nonrelativistic approximation. The analytical expression of the 
packet, completely analogous to the considered above packet with nonrelativistic 
momentum operator (45), is possible. Only the matter wave (33), initial 
condition (37) and spectral function (40) are modified, introducing instead of 
the operator 0p  the relativistic momentum operator p  and corresponding 
eigenvalues p and ip : Finally, the packet is defined by the following expression: 

( ) ( )

2

2

1 exp .
22π

ipz t

tt
µ

σσ

   − 
  − 
 
 
 

                 (59) 

However, the velocity of the maximum of this probability distribution equals 
2 21ip v v cµ = −  and does not coincide with the particle velocity v.  

Taking the relativistic expression of the corresponding Hamiltonian (58), after 
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numerical calculation we obtained analogous result—the velocity of the 
maximum of the relativistic packet does not coincide with the velocity of the 
particle. At some combinations of parameters of the initial condition it is larger 
and at some other—smaller than necessary. 

In the ultrarelativistic situation, when 2pc cµ>  (for proton beams in CERN 
accelerator 8

2 10pc
cµ

≈ , for some particles of cosmic rays this relation can take 
even larger values) the converging expansion for kinetic energy equals 

( ) ( )
( )

2 1
2 2

0

2 1 !!
1 ,

2 2 !!

k
k

k

k cT pc c c
k p

µµ µ
+∞

=

−  
= − + −  +  

∑            (60) 

thus the two first members of the expansion applied for packet construction 
produce matter waves and packets, moving at the speed of light. Therefore, again 
we have a strange result, not satisfying elementary conditions of special relativity 
theory. 

The packet, satisfying mentioned conditions, for this momentum operator 
definition can be obtained only at extremely large σ , when the bell-shaped 
spectral function 

( )22

2exp ip pσ −
 −
 
 

                      (61) 

defines values of momentum p distributed in close vicinity of initial ip  and 
relativistic kinetic energy can be expressed with necessary precision as 

( ) ( ) ( ) ( )d
.

d
i

i i
p p

T p
T p T p p p

p
=

= + −                 (62) 

Due to definition (56) it follows 

( )
1 22

0d
1

d
i

i i i

p p

T p p p p
p cµ µ µ

−

=

   = + =    
                (63) 

and the packet moves like the particle. However, the obtained results are only 
more or less successful approximations, not giving a precise solution of this 
simplest problem of quantum mechanics. 

5. Matter Waves and Packets, Satisfying Necessary  
Conditions 

Two the best known relativistic kinetic energy presentations in terms of 
nonrelativistic momentum 0p  and in terms of relativistic momentum p  were 
applied together with corresponding nonrelativistic approximations. However, 
both definitions of the quantum momentum operator, applied in these expressions, 
gives more or less acceptable approximations, but cannot present a precise 
solution for the problem of the free quantum particle. Thus, a definition of   
the new correspondence of this operator to some classical parameter with 
momentum dimension is necessary. 

This problem is solved using relativistic kinetic energy (6), presented in terms 
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of the nonrelativistic kinetic energy as 

( )
2
0 ,

2
pT g β
µ

=                        (64) 

where 

( )
0

2 1
4

k

k

k
g

k
β

β
∞

=

+  =   
  

∑                   (65) 

and 2 2v cβ = . 
Defining  

( )0g β=p p                        (66) 

the relativistic kinetic energy can be present in form 

( )
2

.
2

pT
gµ β

=


                       (67) 

Now, for a precise description of the free particle, it is enough to define the 
quantum mechanical momentum operator i− ∇  to correspond to the 
modified momentum of classical relativity theory p .  

This definition does not look strange and is completely acceptable in 
comparison with the traditional correspondence of this operator to  

( )0γ β=p p                        (68) 

with 

( )
0

2
.

4

k

k

k
k

β
γ β

∞

=

  =   
  

∑                   (69) 

Therefore, the difference of definitions present in Equation (65) and Equation 
(69) cannot be considered significant. Both momenta at nonrelativistic velocities 
are equal the nonrelativistic momentum, both are defined only at 0 1β≤ <  and 
both approach infinity at velocity of particle approaching speed of light. 

The new definition of momentum operator correspondence gives matter 
waves—solutions of the Schrödinger equation—whose packet produces the 
probability distribution of a free particle, moving in an inertial reference frame 
with given uniform velocity 0 v c≤ < . Now the probability density distribution 

( ) 2
,z tψ  in complete analogy with (45) is 

( )
( )

( )

2

2

1 exp .
22π
z vt

tt σσ

 −
 −
 
 

                 (70) 

The only difference is that the spatial extension of the packet takes the form 

( ) ( )

2

21
2

tt
g

σ σ
µ β σ

 
= +   

 

                 (71) 

with multiplier ( ) 1g β > , reducing the relativistic packet spreading.  
Let us now evaluate this effect in some real situations. From definition 
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( ) 2

1
1

E
c

γ β
µβ

= =
−

                    (72) 

it follows that 
22

1 c
E
µβ

 
= −  

 
                       (73) 

and, after explicit summation of the expansion, present in Equation (65), ( )g β  
takes the simple form:  

( ) 2 1 1 .
1

g β
β β

 
= −  − 

                     (74) 

The first problems let us investigate how much time 0t  is necessary for 
extension doubling, that is for relation 

( )0 2tσ σ=                            (75) 

which is satisfied by an electron, produced in the Stanford linear accelerator and 
a proton, produced in the CERN accelerator. 

Both bunches are 1 cmσ ≈  in length (see Particle Data Group report [10] 
and earlier reports of this group). For electron ( )250 GeV, 511 keVE cµ= =  
one obtains 

101 10 ,β −≈ −                           (76) 

therefore 

( ) 52 10g β ≈ ×                          (77) 

and 
5

0 5 10 st ≈ ×                           (78) 

During this time the electron covers a distance 
14

0 10 m.l ≈                           (79) 

For proton ( )27 TeV, 938 MeVE cµ= =  the corresponding distance is even 
larger, equal approximately 3 light years ( 161 ly 0.946 10 m= × ).  

The obtained results create new possibilities to explain traveling of cosmic 
rays. The shortest super high energy event in space is a supernova explosion, 
lasting approximately one second. If this equals the spreading of the 
corresponding packet, the produced protons until σ  doubling cover distance, 
equal some 1020 ly (for electrons this evaluation gives a slightly smaller value, 
equal 1018 ly). These distances are at least 100 million times larger than the 
dimension of the visual universe ( 101.38 10 ly× ), thus the spreading of the 
corresponding packet in the real universe is negligible. This effect can explain 
the unclear origin of extremely high energies, obtained registering these events.  

6. Conclusions 

From our consideration, it follows that the traditional definition of the quantum 
momentum operator, correspondence to the classical relativistic momentum 
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cannot produce packets, moving in an inertial reference frame with uniform 
velocity less than the speed of light so that the maximal probability density point 
of the packet moves in the same way as a classical relativistic particle. 

While solving this problem, a simple expression for the relativistic kinetic 
energy operator is defined, after postulating the original correspondence of the 
known quantum mechanical momentum operator i− ∇  to a new factor with 
momentum dimension of classical relativity theory. This correspondence is 
necessary to present the relativistic kinetic energy operator in a form, satisfying 
the requirements for a matter particle wave packet. Schrödinger equation for a 
free particle with this kinetic energy operator gives a solution for the matter 
waves, whose packet moves in complete accordance with special relativity theory 
predictions for a free particle movement. 

The developed theory significantly reduces spreading of packets, created after 
gigantic energy processes in universe, explaining extreme energies of cosmic rays, 
moving across the visible universe like compact bunches without remarkable 
spreading. 

Moreover, the introduced relativistic kinetic energy operators can be applied 
in the internal Hamiltonian instead of nonrelativistic operators for every internal 
(Jacobian) variable according to the recipe, given in Sec. II. Both operators are 
differential of the same kind, the difference is only in the reduced mass of 
corresponding clusters, defined by given coordinate. The structure of this 
operator for relative movement of two particles or clusters is:  

( ) ( ) ( )0 ,T T gβ β=                     (80) 

where 

( )
2

0
2

T
µ

= − ∆
                       (81) 

is nonrelativistic kinetic energy operator, µ  is reduced mass of clusters, and 
∆  is Laplace operator, dependent on radius vector r , connecting the centers of 
mass of clusters. 

The nonrelativistic Schrödinger equation is 

( )( )0 .T V E+ Ψ = Ψ                     (82) 

The equation with relativistic kinetic energy operator looks as 

( )( ) ,T V Eβ + Ψ = Ψ                     (83) 

or 

( ) ( )( ) ( )0 .T g V g Eβ β+ Ψ = Ψ                 (84) 

Having in mind that ( ) 1g β ≥  one arrives at an interesting conclusion that  
a relativistic system has larger binding energy than the corresponding 
nonrelativistic system, mainly due to a larger effective reduced mass of 
interacting particles, equal ( )gµ β . 

For a two-particle quantum system, the parameter β  can be present in form 
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( )
2

2 0
,

T
c

β
µ

=                          (85) 

where ( )0T  marks the expectation value of nonrelativistic kinetic energy 
operator. 

Let us evaluate this effect for the Hydrogen atom. From virial theorem, it 
follows that 

( )0 13.6 eV,T E= − ≈                     (86) 

therefore 

527.2 eV 5 10
511 keV

β −≈ ≈ ×                      (87) 

and 

( ) 1.00004.g β ≈                        (88) 

Thus, for Hydrogen atom, the relativistic correction of the binding energy is 
negligible. 

For deuteron the kinetic energy expectation value, obtained after Schrödinger 
equation with Argonne v18 realistic potential solution, equals 19.81 MeV [11]. 
This value, according to (85), gives 0.084β ≈ , therefore ( ) 1.068g β ≈ . From 
Equation (84) it follows that the corrected value ( )g Eβ  of deuteron binding 
energy is 2.3759 MeV. Argonne and other modern realistic potentials are fitted 
to experimental deuteron binding energy, equal 2.2246 MeV. Therefore, taken 
into account relativistic nucleon mass correction requires more attractive 
potential in comparison to known potentials in a two-nucleon channel 3S1 − 3D1. 
This gives us a chance to solve the old problem of realistic potentials, carefully 
fitted with the two-nucleon data, giving smaller than experimental binding 
energies of more complex nuclei. 

Obviously, the relativistic effects, taken into account in the defined way, can 
be even more significant when particles are trapped in a restricted space, like the 
quarks in a nucleon or protons in a protostar. Our definition of the relativistic 
kinetic energy gives a possibility for some kind of confinement to occur in these 
systems, preventing disintegration of the system when the attractive force 
increases with the growing kinetic energy of the relative movement of particles 
or clusters. Moreover, if inertial and gravitational masses are equal, gravity, 
caused by the obtained mass dependence on velocity, can become significant for 
relativistic particles. 
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