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ABSTRACT 

In the recent years, the use of GARCH type (especially, ARMA-GARCH) models and computational-intelligence-based 
techniques—Support Vector Machine (SVM) and Relevance Vector Machine (RVM) have been successfully used for 
financial forecasting. This paper deals with the application of ARMA-GARCH, recurrent SVM (RSVM) and recurrent 
RVM (RRVM) in volatility forecasting. Based on RSVM and RRVM, two GARCH methods are used and are compared 
with parametric GARCHs (Pure and ARMA-GARCH) in terms of their ability to forecast multi-periodically. These 
models are evaluated on four performance metrics: MSE, MAE, DS, and linear regression R squared. The real data in 
this study uses two Asian stock market composite indices of BSE SENSEX and NIKKEI225. This paper also examines 
the effects of outliers on modeling and forecasting volatility. Our experiment shows that both the RSVM and RRVM 
perform almost equally, but better than the GARCH type models in forecasting. The ARMA-GARCH model is superior 
to the pure GARCH and only the RRVM with RSVM hold the robustness properties in forecasting. 
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1. Introduction 

In financial markets, volatility is important as its fore-
casts on stock price are crucial for portfolio selection, 
pricing derivatives, calculating measure of risk and hed- 
ging strategy. A risk manager must know today the like- 
lihood that his portfolio will decline in the future and he 
may want to sell it before it becomes too volatile [1]. Ac- 
cording to Merton [2], expected market return is related 
to predictable stock market volatility. Due to the neces- 
sity of volatility prediction, a large number of time series 
based volatility models have been developed since the 
induction of ARCH model of Engle [3]. Later Bolleslev 
[4] generalized the model as GARCH to capture a higher 
order of ARCH; See Ref. [5] for review and references. 
To deal with the intricacy specially, Wong et al. [6] 
adopted the well-known GARCH model in the form of 
the so-called mixture of AR-GARCH model in exchange 
rate prediction. Again, Tang et al. [7] explored the mix- 
ture of ARMA-GARCH model for stock price prediction; 
See [8] for more details. Evidence on the forecasting 
ability of the GARCH model is somewhat mixed. An- 

derson and Bollerslev [9] showed that the GARCH mo- 
del provides good volatility forecast. Conversely, some 
empirical studies showed that the GARCH model tends 
to give poor forecasting performances [10-15]. 

To obtain more accurate predictions, recently, machine 
learning approaches have been successfully introduced to 
predict volatility based on various models of GARCH 
family. For example, Ref. [16] for Neural Network based 
GJR model, Ref. [17]: SVM based GARCH; Ref. [18]: 
RVM based GARCH, EGARCH and GJR; Ref. [19-20] 
for SVM based GARCH with wavelet and spline wavelet 
kernels, and Ref. [21] for Neural Network based on nine 
different models of GARCH family. The neural network 
suffers from overfitting problems and the algorithm can 
result in a local minima solution which is not unique [22]. 
In this regard, Support Vector Machine developed by Va- 
pnik [23] is a novel neural network algorithm model with 
various applications to prediction problems [24-28]. The 
algorithm results in the globally optimum solution. The 
SVM algorithm, based on structural risk minimization, is 
equivalent to solving a convex programming problem 
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where the unique result is always obtained. Moreover, 
with the help of kernel function satisfying Mercer’s con-
ditions, the difficulty of working with a nonlinear map-
ping function in high dimensional space is removed [29].  

The RVM, an alternative method of SVM, is a prob-
abilistic model introduced by Tipping in 2000. The RVM 
has recently become a powerful tool for prediction prob-
lems. One of the main advantages is that the RVM has 
functional form identical to SVM and hence it enjoys 
various benefits of SVM based techniques: generaliza-
tion and sparsity. On the other hand, RVM avoids some 
disadvantages faced by SVM such as the requirement to 
obtain optimal value of regularized parameter, C, and 
epsilon tube; SVM needs to use Mercer’s kernel function 
and it can generate point prediction but not distributional 
prediction in RVM [30]. Tipping [30] illustrated the 
RVM’s predictive ability on some popular benchmarks 
by comparing it with the SVM. The empirical analysis 
also proved that the RVM outperformed SVM; some 
other applications of RVM in prediction problems are 
referred to [31-33].  

Chen et al. [34] applied SVM to model and forecast 
GARCH (1, 1) volatility based on the concept of recur-
rent SVM (RSVM) in Chen et al. [35], following from 
the recurrent algorithm of neural network and least 
square SVM of [36]. Accordingly, Ou and Wang [37] 
proposed RVM (as recurrent RVM) to model and fore- 
cast GARCH (1, 1) volatility based on the concept of 
recurrent SVM in [34,35]. The models were shown to be 
a dynamic process and capture long memory of past in- 
formation than the feed-forward SVM and RVM which 
are just static.  

Multi-period forecasts of stock market return volatil-
ities are often used in many applied areas of finance wh- 
ere long horizon measures of risk are necessary. Yet, ve- 
ry little is known about how to forecast variances several 
periods ahead, as most of the focus has been placed on 
one-period-ahead forecasts. In this regard, only Chen et 
al. [34] considered multi-period-ahead forecasting with 
one-period-ahead forecasting. They showed that multi- 
period-ahead forecasting method performs better than the 
counterpart in forecasting volatility. Specifically, Ou and 
Wang [37] did not consider multi-period-ahead method 
in forecasting volatility by RRVM. Yet, none of them 
investigated the above models’ (GARCH type, RSVM 
and RRVM) combination in the context of two Asian 
stock market (emerging) composite indices: BSE SEN-
SEX and NIKKEI225. It is important for us to forecast 
the BSE and NIKKEI225 markets volatility more accu-
rately for recent potential growth of the markets.  

Our first contribution is to deal with the application of 
ARMA-GARCH with pure GARCH, RSVM and RRVM 

in volatility forecasting of multi-period-ahead. Based 
on RSVM and RRVM, two GARCH methods are used 
and are compared with parametric GARCHs (Pure and 
ARMA-GARCH) in terms of their ability to forecast 
volatility of two Asian stock market (emerging) compos- 
ite indices: BSE SENSEX and NIKKEI225.  

Secondly, being inspired by Tang et al. [7], we put 
more emphasis on the comparison between the ARMA- 
GARCH and pure GARCH models in forecasting vola- 
tileity of emerging stock market returns.  

Of increasing importance in the time series modeling 
and forecasting is the problem of outliers. Volatility of e- 
merging stock market returns poses especial challenges 
in this regard. In sharp contrast to the well developed sto- 
ck markets, emerging markets are generally characterized 
by high volatility. In addition, high volatility in these 
markets is often marked by frequent and erratic changes, 
which are usually driven by various local events (such as 
political developments) rather than by the events of global 
importance [38,39]. Outliers in time series were first stu- 
died by Fox in 1972. The outliers, which are really inde- 
pendent, are the situations that cause the parameter esti- 
mation values in classical modeling (ARMA and GAR- 
CH type) to be subjective, they damage the processes 
even though they are set properly and it is an obligation 
to destroy or to eliminate the effects. They diminish the 
reliability of the results; see Ref. [40-43] for more details. 
Outliers may affect forecasts through the carryover effect 
on the ARCH and GARCH terms, and may have a per-
manent effect on the parameter estimates. There are dif-
ferent types of outliers (like innovational and additive 
outlier) with different criteria (like Likelihood Ratio and 
Lagrange Multiplier) for detecting them in conventional 
time series volatility (GARCH type) modeling; for ex- 
ample, [43-45], etc. But the outliers are not classified in 
this paper. Also the numerical tests (like Likelihood Ra-
tio and Lagrange Multiplier) are not used to detect the 
outliers in this paper; rather we use a graphical (Quantile- 
Quantile) test to detect general outliers very simply. De- 
spite the voluminous research that examines the effects 
of outliers on the properties of the GARCH type models, 
no attention has been given to the effects of outlying ob- 
servations in the combination of GARCH type models 
and computational-intelligence-based techniques (SVM 
and RVM) in forecasting financial volatility of emerging 
stock market returns.  

Thirdly, we are to re-examination the effects of outli- 
ers on the ACFs, descriptive statistics, and classical tests 
(Ljung-Box Q and ARCH-LM) in context of emerging 
stock markets.  

Finally, we check the impact of outliers or unusual ob- 
servations in the model estimation and forecasting, that is, 
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examining the robustness properties of RSVM and RR- 
VM compared with GARCH type model, especially, in 
forecasting volatility in the presence of outliers.  

The remainder of the paper is organized as follows. 
The next two sections review the SVM and RVM algori- 
thms. Section 4 specifies the empirical model and foreca- 
sting scheme. Section 5 describes the BSE SENSEX and 
NIKKEI225 composite index data and discusses the vo- 
latility forecasting performance of all models. Finally the 
conclusion is made in section 6. 

2. Support Vector Machines 

The SVM deals with the classification and regression 
problems by mapping the input data into the higher-di- 
mensional feature spaces. In this paper, the SVM deals 
only with the regression problems. Its central feature is 
that the regression surface can be determined by a subset 
of points or Support-Vectors (SV); all other points are 
not important in determining the surface of the regression. 
Vapnik introduced a ε-insensitive zone in the error loss 
function (Figure 1). Training vectors that lie within this 
zone are deemed correct, whereas those that lie outside 
the zone are deemed incorrect and contribute to the error 
loss function. As with classification, these incorrect vec-
tors also become the support vector set. Vectors lying on 
the dotted line are SV, whereas those within the ε-insen-
sitive zone are not important in terms of the regression 
function. 

The SVM algorithm tries to construct a linear function 
such that training points lie within a distance ε (Figure1). 
Given a set of training data     1 1, , , ,n nx y x y X 

 

R , 
where X denotes the space of the input patterns, the goal 
of SVM is to find a function f x that has at most ε de-
viation from the targets i for all the training data and, at 
the same time, is as flat as possible. 

y

Let the linear function f takes the form: 

  , ; ,f x w x b w X b   R         (1) 

 

 

Figure 1. Approximation function (solid line) of SV regres- 
sion using a ε-insensitive zone. 

The optimal regression function is given by the mini 
mum of the functional, 
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Solving equation of (4) with constraints Equation (5) 
determine the Lagrange multipliers, *,   and the re- 
gression function is given by (1), where  
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w is determine by training patterns xi, which are SVs. In 
a sense, the complexity of the SVM is independent of the 
dimensions of the input space because it only depends on 
the number of SV. To enable the SVM to predict a 
non-linear situation, we map the input data into a feature 
space. The mapping to the feature space F is denoted by  
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x x
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The optimization Equation (4) can be written as  
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The decision can be computed by the inner products, 
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( ), ( )i jx x   without explicitly mapping to a higher 
dimension which is a time-consuming task. Hence the 
kernel function is as follows: 

     , ,K x z x z   

By using a kernel function, it is possible to compute 
the SVM without explicitly mapping in the feature space. 

3. Relevance Vector Machines 

Let 
1i
 be a training data. The goal is to model 

the data by a function indexed by parameters defined as    
 ,

n

i ix t
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 is non- 
linear, 1 m is weight vector and x in input 
vector. Hence the target is sum of the function and error 
term:  
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and vector form of the target is written as  
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For simplicity, i are assumed to follow independent 
Gaussian process with mean zero and variance 2 . The 
likelihood of the complete dataset corresponding to (8) is 
obtained as the following 
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where , and  is (n × m) 
design matrix with n and  

. As [46], to avoid  
overfitting problems which may be caused by the Maxi-
mum likelihood estimation of w and σ2, zero mean Gaus-
sian prior over the weights w is introduced, 
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where αi is the ith element of vector hyperparameter α 
assigned to each model parameter wi.  

By Bayes rule, 
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The posterior in (12) cannot calculated directly as de-
nominator of (12) contain normalizing integral i.e.,  
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However, the posterior can be decomposed as 
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Now, the first term of (13) can be written as below 
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volution of Gaussians,  P w   is Gaussian prior and 
 2,P t w   is also Gaussian likelihood by (10), imply-

ing the posterior  2, ,P w t    is Gaussian which ob-
tained as [47], 
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with covariance 

 12Φ ΦT A
                (15) 

and mean 
1 ΦT t                    (16) 

where  1diag , , ,o nA     . 
In order to evaluate   and  we need to find the 
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
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term of (13): 
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This is called marginal likelihood which needs to 
maximize with respect to   and 2 . The maximization 
process is known as type II maximum likelihood method 
or evidence procedure. The hyperparameters are esti-
mated by iterative method as it cannot be obtained in 
closed form.  

As from [30], the solutions are obtained, 
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by differentiating (17) and equating to zero. i  is the ith 
posterior mean weight from (16) and 1 .i i    Σii   
 0,1 can be interpreted as a measure of well deter-
minedness of each parameter i . ii . is the ith diagonal 
element of the posterior weight covariance in (15) com-
puted with the current 

w 

  and 2  values.  
Another differentiation with respect to 2  leads to 

 
2

new2 Φ

Σi i

t

n










.              (19) 

The learning algorithm is applied repeatedly to (18) 
and (19) with updating of  and Σ   in (15) and (16) 
until suitable convergence criteria are obtained.  

During the re-estimation, many i  tend to infinity 
such that w will have a few nonzero weights that will be 
considered as relevance vectors and analogous to the 
support vectors of SVM. Thus the resulting model enjoys 
the properties of SVM such as sparsity and generalize- 
tion.  

Given a new input x*, the probability distribution of 
the output is given by the predictive distribution  
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. So the predict- 
tive mean is  and the predictive variance com- 
poses of two variance components. 

4. Empirical Modeling and Forecasting 
Scheme 

In this paper, the data we analyze is just the daily finan- 
cial returns, t , converted from the corresponding price 
or index, , using continuous compounding transfor- 
mation as  

y

tp

 1100 ln lnt t ty p p               (20) 

A GARCH (1, 1) specification is the most popular 
form for modeling and forecasting the conditional vari-
ance of return of volatility, [48]. Therefore, we consider 
GARCH (1, 1) model throughout our paper. 

4.1. The Linear Pure GARCH/ARMA-GARCH 
Model 

The basic Linear “pure” GARCH (1, 1) model 
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where 2
t is their conditional variance.  

The basic Linear ARMA(p, q)-GARCH(1, 1) model  
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when p = 1 and q = 0, then it is reduced to AR(1)- 
GARCH(1, 1) process.  

The important point is that the conditional variance of 

t  is given by 1u 2 2
1 /ˆt t t t tE u u    . Thus, the conditional 

variance of t  is the ARMA process given by the ex-
pression 
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t  in the equation (22 or 24) [4,49,50].  
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1 1 1

 to en- 
sure that the conditional variance is positive. Together 
with the nonnegative assumption, if    , then 

is covariance stationary. 2
tu

4.2. Recurrent SVM/RVM Based GARCH 
Model 

For recurrent SVM or RVM methods, the nonlinear AR 
(1)-GARCH (1, 1) model has the following form: 

 1t t ty f y u                (26-1) 

 2 2
1 1,t t tu g u w w  t              (26-2) 

The algorithm of the recurrent SVM or RVM-based 
GARCH model is described as follows: 

Step 1: fit SVM (or RVM) to the return as AR (1) 
format in the full sample period N,  

ty

 1 ; 1, 2,...,t t ty f y u t N   , 

to obtain residuals, 1 2, ,..., Nu u u . 
Step 2: run the recurrent SVM (or RVM) for squared 

residuals,  (N1 < N) without updating,  2 2 2
1 2, ,..., nu u u

 2 2
1 1,t t tu g u w w  t   

to obtain n multi-period-ahead forecasted volatilities: 
2 2 2

1 1 1 2 1ˆ ˆ ˆ, ,...,N N Nu u u n   . 

For estimations, set the residuals of t  to be zero at 
the first time in the Step 2, and then run the feed-forward 
SVM (or RVM) to obtain estimated residuals. Using the 
estimated residuals as new 1t inputs, this process can be 
carried out repeatedly until the stopping criterion is satis- 
fied. Unlike the parametric case, by using the proposed 

w

w 
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approach we don’t need any assumption on the model 
parameters for stationary condition. We use R packages: 
“e1071” and “kernlab” to model and forecast SVM and 
RVM, respectively in the experiment. 

4.3. Evaluation Measures and Proxy of Actual 
Volatility 

Although the Mean Square Error 

 22 2
1

1
ˆMSE n

i i iu u
n

   

is a perfectly acceptable measure of performance, in 
practice the ultimate goal of any testing strategy is to 
confirm that the results of models are robust and capable 
of measuring the profitability of a system. It is important, 
therefore, to design a test from the outset. According to 
[51-53], the prediction performance is also evaluated 
using the following statistics: Mean Absolute Error 
(MAE) and Directional Symmetry (DS), expressed as 
follows [54,55]: 

2 2
1

1
ˆMAE n

i i iu u
n

   

  1

100
DS % ,

n

ii
a

n 
   

  2 2 2 2
1 1ˆ ˆ1,

where,
0, Otherwise

i i i i
i

u u u u
a  

   


 

MAE measures the average magnitude of forecasting 
error which disproportionately weights large forecast 
errors more gently relative to MSE; and DS measures the 
correctness of the turning points forecasts, which gives a 
rough indication of the average direction of the fore- 
casted volatility.  

Also linear regression technique is employed to evalu- 
ate the forecasting performance of the volatility models. 
We simply regress squared return on the forecasted vola- 
tility for out-of-sample time point; the squared correla- 
tion R2 is a measure of forecasting performance. We re- 
port the proportion of the sample variation explained by 
the forecasts with the R2 statistic [56] defined by 

 22 2
12

2
2 2

1 1

ˆ
1

1

n
i i i

n n
i ii i

u u
R

u u
n



 


 

   
 

 

The fundamental problem with the evaluation of vola- 
tility forecasts of real data is that volatility is unobserv- 
able and so actual values, with which to compare the 
forecasts, do not exist. Therefore, researchers are neces- 
sarily required to make an auxiliary assumption about 
how the actual ex post volatility is calculated. In this pa- 

per, we use square of the return assuming its mean value 
equal to zero as the proxy of actual volatility against 
which MSE, MAE, DE and R2 can be calculated; because 
this approach is the standard one, following from the 
previous research of [17,18,37]. The proxy of actual 
volatility in real data is expressed as where : 
returns. 

2 2 ,t tu y ty

5. Empirical Results 

5.1. Data Description 

We examine Bombay Stock Exchange (BSE) SENSEX 
Index of India Stock Market and NIKKEI225 of Japan 
Stock Market in the experiment. It is important for us to 
forecast the BSE SENSEX and NIKKEI225 markets 
volatility more accurately. Recently the potential growth 
of these two markets has attracted foreign and local in-
vestors. The BSE index has increased by over ten times 
from June 1990 to the present. Using information from 
April 1979 onwards, the long-run rate of return on the 
BSE SENSEX works out to be 18.6% per annum, which 
translates to roughly 9% per annum after compensating 
for inflation. The NIKKEI225 average has deviated 
sharply from the textbook model of stock averages which 
grow at a steady exponential rate. The average hit its 
all-time high on December 29, 1989, during the peak of 
the Japanese asset price bubble, when it reached an in- 
tra-day high of 38957.44 before closing at 38915.87, 
having grown six-fold during the decade. Subsequently it 
lost nearly all these gains, closing at 7054.98 on March 
10, 2009—81.9% below its peak twenty years earlier. 

The stock index prices are collected from Yahoo Fi-
nance and are transformed into log returns before making 
analysis. For BSE, the whole sample of size 1000, span- 
ned from 05 Oct. 2006 to 01 Nov. 2010, is used in the 
experiment to check the predictive capability and reli- 
ability of the proposed models. First 900 data are taken 
for the in-sample estimation and last 100 data are re- 
served for out of sample forecasting. For NIKKEI225, 
the whole sample of size 2411, spanned from 04 Jan. 
2001 to 01 Nov. 2010, is used in the experiment to serve 
the same purposes. First 2171 data are for the in-sample 
estimation and the last 240 data are reserved for out of 
sample forecasting.  

The daily series for the log-levels and the returns of 
the BSE and NIKKEI225 are depicted in Figures 2 and 3, 
respectively. Both figures show that the returns series are 
mean-stationary, and exhibit the typical volatility clus-
tering phenomenon with periods of unusually large vola-
tility followed by periods of relative tranquility. 

The autocorrelation functions (ACFs) of the return and 
squared return series for both markets are depicted in 
Figures 4 and 5, respectively. In Figure 4 (non-squared 
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ACFs), almost all the spikes are within the boundary (for- 
med by standard errors), that is, ACFs decay very quickly 
toward zero; whereas almost all the spikes go out of the 
boundary in Figure 5 (squared ACFs), that is, it produces 
slowly decreasing positive autocorrelation functions of 
the squared returns, especially for NIKKEI225. Figure 
5 indicates that the volatility clustering is reflected in the 
significant correlations of squared returns. 

The autocorrelation coefficients of squared returns are 
larger and last longer (persistent) than those of the return 
series (non-squared). We must point out that the return  

 

 
(a) 

 
(b) 

Figure 2. Bombay stock exchange (BSE) index: 2006.10.5- 
2010.11.1. (a) Log-levels; (b) Returns. 
 

 
(a) 

 
(b) 

Figure 3. Japan stock exchange (NIKKEI 225) index: 2001. 
1.4-2010.11.1. (a) Log-levels; (b) Returns. 

 

Figure 4. ACF for the returns of both markets. 
 

 

Figure 5. ACF for squared returns of both markets. 
 
series’ show little or no correlation, but its squares show 
high correlation, which indicate the ARCH or GARCH 
effect, especially for NIKKEI225. It is not clear—why 
the volatility clustering is not clearly/remarkably reflected 
in the significant correlations of squared return of BSE. It 
may happen due to influencing outlying observations. 

Figures 6 and 7 show the Q-Q plots of returns and 
squared returns, respectively, for each market. Figure 6 
(of return series) shows that some observations question 
the assumption of normality, that is, they may be out- 
liers/unusual observations. It is clear from Figure 7 (of 
squared return) that the assumption of normality is vio- 
lated showing two outliers or unusual observations for 
BSE and a group of outliers for NIKKEI255. 

Table 1 reports the summary statistics and diagnostics 
for the total sample of BSE and NIKKEI225 returns. From 

Copyright © 2011 SciRes.                                                                                JILSA 



Recurrent Support and Relevance Vector Machines Based Model with Application to Forecasting  237
Volatility of Financial Returns 

the table, we can see that means of the returns are not far 
from zero as expected. Both the series are typically 
characterized by excessive kurtosis and asymmetry. The 
Bera-Jargue [57] test strongly rejects the normality hy- 
pothesis on the returns for each market. For both series, 
the Ljung-Box Q (10) statistics of returns indicate no 
significant correlation at 1% and 5% level of signifi-
cances; but at 10% and more level of significance, there 
is relevant autocorrelation in the return series of BSE. 
The Q (10)* values of the squared returns reveal that 
there is no significant correlation in the squared returns at 

 

 

Figure 6. Quantile-Quantile plots for the returns of BSE 
and NIKKEI225. 
 

 

Figure 7. Quantile-Quantile plots for the squared returns of 
BSE and NIKKEI225. 

Table 1. Descriptive statistics for the returns of BSE and 
NIKKEI. 

Returns BSE SENSEX NIKKEI 225 

Minimum –11.60444 –12.11103 

Maximum 15.98998 13.23458 

Mean 0.04965155 –0.01669452 

Variance 4.058489 2.682107 

Skewness 0.171791 –0.2858808 

Kurtosis 6.093471 6.220848 

Normality 272.5166 [0.0000] 52.794 [3.434e-12] 

Q(10) 18.26964 [0.0505] 13.48905 [0.19759]

Q(10)* 7.091121 [0.7168] 16.04430 [0.09837]

ARCH-LM 7.187405 [0.8449] 16.22137 [0.18130]

Note: Kurtosis quoted is excess kurtosis; Normality is the Bera-Jargue (1981) 
normality test; Q (10) is the Ljung-Box Q test at 10 order for raw returns; Q 
(10)* is LB Q test for squared returns; ARCH-LM is Engle’s (1982) LM test 
for ARCH effect. Significance levels (p-values) are in brackets. 
 
1% and 5% level of significances; even at 10% level of 
significance. Engle’s (Engle, 1982) ARCH tests show 
that there is no significant evidence in support of GA- 
RCH effects (i.e., heteroscedasticity) for both series (str- 
ongly for BSE). 

This numerical examination of daily returns on the 
BSE and NIKKEI225 data reveals that returns are not 
characterized by heteroscedasticity and time-varying au- 
tocorrelation in spite of having the following pre-evi- 
dences and stylized facts: 1) The graphical test (Figure 5) 
indicates the presence of time varying volatility in BSE 
and NIKKEI225, 2) the statistics (Maximum, Variance 
and Kurtosis) of BSE and NIKKEI225 are comparatively 
higher than those of the other markets used in the previ- 
ous research with different periods, and 3) generally, the 
return series exhibit volatility clustering and leptokurtic 
pattern for most of the market in the world. This situation 
(or problem) is created due to the outliers or unusual ob- 
servations detected by the graphical test (Figure 7: Q-Q). 
To check the robustness properties of the used models, 
the unusual observations are kept in the data set. How- 
ever, we assume that the return series of BSE and NIK- 
KEI225 exhibit volatility clustering and leptokurtic pat- 
tern. Therefore, it is very suitable to model and forecast 
the return series by GARCH (1, 1). 

5.2. In Sample Estimation or Training Results 

We first fit the in-sample returns series to GARCH (1, 1) 
and ARMA-GARCH (1, 1) models in (22) and (24) to 
obtain their Maximum Likelihood Estimates. The esti-
mation results and the diagnostic test results of GARCH 
(1, 1) and ARMA-GARCH (1, 1) volatility models for 
the BSE and NIKKEI225 returns are not reported here as 
the main focus is given in out of sample forecasting. It is  
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seen that based on log likelihood (LL), AIC, and BIC 
criteria, ARMA-GARCH (1, 1) model is more adequate 
to the data than pure GARCH (1, 1) model.  

Now we turn to consider our models, recurrent support 
vector machine and recurrent relevance vector machine. 
The considered models must be trained using the above 
algorithm stated in Step 1 and Step 2. While training 
RSVM, two parameters  and C are considered since they 
are sensitive for modeling the SVM.   is assumed to be 
0.005 and used for all cases. We apply ten-fold-cross-va- 
lidation technique to tune the values of  and with the 
range [2–5, 25] and [2–5, 25], respectively. The optimal 
parameters 

C

 ,C  = (22, 2–2) and (25, 22) for training 
BSE and NIKKEI225, respectively. Table 2 illustrates 
the training results (only the number of support vectors 
and relevance vectors) by RSVM and RRVM for both 
markets. From the Table 2, we can see that RRVM is 
more adequate to the in-sample series compared to 
RSVM for each market since RRVM produces smallest 
number of relevance vectors compared to the number of 
support vectors of RSVM. 

5.3. Out of Sample Volatility Forecasting Results 

Table 3 summarizes the forecasting performance based 
on four measures defined in section 4.3, MSE, MAE, DS 
and R square. From the table 3, we can see that ARMA- 
GARCH generates smaller values of SqrtMSE (3.1742) 
and MAE (3.0199) but larger value of R2 (0.00553) than 
those of pure GARCH for BSE. For NIKKEI225, ARMA- 
GARCH generates smaller values of SqrtMSE (2.8094) 
and MAE (2.2401) than those of pure GARCH. Both the 
ARMA-GARCH and pure GARCH produce the same 
value of DS for each market and R2 for NIKKEI225. 
Hence the ARMA-GARCH model outperforms the pure 
GARCH model. 

Whereas RSVM and RRVM, they provide better per- 
formance than GARCH type models (pure GARCH and 

ARMA-GARCH) for all cases except the RSVM for NI- 
KKEI225 based on MSE and DS, where GARCH type  
models perform better than RSVM. If we make compa- 
rison between RSVM and RRVM, the RSVM is better 
than RRVM based on MAE and R2 only; but in term of 
MSE and DS, the RRVM is better than RSVM for both 
markets. The forecasting performances of GARCH type 
models are very poor compared to that of RSVM and 
RRVM due to outliers affect on traditional GARCH type 
model in forecasting; that is, both the RSVM and RRVM 
(not GARCH type) hold the robustness properties in for- 
ecasting through estimation. 

Figures 8 and 9 plot multi-period-ahead forecasts by 
the machine learning models (RSVM and RRVM) and 
GARCH type models (pure GARCH and ARMA-GAR- 
 

Table 2. Training results for RSVM and RRVM. 

 BSE NIKKEI225 

No. of S.V.s 661 2049 

No. of R.V.s 77 49 

 

 

Figure 8. Volatility forecasts of BSE index returns. 

Table 3. Multi-period-ahead forecasting accuracy by different models for real data. 

BSE NIKKEI225 

Models 

Sqrt MSE MAE DS R2 Sqrt MSE MAE DS R2 

GARCH 3.2568 3.1024 51 0.00485 2.8124 2.2464 52.5 0.00071 

ARMA-GARCH 3.1742 3.0199 51 0.00553 2.8094 2.2401 52.5 0.00071 

RSVM 1.1160 0.6258 65 0.03011 3.0073 1.6864 50.4 0.00417 

RRVM 1.0670 0.8104 87 0.02973 2.7466 1.7677 95.8 4.58E-5 
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Figure 9. Volatility forecasts of NIKKEI225 index returns. 
 
CH) against actual values for BSE and NIKKEI225, re- 
spectively. From the plots we can see that the machine 
learning techniques generate better forecasting perform- 
ances than the GARCH type models. The forecasted se- 
ries’ by GARCH type models are pushed up due to outli- 
ers affect; where the ARMA-GARCH model is less af- 
fected than pure GARCH. The series by RSVM is not 
affected due to its robustness properties; where RRVM is 
slightly affected by outliers for BSE. For NIKKEI, no 
model is remarkably affected by outliers; because of hav- 
ing a group of outliers which may not be very much in-
fluential. 

6. Conclusions 

To measure the model performances, we apply recurrent 
SVM and RVM to model GARCH as hybrid approaches 
comparing with traditional pure GARCH and ARMA- 
GARCH models to forecast (multi-periodically) volatility 
of Asian (emerging) stock markets, BSE SENSEX and 
NIKKEI225. The above models are evaluated using the 
criteria: MSE, MAE, DS and linear regression R2 in out- 
of-sample forecasting. In the parallel way, we examine 
the robustness properties of the used models in forecast-
ing volatility in the presence of outliers, where outliers 
are detected very simply using Q-Q plot. Using Q-Q pl- 
ots of the observed volatility, two outliers are clearly de- 
tected for BSE and a group of outliers for NIKKEI225. 
Due to the affect of these outliers, the ACFs (especially, 
of BSE), descriptive statistics and classical tests (Ljung- 
Box Q and ARCH-LM) give the misleading results, wh- 
ich agree with the previous research on outliers in time 
series analysis. From the experimental results, we can 
come to the conclusion that 1) the outliers significantly 
affect the parameter estimates of the pure GARCH and  
ARMA-GARCH models, 2) the RRVM produces small- 

lest number of relevance vectors compared to the number 
of support vectors of RSVM, 3) the computational-in- 
telligence-based techniques (RSVM and RRVM) per-
form better than the GARCH type models in out-of-sam- 
ple forecasting, 4) the ARMA-GARCH model is superior 
to the pure GARCH model in out-of-sample forecasting, 
5) both the RSVM and RRVM perform almost equally in 
out-of-sample forecasting—the RSVM is better than 
RRVM based on MAE and R2, but in terms of MSE and 
DS, the RRVM is better than RSVM, and 6) RRVM with 
RSVM holds the robustness properties in forecasting 
through estimation, however, RRVM is slightly affected 
by outliers for being Bayesian approach. Theoretically, 
RVM is a probabilistic model having its functional form 
identical to SVM, where there is no requirement of free 
parameters and Mercer’s kernel function for RVM like 
SVM. Considering the above empirical results and theo- 
retical properties of RVM and SVM, we are in favor of 
recurrent RVM (like the previous research) in forecasting 
volatility of emerging stock markets, even in the pres- 
ence of outliers. 
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