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Abstract 

Excess number of zeros (zero inflation, ZI) in count data is a common phe-
nomenon which must be addressed in any analysis. The extra zeros may be a 
result of over-dispersion in the data. Ignoring zero-inflation can result in bi-
ased parameter estimates and standard errors. Over-dispersion is also asso-
ciated with a zero-inflated data. Depending on the selected model, different 
results and conclusions may be reached. In this paper two commonly en-
countered models in count data are considered, namely, the Zero-Inflated 
Poisson (ZIP) and Zero-Inflated Negative Binomial (ZINB) probability distribu-
tions. Emphasis is placed on the Maximum Likelihood (ML) estimation of the 
model parameters. Specifically of interest was to estimate the zero-inflation pa-
rameter and hence, the corrected frequencies. It was found that for the Pois-
son model, the zero-inflation parameter estimate was considerably higher 
than that from the Negative Binomial model. From the results however, it is 
suspected that the effectiveness of adjusting for the high number of zeros in 
both models might have been greatly affected by the inherent high variability 
between sites. It is then proposed that in future research, the problem of he-
terogeneity in count data be addressed before any further analysis. 
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1. Introduction 

In most cases, analysis of insect counts data has been modelled by the three dis-
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tributions, namely Poisson (θ), Binomial (n, θ) and Negative Binomial (k, θ). 
These discrete distributions fall under the category of power series distributions. 
These distributions have been generalized to what is referred to as the genera-
lized power series distribution (GPSD). By expressing these probability distribu-
tions explicitly in the form of power series distributions, this has greatly simpli-
fied the derivation of the explicit form of the moments of these distributions. 
The power series distributions have been widely studied. Noak [1] specifically 
investigated its moments and cumulants properties which were later extended by 
Khatri [2] to multivariate distributions. The properties of the generalized power 
series distributions were later studied by Patil [3] who also investigated estima-
tion and other properties of these models. In more recent studies, a wider inter-
est has been focused on modifications of the power series probability distribu-
tions to address the problem of zero-inflation, i.e. observing more zeroes than 
what would be expected for example, in a Poisson or Negative binomial distribu-
tion. Count data has been noted to consist of more zeroes than expected if the 
data were generated by a simple Poisson or negative Binomial process. Ignoring 
zero-inflation can have two consequences: bias may be induced in the estimation 
of model parameters and standard errors may be inflated thus leading to erro-
neous statistical inferences. In addition, zero-inflated data may as a consequence, 
cause over-dispersion which is defined as having a variance that may be larger 
than the mean. If this data characteristic is left unaddressed, this will render the 
model specification for the Poisson distribution of equal mean and variance null 
and void. Cameron and Trivedi [4] have outlined some common departures 
from the standard Poisson regression that should be addressed before actual 
analysis. Dean [5] outlined a method of testing for over-dispersion in Poisson 
and Binomial regression models. Lately however, the problem of zero inflation 
has been widely researched in the context of zero-inflated count regression. See 
for example, Lambert [6] and Gupta, et al. [7] [8]. Most of the cited research 
however, has implemented count regression models. 

2. Power Series Distributions 

A discrete random variable X will have a power series distribution given as: 

( ) ( )
, 0,1, 2, , 0; 0

x
x

x
aP X x x a
f
θ

θ
θ

= = = > >            (1) 

The distribution belongs to the exponential family of distributions and can 
generally be expressed in the form: 

( ) ( ) ( ) ( )e xa c x gP X x θ θ+ +  = =                      (2) 

where a and g are functions of the unknown parameter θ and c is a function of 
x. 

This property has been exploited in the derivation of the moments and other 
properties of the distribution. It can be shown (see Edwin [9]) that the central 
moments for the power distribution are given as: 
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Table 1 gives a summary of some power series distributions represented in 
the form given in (1). 

3. Zero-Inflation and Over-Dispersion 

The Poisson distribution theoretically specifies that the mean and variance are 
equal. However, it is quite common to have data for which the variance is far 
larger than the mean and the phenomenon is referred to as over-dispersion. In 
this case, Poisson GLM has been used to correct the anomaly. See for example, 
Cameron and Trivedi [4]. Over-dispersion is also common in a Negative Bi-
nomial distribution. When the distribution is parameterized in terms of its mean 
μ and variance σ2 distribution, the mean and variance are given as; 

( )
2

2andE X
k
µ

µ σ µ= = +                   (4) 

The distribution is reduced to equi-distribution ask becomes large, implying 
convergence to the Poisson distribution. As k becomes small for a small μ, a ze-
ro-inflated Negative Binomial distribution is a consequence. 

A zero-inflated statistical model is based on a zero-inflated probability distri-
bution. It arises when probability mass at a point zero exceeds the one allowed 
under the particular family of distributions. These models have been widely stu-
died. See for example, Jasankul [10], Ridout et al. [11] and Bohning [12]. They 
provide one method to explain the excess zeroes by modelling the data as a mix-
ture of two separate distributions in which one is typically a Poisson or Negative 
Binomial distribution that can generate both zeroes and non-zero counts, and 
the second distribution is a constant distribution that generates only zero counts. 

4. The Zero-Inflated Distribution 

Count data that have an incidence of zeroes greater than expected for the un-
derlying probability distribution is modelled as: 
 
Table 1. Specification of some common power series distributions. 
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where 0 1ρ< <  is the zero-inflation parameter. ( )P X x=  in this case 
represents any one of the count data distributions, e.g. Poisson, Negative Bi-
nomial, etc. using the format presented in (1). The means and variances of these 
distributions may then be obtained by using the expressions in (3) for the re-
spective probability model. For example, for the Poisson (λ) distribution; 
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             (6) 

And for a Negative Binomial distribution; 
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Using (5) and (1) and applying the usual definitions for E(X) and V(X), the 
mean and variance of a zero-inflated distribution is given as: 
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     (8) 

where ( )f θ  is given in Table 1 for the respective probability distribution. 

5. Estimation of Model Parameters 

In estimating the zero inflated parameters, some three methods seem to have 
been prominently used. The methods of moments (MM) is said to provide esti-
mates which are not very accurate. Nanjundan and Naika [13], [14] applied the 
MM as well as the maximum likelihood (ML) estimation and concluded that 
both methods are asymptotically equally efficient. In some cases however, the 
MM is considered as appropriate for use as initial values for ML estimation in 
the case of a non-closed solution of the model parameters. The two methods are 
outlined below: 

5.1. Method of Moments Estimation 

Let 1 2, , , nX X X  be a random sample from the probability distribution of the 
form in (5) for a p-parameter ZI model, the estimates are obtained by solving the 
equations: 

( ) for 1,2, ,
p

ip X
E X i p

n
= =∑

                  (9) 

For a two-parameter ZI model, Equation (9) leads to the following two equa-
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tions: 

( ) ( )
( )

( ) ( )
( )

( )
( )

2

1

1 i

f
x

f

f f x
f f n

θ
ρ θ

θ

θ θ
ρ θ θ

θ θ

′
− =

 ′′ ′  − + = 
  

∑
              (10) 

Equation (10) may then be solved simultaneously to obtain estimates for ρ 
and θ. 

5.2. Maximum Likelihood Estimation 

The likelihood function for a ZI model given in Equation (5) may be written as: 
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The log-likelihood function is then given as: 
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where n0 is the number of zeros in the observed sample. Solving 0
ρ
∂

=
∂
  and 

0
θ
∂

=
∂
  for θ and ρ, the following expressions are obtained after some simplifi-

cation: 
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The Newton-Raphson iterative method usually provide a solution of the form 
( ) 0f θ = . For an initial value of θn, the next estimate is given as  

( )
( )1

n
n n

n

f
f
θ

θ θ
θ+ = −

′
. 

Applying the Newton-Raphson iterative method to Equation (14) and using 
the MM estimates from Equation (10) as initial values then the improved esti-
mate of θ is: 
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                    (15) 

Finally, substituting the estimate θ̂  from Equation (15) into Equation (13), 
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an estimate of ρ  is obtained. We shall now apply the estimation procedures 
outlined above to two probability distributions, namely ZIP and ZINB as given 
in Equation (6) and Equation (7) respectively. 

5.3. Fitting the ZI-Poisson Model 

For the ZI-Poisson distribution, the corresponding function f(θ) from Table 1 is 
substituted in Equation (10) and solved simultaneously to obtain the closed form 
MM estimates for ρ and θ as: 

2

ˆ 1
i i

i
f x

nx
θ = −

∑
                         (16) 

2

2
ˆ 1

i i
i

nx
f x nx

ρ = −
−∑

                      (17) 

Likewise, the ML estimates for ZIP model are obtained by substituting f(θ) in 
Equation (13)and Equation (14) resulting into: 

( )ˆ ˆˆe 1 ex θ θθ− =                         (18) 

( )
ˆ

0
ˆ

eˆ
e 1

n n

n

θ

θ
ρ

−
=

−
                         (19) 

Using the MM estimate for θ as the initial value, Equation (18) is solved itera-
tively and the estimate θ̂  is subsequently substituted in Equation (19) to obtain 
ρ̂ .  

5.4. Fitting the ZI-Negative Binomial Model 

To analyse the data using this model, we need to obtain a pooled estimate of k. 
Anscombe [15] has indicated that fitting a negative binomial distribution with a 
common value of k to sets of counts on the same species is a reasonable proce-
dure. He then proposed such an estimate to be obtained from Equation (4) by 
substituting μ and σ2 with the sample values x  and s2 and solve for k. For the 
count data the estimate of k is 0.12. 

Again the corresponding ( )f θ  for the Negative binomial distribution from 
Table 1 is substituted in Equation (10) and solved simultaneously for θ̂  and 
ρ̂  to obtain the MM estimates as: 
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Similarly, for the ML estimates, we substitute the respective ( )f θ  from Ta-
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ble 1 in (13) and solve to obtain the following estimates: 
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−

− −
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                       (23) 

Equation (22) is solved iteratively for θ̂  and substituted in (23) to obtain ρ̂ . 

6. Application 

Data Description 

The data to be used are some counts of eggs of Aphis fabae made by Dr. D. P. 
Jones in the course of a survey of the Eastern counties of England in 1947 and 
reproduced by Anscombe [15]. In this paper, the data has been sorted into a 
slightly different frequency distribution form but the original data remains the 
same. Ninety four hedgerow spindle sites were visited, that had been cut down 
the previous winter, so that the shoots were of one year growth. At each site ten 
shoots were removed and the A. fabae eggs on them subsequently counted. The 
counts are given in Table 2. 

The mean and variance of the egg counts is 5.29 and 235.01 respectively which 
points to a strong evidence of over-dispersion. A frequency distribution for the 
counts is given in Figure 1. The large spike at zero gives early warning of possi-
ble zero inflation. Therefore, the ZIP and ZINB distributions are to be fitted. 

7. Results and Conclusions 

Table 3 gives the estimated parameters for the count data on the basis of fitting  
 
Table 2. Egg counts. 

Eggs (X): 0 1 2 3 4 5 6 7 8 9 

Frequency: 589 62 48 30 24 15 20 5 5 6 

Eggs (X): 10 11 12 13 14 15 16 17 18 19 

Frequency: 11 10 7 7 6 4 2 8 4 4 

Eggs (X): 20 21 22 23 24 25 26 27 29 31 

Frequency: 1 3 2 3 6 2 2 1 1 5 

Eggs (X): 32 33 34 35 36 38 39 40 42 43 

Frequency: 2 3 2 5 1 1 2 1 1 1_ 

Eggs (X): 44 45 47 48 49 50 51 52 58 59 

Frequency: 2 1 1 2 1 2 1 1 1 2 

Eggs (X): 65 66 70 82 83 84 105 110 120 123 

Frequency: 1 1 2 1 1 1 1 1 2 1 

Eggs (X): 148 163         

Frequency: 1 1         
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Table 3. Parameter estimates. 

 ZIP Model ZINB Model 

Method θ̂  ρ̂  θ̂  ρ̂  

MME 48.67 0.89 0.98 0.12 

MLE 5.26 0.62 0.92 0.42 

 

 
Figure 1. Frequency distribution. 

 
the ZIP and ZINB distributions. It is noted that the estimated value of the expo-
nent for ZINB model from the sample version of Equation (4) was k = 0.12 
which in turn, resulted in a negative estimate of the inflation parameter ρ, that 
may be interpreted as a case of zero-deflation. This may have been a conse-
quence of the observed heterogeneity between sites which was not addressed 
here and which ranged between 0 and 2032 within sites. As proposed by Ans-
combe [15], for a k < 1 a logarithmic transformation of the counts may be ne-
cessary. This problem may be addressed in a future analysis. However, the situa-
tion may not arise when count regression model is used. 

It should be noted however, that possible design errors, such as sampling 
practices, might also have caused the excess zeros. 

Below are charts representing the Poisson frequency distribution. Figure 1 
represents the observed frequencies of the count data which is highly positively 
skewed and Figure 2 represents the Poisson expected frequencies which is cen-
tred at around five eggs. That means if we assume a Poisson distribution for this 
data, then we would expect approximately less than 10 zeros. Figure 3 gives a 
plot of the ZIP fitted frequencies. The zero-inflation factor does not differ much 
from the original counts but overall, the counts are centred at five eggs. It is  
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Figure 2. Expected frequencies. 

 

 
Figure 3. ZIP frequencies. 

 
therefore recommended that before implementing procedures to address the ze-
ro-inflation, the inherent heterogeneity between sites be further examined. 
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