On Generalized φ-Recurrent Sasakian Manifolds

Absos Ali Shaikh, Helaluddin Ahmad
Department of Mathematics, The University of Burdwan, Burdwan, India
E-mail: aask2003@yahoo.co.in

Received July 22, 2011; revised September 13, 2011; accepted September 20, 2011

Abstract

The object of the present paper is to introduce the notion of generalized φ-recurrent Sasakian manifold and study its various geometric properties with the existence of such notion. Among others we study generalized concircularly φ-recurrent Sasakian manifolds. The existence of generalized φ-recurrent Sasakian manifold is given by a proper example.

Keywords: Locally φ-Symmetric Sasakian Manifold, φ-Recurrent Sasakian Manifold, Generalized φ-Recurrent Sasakian Manifold, Scalar Curvature

1. Introduction

Let M be an n-dimensional connected Riemannian manifold with Riemannian metric g and Levi-Civita connection $\nabla . M$ is called locally symmetric if its curvature tensor is parallel with respect to ∇. During the last five decades, the notion of locally symmetric manifold has been weakend many authors in different directions such as recurrent manifold by Walker [1], semi-symmetric manifold by Szabó [2], pseudo-symmetric manifold by Chaki [3], pseudo-symmetric manifold by Deszcz [4], weakly symmetric manifold by Tamássy and Binh [5], weakly symmetric manifold by Selberg [6]. However, the notion of pseudo-symmetry by Chaki and Deszcz are different and that of weak symmetry by Selberg and Tamássy and Binh are also different. As a weaker version of local symmetry, in 1977 Takahashi [7] introduced the notion of local φ-symmetry on a Sasakian manifold. By extending the notion of local φ-symmetry of Takahashi [7], De et al. [8] introduced and studied the notion of φ-recurrent Sasakian manifold. It may be mentioned that locally φ-symmetric and φ-recurrent LP-Sasakian, (LCS) ${ }_{n}$ and (k, μ)-contact metric manifolds are respectively studied in [9-13].
Again, in 1979 Dubey [14] introduced the notion of generalized recurrent manifold and then such a manifold is studied by De and Guha [15]. The manifold $M, n>2$, is called generalized recurrent [14] if its curvature tensor R of type $(1,3)$ satisfies the condition

$$
\begin{equation*}
\nabla R=A \otimes R+B \otimes G, \tag{1}
\end{equation*}
$$

where A and B are nowhere vanishing unique 1 -forms
defined by $A(\cdot)=g\left(\cdot, \rho_{1}\right), B(\cdot)=g\left(\cdot, \rho_{2}\right)$ and G is a tensor of type $(1,3)$ given by

$$
\begin{equation*}
G(X, Y) Z=g(Y, Z) X-g(X, Z) Y \tag{2}
\end{equation*}
$$

for all vector fields $X, Y, Z \in \chi(M) ; \chi(M)$ being the Lie algebra of all smooth vector fields on M and ∇ is the Levi-Civita connection. Again $M, n>2$, is called generalized Ricci-recurrent manifold [16] if its Ricci tensor S of type $(0,2)$ satisfies the condition

$$
\begin{equation*}
\nabla S=A \otimes S+B \otimes g \tag{3}
\end{equation*}
$$

where A and B are nowhere vanishing unique 1 -forms.
The object of the present paper is to introduce a type of non-flat Sasakian manifolds called generalized φ-recurrent Sasakian manifold, which includes both the notion of local φ-symmetry of Takahashi [7] and also φ recurrence of De et al. [8] as particular cases. The paper is organized as follows. Section 2 deals with some preliminaries of Sasakian manifolds. Section 3 is devoted to the study of generalized φ-recurrent Sasakian manifolds and it is shown that such a manifold is generalized Ricci-recurrent [16]. In Section 4, we study generalized concircularly φ-recurrent Sasakian manifolds and it is shown that in a generalized concircularly φ-recurrent Sasakian manifold the vector field ρ_{2} associted with the 1 -form B and the characterstic vector field ξ are co-directional. We also introduce the notion of super generalized Ricci-recurrent manifolds and proved that a generalized concircularly φ-recurrent Sasakian manifold is such one. Also the existence of generalized φ-recurrent Sasakian manifold is ensured by a proper example in the last Section.

2. Sasakian Manifolds

An $n=(2 m+1)$-dimensional C^{∞} manifold M is said to be a contact manifold if it carries a global 1-form η such that $\eta \wedge(d \eta)^{m} \neq 0$ everywhere on the manifold. Given a contact form η, it is well-known that there exists a unique vector field ξ, called the characteristic vector field of η, satisfying $\eta(\xi)=1$ and $d \eta(X, \xi)=0$ for any vector field X on M. A Riemannian metric g is said to be an associated metric if there exists a tensor field φ of type $(1,1)$ such that

$$
\begin{gather*}
\varphi^{2}=-I+\eta \otimes \xi, \eta(\cdot)=g(\cdot, \xi), \mathrm{d} \eta(\cdot, \cdot)=g(\cdot, \varphi \cdot) \tag{4}\\
\varphi \xi=0, \eta \circ \varphi=0, g(\varphi \cdot, \cdot)=-g(\cdot, \varphi \cdot) \tag{5}\\
g(\varphi \cdot, \varphi \cdot)=g(\cdot, \cdot)-\eta \otimes \eta \tag{6}
\end{gather*}
$$

Then the structure (φ, ξ, η, g) on M is called a contact metric stucture and the manifold M equipped with such a stucture is called a contact metric manifold [17].

Given a contact metric manifold M we define a $(1,1)$ tensor field h by $h=\frac{1}{2} £_{\xi} \phi$, where $£$ denotes the operator of Lie differentiation. Then h is symmetric. The vector field ξ is a Killing vector field with respect to g if and only if $h=0$. A contact metric manifold M for which ξ is a Killing vector is said to be a K-contact manifold. A contact structure on M gives rise to an almost complex structure J on the product $M \times \mathbb{R}$ defined by

$$
J\left(X, f \frac{\mathrm{~d}}{\mathrm{~d} t}\right)=\left(\phi X-f \xi, \eta(X) \frac{\mathrm{d}}{\mathrm{~d} t}\right)
$$

where f is a real valued function, is integrable, then the structure is said to be normal and the manifold M is a Sasakian manifold. Equivalently, a contact metric manifold is Sasakian if and only if

$$
\begin{equation*}
R(X, Y) \xi=\eta(Y) X-\eta(X) Y \tag{7}
\end{equation*}
$$

holds for all X, Y where R denotes the curvature tensor of the manifold.

In an n-dimensional Sasakian manifold M the following relations hold [17-19]:

$$
\begin{align*}
R(\xi, X) Y & =\left(\nabla_{X} \varphi\right)(Y)=g(X, Y) \xi-\eta(Y) X \tag{8}\\
& =-R(X, \xi) Y \\
\nabla_{X} \xi= & -\varphi X,\left(\nabla_{X} \eta\right)(Y)=g(X, \varphi Y), \tag{9}\\
\eta(R(X, Y) Z) & =g(Y, Z) \eta(X)-g(X, Z) \eta(Y), \tag{10}\\
S(X, \xi) & =(n-1) \eta(X), S(\xi, \xi)=(n-1), \tag{11}\\
S(\varphi X, \varphi Y) & =S(X, Y)-(n-1) \eta(X) \eta(Y), \tag{12}\\
\left(\nabla_{W} S\right)(Y, \xi) & =S(Y, \varphi W)-(n-1) g(Y, \varphi W), \tag{13}
\end{align*}
$$

$$
\begin{align*}
& \left(\nabla_{W} R\right)(X, Y) \xi=g(W, \varphi Y) X \tag{14}\\
& -g(W, \varphi X) Y+R(X, Y) \varphi W \\
& \left(\nabla_{W} R\right)(X, \xi) Z=g(X, Z) \varphi W \\
& -g(Z, \varphi W) X+R(X, \varphi W) Z \tag{15}
\end{align*}
$$

for all vector fields $X, Y, Z, W \in \chi(M)$.
Definition 1. [7] A Sasakian manifold is said to be locally φ-symmetric if

$$
\begin{equation*}
\varphi^{2}\left(\left(\nabla_{W} R\right)(X, Y) Z\right)=0 \tag{16}
\end{equation*}
$$

for all vector fields X, Y, Z, W orthogonal to ξ.
Definition 2. [8] A Sasakian manifold is said to be φ-recurrent if there exists a nowhere vanishing unique 1-form A such that

$$
\begin{equation*}
\varphi^{2}\left(\left(\nabla_{W} R\right)(X, Y) Z\right)=A(W) R(X, Y) Z \tag{17}
\end{equation*}
$$

for all vector fields $X, Y, Z, W \in \chi(M)$.
Especially, if the 1 -form A vanishes and the vector fields are horizontal, then the manifold turns to be a locally φ-symmetric Sasakian manifold [7].

3. Generalized φ-Recurrent Sasakian Manifolds

Definition 3. An n-dimensional, $n \geq 3$, Sasakian manifold M is said to be a generalized φ-recurrent if its curvature tensor satisfies the relation

$$
\begin{align*}
\varphi^{2}\left(\left(\nabla_{W} R\right)(X, Y) Z\right) & =A(W) \varphi^{2}(R(X, Y) Z) \tag{18}\\
& +B(W) \varphi^{2}(G(X, Y) Z)
\end{align*}
$$

for all $X, Y, Z, W \in \chi(M)$, where A and B are nowhere vanishing unique 1 -forms such that $A(X)=g\left(X, \rho_{1}\right)$, $B(X)=g\left(X, \rho_{2}\right)$ and $G(X, Y) Z$ is defined in (2).

We consider a Sasakian manifold $M, n \geq 3$, which is generalized φ-recurrent. Then by virtue of (4), (18) yields

$$
\begin{align*}
& \left(\nabla_{W} R\right)(X, Y) Z=\eta\left(\left(\nabla_{W} R\right)(X, Y) Z\right) \xi \\
& +A(W)[R(X, Y) Z-\eta(R(X, Y) Z) \xi] \tag{19}\\
& +B(W)[G(X, Y) Z-\eta(G(X, Y) Z) \xi]
\end{align*}
$$

from which it follows that

$$
\begin{align*}
& g\left(\left(\nabla_{W} R\right)(X, Y) Z, U\right)=\eta\left(\left(\nabla_{W} R\right)(X, Y) Z\right) \eta(U) \\
& +A(W)[g(R(X, Y) Z, U)-\eta(R(X, Y) Z) \eta(U)] \tag{20}\\
& +B(W)[g(G(X, Y) Z, U)-\eta(G(X, Y) Z) \eta(U)]
\end{align*}
$$

Let $\left\{e_{i}: i=1,2, \cdots, n\right\}$ be an orthonormal basis of the tangent space at any point of the manifold. Then putting
$X=U=e_{i}$ in (20) and taking summation over $i, 1 \leq i \leq n$, and using (15), (10), (8) and (2), we get

$$
\begin{align*}
\left(\nabla_{W} S\right)(Y, Z)= & A(W) S(Y, Z) \\
& +\{(n-2) B(W)-A(W)\} g(Y, Z) \tag{21}\\
& \cdot\{A(W)+B(W)\} \eta(Y) \eta(Z)
\end{align*}
$$

Setting $Z=\xi$ in (19) and using (7), (2), (14) and (10) we obtain

$$
\begin{equation*}
\left(\nabla_{W} R\right)(X, Y) \xi=\{A(W)+B(W)\}[\eta(Y) X-\eta(X) Y] \tag{22}
\end{equation*}
$$

From (14) and (22), we obtain

$$
\begin{align*}
& g(W, \varphi Y) X-g(W, \varphi X) Y+R(X, Y) \varphi W \\
& =\{A(W)+B(W)\}[\eta(Y) X-\eta(X) Y] \tag{23}
\end{align*}
$$

Taking inner product of (23) with Z and then taking contraction over X and Z, we get

$$
\begin{equation*}
S(Y, \varphi W)=(n-1)[\{A(W)+B(W)\} \eta(Y)-g(W, \varphi Y)] \tag{24}
\end{equation*}
$$

Putting $Y=\xi$ in (24) we get

$$
\begin{equation*}
A(W)+B(W)=0 \text { for all } W \tag{25}
\end{equation*}
$$

This leads to the following.
Theorem 1. In a generalized φ-recurrent Sasakian manifold $M, n \geq 3$, the associated 1-forms A and B are related by the relation $A+B=0$.

In view of (25), (21) turns into

$$
\begin{equation*}
\left(\nabla_{W} S\right)(Y, Z)=A(W) S(Y, Z)+b(W) g(Y, Z) \tag{26}
\end{equation*}
$$

where $b(W)=(n-3) A(W)$. This leads to the following.

Theorem 2. A generalized φ-recurrent Sasakian manifold $M, n \geq 3$, is generalized Ricci-recurrent.

4. Generalized Concircularly φ-Reccurent Sasakian Manifolds

The concircular transformation on a Riemannian manifold is a transformation under which geodesic circles remains invariant [20]. The concircular curvature tensor \widetilde{C} of type $(1,3)$ is given by [20]

$$
\begin{equation*}
\widetilde{C}(X, Y) Z=R(X, Y) Z-\frac{r}{n(n-1)} G(X, Y) Z \tag{27}
\end{equation*}
$$

If the concircular curvature tensor \widetilde{C} satisfies the relation (18), then the manifold is said to be generalized concircularly φ-recurrent Sasakian manifold. We also note that since conformal and projective curvature tensors are trace free, there do not exist any generalized conformally and projectively φ-reccurent Sasakian manifolds.
Let us consider a generalized concircularly φ-recurrent

Sasakian manifold $M, n \geq 3$. Hence the defining condition of a generalized concircularly φ-recurrent Sasakian manifold, yields by virtue of (27) that
$\varphi^{2}\left(\left(\nabla_{W} R\right)(X, Y) Z\right)-A(W) \varphi^{2}(R(X, Y) Z)$
$-B(W) \varphi^{2}(G(X, Y) Z)$
$=\frac{r A(W)-d r(W)}{n(n-1)}$
$\cdot[g(Y, Z) X-\eta(X) g(Y, Z) \xi-g(X, Z) Y+\eta(Y) g(X, Z) \xi]$.
This leads to the following.
Theorem 3. A generalized concircularly φ-recurrent Sasakian manifold $M, n \geq 3$, is generalized φ-recurrent if and only if

$$
\begin{align*}
& \frac{r A(W)-d r(W)}{n(n-1)}[g(Y, Z) X-\eta(X) g(Y, Z) \xi \tag{29}\\
& -g(X, Z) Y+\eta(Y) g(X, Z) \xi]=0
\end{align*}
$$

Now taking inner product of (29) with U we have

$$
\begin{array}{r}
\frac{r A(W)-d r(W)}{n(n-1)}[g(Y, Z) g(X, U)-\eta(X) g(Y, Z) \eta(U) \\
-g(X, Z) g(Y, U)+\eta(Y) g(X, Z) \eta(U)]=0
\end{array}
$$

Taking contraction over X and U we get
$\{r A(W)-d r(W)\}[(n-2) g(Y, Z)+\eta(Y) \eta(Z)]=0$.
Again taking contraction over Y and Z we get

$$
\{r A(W)-d r(W)\}[n(n-2)+1]=0
$$

which implies that

$$
A(W)=\frac{1}{r} d r(W) \text { for all } W \text { and } r \neq 0
$$

i.e., $\rho_{1}=\frac{1}{r} \operatorname{gradr}$, where $A(W)=g\left(W, \rho_{1}\right)$.

This leads to the following.
Theorem 4. If a generalized concircularly φ-recurrent Sasakian manifold $M, n \geq 3$, is a generalized φ-recurrent Sasakian manifold, then the associated vector field corresponding to the 1-form A is given by $\rho_{1}=\frac{1}{r}$ gradr, r being the non-zero and non-constant scalar curvature of the manifold.

Now by virtue of (4), it follows from (28) that

$$
\begin{align*}
& \left(\nabla_{W} R\right)(X, Y) Z=\eta\left(\left(\nabla_{W} R\right)(X, Y) Z\right) \xi \\
& +A(W)[R(X, Y) Z-\eta(R(X, Y) Z) \xi] \\
& +B(W)[G(X, Y) Z-\eta(G(X, Y) Z) \xi] \tag{30}\\
& -\frac{r A(W)-d r(W)}{n(n-1)}[g(Y, Z) X-\eta(X) g(Y, Z) \xi \\
& \quad-g(X, Z) Y+\eta(Y) g(X, Z) \xi] .
\end{align*}
$$

Taking inner product of (30) with U and then contracting over X and U, and then using (2), (15), (10) and (8) we get

$$
\begin{align*}
& \left(\nabla_{W} S\right)(Y, Z)=A(W) S(Y, Z) \\
& +[(n-2) B(W)-A(W)] g(Y, Z) \\
& +\frac{d r(W)}{n(n-1)}[(n-2) g(Y, Z)+\eta(Y) \eta(Z)] \\
& +A(W)\left[\left\{1-\frac{r}{n(n-1)}\right\} \eta(Y) \eta(Z)-\frac{(n-2) r}{n(n-1)} g(Y, Z)\right] \\
& +B(W) \eta(Y) \eta(Z) . \tag{31}
\end{align*}
$$

Again taking contraction over Y and Z in (31), we get

$$
\begin{equation*}
\mathrm{d} r(W)=\{r-n(n-1)\} A(W)+n(n-1)^{2} B(W) . \tag{32}
\end{equation*}
$$

From (32), we can state the following.
Theorem 5. In a generalized concircularly φ-recurrent Sasakian manifold $M, n \geq 3$, the associated 1-forms A and B are related by the relation (32).

Corollary 1. In a generalized concircularly φ-recurrent Sasakian manifold $M, n \geq 3$, with constant scalar curvature, the associated 1 -forms A and B are related by

$$
\{r-n(n-1)\} A+n(n-1)^{2} B=0 .
$$

Now using (32) in (31) we get

$$
\begin{align*}
& \left(\nabla_{W} S\right)(Y, Z)=A(W) S(Y, Z) \\
& +\{n(n-2) B(W)-(n-1) A(W)\} g(Y, Z) \tag{33}\\
& +n B(W) \eta(Y) \eta(Z) .
\end{align*}
$$

From (33), it follows that the Ricci tensor S satisfies the condition

$$
\begin{equation*}
\nabla S=\alpha \otimes S+\beta \otimes g+\gamma \otimes \pi \tag{34}
\end{equation*}
$$

where $\alpha(W)=A(W)$,
$\beta(W)=n(n-2) B(W)-(n-1) A(W), \gamma(W)=n B(W)$
and $\pi=\eta \otimes \eta$.
By extending the notion of generalized Ricci-recurrent manifold [16], we introduce the notion of super generalized Ricci-recurrent manifold defined as follows.

Definition 4. An n-dimensional Riemannian manifold $M, n>2$, is called a super generalized Ricci-recurrent if its Ricci tensor S of type $(0,2)$ satisfies the relation

$$
\nabla S=\alpha \otimes S+\beta \otimes g+\gamma \otimes \pi
$$

where α, β, γ are nowhere vanishing unique 1-forms and $\pi=\eta \otimes \eta$.
From (34), we can state the following:
Theorem 6. A generalized concircularly φ-recurrent Sasakian manifold $M, n \geq 3$, is super generalized Riccirecurrent manifold.

Now taking contraction of (33) over W and Z, we get

$$
\begin{aligned}
\frac{1}{2} \mathrm{~d} r(Y)= & S\left(Y, \rho_{1}\right)+n(n-2) B(Y) \\
& -(n-1) A(Y)+n \eta(Y) B(\xi)
\end{aligned}
$$

By virtue of (32), the above relation takes the form

$$
\begin{align*}
S\left(Y, \rho_{1}\right)= & \frac{r-(n-1)(n-2)}{2} A(Y) \\
& +\frac{n\left(n^{2}-4 n+5\right)}{2} B(Y)-n \eta(Y) B(\xi) . \tag{35}
\end{align*}
$$

From (35), we can state the following.
Theorem 7. In a generalized concircularly φ-recurrent Sasakian manifold $M, n \geq 3$, the Ricci tensor in the direction of ρ_{1} is given by (35).

Now setting $Z=\xi$ in (33) and then using (13) and (11) we get

$$
\begin{equation*}
S(Y, \varphi W)=(n-1) g(Y, \varphi W)+n(n-1) B(W) \eta(Y) . \tag{36}
\end{equation*}
$$

Replacing Y by φY in (36) and using (12) and (6) we have

$$
\begin{equation*}
S(Y, W)=(n-1) g(Y, W) \tag{37}
\end{equation*}
$$

Replacing W by φW in (36) and then using (4) we get

$$
\begin{equation*}
S(Y, W)=(n-1) g(Y, W)-n(n-1) B(\varphi W) \eta(Y) . \tag{38}
\end{equation*}
$$

From (37) and (38) we have

$$
B(\varphi W)=0,
$$

which implies that

$$
B(W)=\eta(W) B(\xi) .
$$

This leads to the following.
Theorem 8. In a generalized concircularly φ-recurrent Sasakian manifold $M, n \geq 3$, the vector field ρ_{2} associated with the 1-form B and the characterstic vector field ξ are codirectional.

5. Example of Generalized φ-Recurrent Sasakian Manifold

Example 1. We consider a 3-dimensional manifold $M=\left\{(x, y, z) \in \mathbb{R}^{3}: y \neq 0\right\}$, where (x, y, z) are the standard coordinates in \mathbb{R}^{3}. Let $\left\{E_{1}, E_{2}, E_{3}\right\}$ be a linearly independent global frame on M given by

$$
E_{1}=-2 \frac{\partial}{\partial x}, E_{2}=x \frac{\partial}{\partial z}-y^{2} \frac{\partial}{\partial y}, E_{3}=\frac{\partial}{\partial z} .
$$

Let g be the Riemannian metric defined by

$$
\begin{aligned}
& g\left(E_{1}, E_{3}\right)=g\left(E_{2}, E_{3}\right)=g\left(E_{1}, E_{2}\right)=0, \\
& g\left(E_{1}, E_{1}\right)=g\left(E_{2}, E_{2}\right)=g\left(E_{3}, E_{3}\right)=1 .
\end{aligned}
$$

Let η be the 1 -form defined by $\eta(U)=g\left(U, E_{3}\right)$ for any $U \in \chi(M)$. Let φ be the $(1,1)$ tensor field defined by $\varphi E_{1}=-E_{2}, \varphi E_{2}=E_{1}$ and $\varphi E_{3}=0$. Then using the linearity of φ and g we have $\eta\left(E_{3}\right)=1$,
$\varphi^{2} U=-U+\eta(U) E_{3}$ and $g(\varphi U, \varphi W)=g(U, W)$
$-\eta(U) \eta(W)$ for any $U, W \in \chi(M)$. Thus for $E_{3}=\xi$, (φ, ξ, η, g) defines an almost contact metric structure on M. Let ∇ be the Riemannian connection of g. Then we have

$$
\left[E_{1}, E_{2}\right]=-2 E_{3},\left[E_{1}, E_{3}\right]=0,\left[E_{2}, E_{3}\right]=0 .
$$

Using Koszul formula for the Riemannian metric g, we can easily calculate

$$
\begin{aligned}
& \nabla_{E_{1}} E_{1}=0, \nabla_{E_{1}} E_{2}=-E_{3}, \nabla_{E_{1}} E_{3}=E_{2}, \\
& \nabla_{E_{2}} E_{1}=E_{3}, \nabla_{E_{2}} E_{2}=0, \nabla_{E_{2}} E_{3}=-E_{1}, \\
& \nabla_{E_{3}} E_{1}=E_{2}, \nabla_{E_{3}} E_{2}=-E_{1}, \nabla_{E_{3}} E_{3}=0 .
\end{aligned}
$$

From the above it can be easily seen that (φ, ξ, η, g) is a Sasakian structure on M. Consequently $M^{3}(\varphi, \xi, \eta, g)$ is a Sasakian manifold. Using the above relations, we can easily calculate the components of the curvature tensor as follows:

$$
\begin{gathered}
R\left(E_{1}, E_{2}\right) E_{1}=3 E_{2}, R\left(E_{1}, E_{2}\right) E_{2}=-3 E_{1}, \\
R\left(E_{1}, E_{2}\right) E_{3}=0, \\
R\left(E_{1}, E_{3}\right) E_{1}=3 E_{3}, R\left(E_{1}, E_{3}\right) E_{2}=0, R\left(E_{1}, E_{3}\right) E_{3}=E_{1}, \\
R\left(E_{2}, E_{3}\right) E_{1}=0, R\left(E_{2}, E_{3}\right) E_{2}=-E_{3}, R\left(E_{2}, E_{3}\right) E_{3}=E_{2}
\end{gathered}
$$

and the components which can be obtained from these by the symmetry properties.

Since $\left\{E_{1}, E_{2}, E_{3}\right\}$ forms a basis of the Sasakian manifold, any vector field $X, Y, Z \in \chi(M)$ can be written as

$$
\begin{gathered}
X=a_{1} E_{1}+b_{1} E_{2}+c_{1} E_{3}, \quad Y=a_{2} E_{1}+b_{2} E_{2}+c_{2} E_{3}, \\
X=a_{3} E_{1}+b_{3} E_{2}+c_{3} E_{3},
\end{gathered}
$$

where $a_{i}, b_{i}, c_{i} \in \mathbb{R}^{+}$(the set of all positive real numbers), $i=1,2,3$. Then

$$
\begin{aligned}
R(X, Y) Z & =\left[c_{3}\left(a_{1} c_{2}-a_{2} c_{1}\right)-3 b_{3}\left(a_{1} b_{2}-a_{2} b_{1}\right)\right] E_{1} \\
& +\left[3 a_{3}\left(a_{1} b_{2}-a_{2} b_{1}\right)+c_{3}\left(b_{1} c_{2}-b_{2} c_{1}\right)\right] E_{2} \\
& -\left[a_{3}\left(a_{1} c_{2}-a_{2} c_{1}\right)+b_{3}\left(b_{1} c_{2}-b_{2} c_{1}\right)\right] E_{3}
\end{aligned}
$$

and

$$
\begin{align*}
G(X, Y) Z & =\left(a_{2} a_{3}+b_{2} b_{3}+c_{2} c_{3}\right)\left(a_{1} E_{1}+b_{1} E_{2}+c_{1} E_{3}\right) \tag{40}\\
& -\left(a_{1} a_{3}+b_{1} b_{3}+c_{1} c_{3}\right)\left(a_{2} E_{1}+b_{2} E_{2}+c_{2} E_{3}\right) .
\end{align*}
$$

By virtue of (39) we have the following:

$$
\begin{gather*}
\left(\nabla_{E_{1}} R\right)(X, Y) Z=4\left\{c_{3}\left(a_{1} b_{2}-a_{2} b_{1}\right)+b_{3}\left(a_{1} c_{2}-a_{2} c_{1}\right)\right\} E_{1} \\
-4 a_{3}\left(a_{1} c_{2}-a_{2} c_{1}\right) E_{2}-4 a_{3}\left(a_{1} b_{2}-a_{2} b_{1}\right) E_{3} \tag{41}
\end{gather*}
$$

$$
\begin{align*}
\left(\nabla_{E_{2}} R\right)(X, Y) Z & =4 b_{3}\left(b_{1} c_{2}-b_{2} c_{1}\right) E_{1} \\
& +4 c_{3}\left(a_{1} b_{2}-a_{2} b_{1}\right)-a_{3}\left(b_{1} c_{2}-b_{2} c_{1}\right) E_{2} \\
& -4 b_{3}\left(a_{1} b_{2}-a_{2} b_{1}\right) E_{3}, \tag{42}
\end{align*}
$$

$$
\begin{equation*}
\left(\nabla_{E_{3}} R\right)(X, Y) Z=0 \tag{43}
\end{equation*}
$$

From (39) and (40), we get

$$
\begin{align*}
& \varphi^{2}(R(X, Y) Z)=p_{1} E_{1}+p_{2} E_{2} \tag{44}\\
& \varphi^{2}(G(X, Y) Z)=q_{1} E_{1}+q_{2} E_{2}
\end{align*}
$$

where

$$
\begin{aligned}
& p_{1}=3 b_{3}\left(a_{1} b_{2}-a_{2} b_{1}\right)-c_{3}\left(a_{1} c_{2}-a_{2} c_{1}\right) \\
& p_{2}=-3 a_{3}\left(a_{1} b_{2}-a_{2} b_{1}\right)-c_{3}\left(b_{1} c_{2}-b_{2} c_{1}\right) \\
& q_{1}=a_{2}\left(b_{1} b_{3}+c_{1} c_{3}\right)-a_{1}\left(b_{2} b_{3}+c_{2} c_{3}\right) \\
& q_{2}=b_{2}\left(a_{1} a_{3}+c_{1} c_{3}\right)-b_{1}\left(a_{2} a_{3}+c_{2} c_{3}\right) .
\end{aligned}
$$

Also from (41)-(43), we obtain

$$
\begin{equation*}
\varphi^{2}\left(\left(\nabla_{E_{i}} R\right)(X, Y) Z\right)=u_{i} E_{1}+v_{i} E_{2} \text { for } i=1,2,3 \tag{45}
\end{equation*}
$$

where

$$
\begin{aligned}
& u_{1}=-4\left\{c_{3}\left(a_{1} b_{2}-a_{2} b_{1}\right)+b_{3}\left(a_{1} c_{2}-a_{2} c_{1}\right)\right\} \\
& v_{1}=4 a_{3}\left(a_{1} c_{2}-a_{2} c_{1}\right) \\
& u_{2}=-4 b_{3}\left(b_{1} c_{2}-b_{2} c_{1}\right) \\
& v_{2}=4\left\{a_{3}\left(b_{1} c_{2}-b_{2} c_{1}\right)-c_{3}\left(a_{1} b_{2}-a_{2} b_{1}\right)\right\} \\
& u_{3}=0, v_{3}=0 .
\end{aligned}
$$

Let us now consider the components of the 1-forms as

$$
\begin{array}{rlr}
A\left(E_{i}\right)= & =\frac{q_{2} u_{i}-q_{1} v_{i}}{p_{1} q_{2}-p_{2} q_{1}} & \text { for } i=1,2 \\
& =0 & \text { for } i=3 \tag{46}
\end{array}
$$

and

$$
\begin{array}{rlr}
B\left(E_{i}\right)= & \frac{p_{1} v_{\mathrm{i}}-\mathrm{p}_{2} u_{\mathrm{i}}}{p_{1} q_{2}-p_{2} q_{1}} & \text { for } i=1,2 \tag{47}\\
& =0 & \text { for } i=3
\end{array}
$$

where $p_{1} q_{2}-p_{2} q_{1} \neq 0, q_{2} u_{i}-q_{1} v_{i} \neq 0$ and $p_{1} v_{i}-p_{2} u_{i} \neq 0 \quad$ for $i=1,2$.

From (18), we have

$$
\begin{align*}
\varphi^{2}\left(\left(\nabla_{E_{i}} R\right)(X, Y) Z\right)= & A\left(E_{i}\right) \varphi^{2}(R(X, Y) Z) \tag{48}\\
& +B\left(E_{i}\right) \varphi^{2}(G(X, Y) Z)
\end{align*}
$$

for $i=1,2,3$. By virtue of (44)-(47), it can be easily shown that the manifold satisfies the relation (48). Hence the manifold under consideration is a generalized φ-recurrent Sasakian manifold, which is not φ-recurrent. This leads to the following.

Theorem 9. There exists a 3-dimensional generalized φ-recurrent Sasakian manifold, which is neither φ-symmetric nor φ-recurrent.

6. References

[1] A. G. Walker, "On Ruses Spaces of Recurrent Curvature," Proceedings London Mathematical Society, Vol. 52, No. 1, 1950, pp. 36-64. doi:10.1112/plms/s2-52.1.36
[2] Z. I. Szabó, "Structure Theorems on Riemannian Spaces Satisfying $\mathrm{R}(\mathrm{X}, \mathrm{Y}) \cdot \mathrm{R}=0$," I, The local version, Journal of Differential Geometry, Vol. 17, No. 4, 1982, pp. 531582.
[3] M. C. Chaki, "On Pseudo Symmetric Manifolds," Analele Stiintifice Ale Univeritatii, Alexandru Ioan Cuza, Din Iasi, Romania, Vol. 33, 1987, pp. 53-58.
[4] R. Deszcz, "On Pseudosymmetric Spaces," Acta Mathematica Hungarica, Vol. 53, No. 3-4, 1992, pp. 185-190.
[5] L. Tamássy and T. Q. Binh, "On Weakly Symmetric and Weakly Projective Symmetric Rimannian Manifolds," Colloquia Math.ematica Societatis, Vol. 50, 1989, pp. 663-670.
[6] A. Selberg, "Harmonic Analysis and Discontinuous Groups in Weakly Symmetric Riemannian Spaces with Applications to Dirichlet Series," Indian Mathematical Society, Vol. 20, 1956, pp. 47-87.
[7] T. Takahashi, "Sasakian φ-Symmetric Spaces," Tohoku Mathematical Journal, Vol. 29, No. 1, 1977, pp. 91-113. doi:10.2748/tmj/1178240699
[8] U. C. De, A. A. Shaikh and S. Biswas, "On φ-Recurrent Sasakian Manifolds," Novi Sad Journal of Mathematics, Vol. 33, 2003, pp. 13-48.
[9] A. Al-Aqeel, U. C. De and G. C. Ghosh, "On Lorentzian para-Sasakian Manifolds," Kuwait Journal of Science \& Engineering, Vol. 31, 2004, pp. 1-13.
[10] A. A. Shaikh and K. K. Baishya, "On φ-Symmetric LPSasakian Manifolds," Yokohama Mathematic Journal, Vol. 52, 2005, pp. 97-112.
[11] A. A. Shaikh, T. Basu and K. K. Baishya, "On the Existence of Locally φ-Recurrent LP-Sasakian Manifolds," Bulletin of the Allahabad Mathematical Society, Vol. 24, 2009, pp. 281-295.
[12] A. A. Shaikh, T. Basu and S. Eyasmin, "On Locally φ Symmetric (LCS) $)_{\mathrm{n}}$-Manifolds," International Journal of Pure and Applied Mathematics, Vol. 48, No. 8, 2007, pp. 1161-1170.
[13] A. A. Shaikh, K. K. Baishya and S. Eyasmin, "On φ-Recurrent Generalized (k, μ)-Contact Metric Manifolds," Lobachevski Journal of Mathematics, Vol. 27, 2007, pp. 3-13.
[14] R. S. D. Dubey, "Generalized Recurrent Spaces," Indian Journal of Pure and Applied Mathematics, Vol. 10, 1979, pp. 1508-1513.
[15] U. C. De and N. Guha, "On Generalized Recurrent Manifolds," Journal of National Academy Mathematics, Vol. 9, 1991, pp. 85-92.
[16] U. C. De, N. Guha and D. Kamilya, "On Generalized Ricci-Recurrent Manifolds," Tensor New Series, Vol. 56, 1995, pp. 312-317.
[17] D. E. Blair, "Contact Manifolds in Riemannian Geometry," Series Lecture Notes in Mathematics, SpringerVerlag, Berlin, 1976.
[18] U. C. De and A. A. Shaikh, "Complex Manifolds and Contact Manifolds," Narosa Publishing House Pvt. Ltd., New Delhi, 2009.
[19] K. Yano and M. Kon, "Structures on Manifolds," World Scientific Publishing, Singapore, 1984.
[20] K. Yano, "Concircular Geometry I," Proceedings of the Imperial Academy, Vol. 16, No. 6, 1940, pp. 195-200. doi:10.3792/pia/1195579139

