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Abstract 
The purpose of the research is to develop a dynamical theory of phase transi-
tions in crystalline structures, when except for temperature, the pressure is 
acting. So, the phase diagram temperature-pressure (dimensions) must be 
constructed. In general case, it is a complicated question, which can be solved 
for simple models of crystal, as three atomic models, introduced in the work 
of Frenkel [1]. In this model, three identical atoms are placed on the straight 
line and interact with the forces, which can be described by the expression, 
given in the article of Lennard-Jones [2]. Such simple model may have suc-
cess, when the crystalline structure is simple, which consists of one type of 
atoms, for example: carbon. The model was generalized to cubic cell model 
with a moving atom in the inner part of the cell. The rigorous calculation of 
phase diagram for transition graphite-diamond shows some similarity with 
results of numerous experimental investigations (which are not discussed 
here). So, the way of phase diagram calculation may attract attention. 
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1. Introduction 

As was mentioned in the work of Max Born, the linear or harmonic theory of 
crystalline lattice is insufficient to describe some properties of solid corps: struc-
tural transitions, flow, mechanical strength [3]. In order to develop the theory of 
these properties, introduction of anharmonic forces is necessary. The virial 
theorem, proved by Clausius, was used for investigation of transition in solid 
corps. But this theorem is insufficient for description of solid corps and behavior 
of atoms and must be generalized to receive more equations determining the 
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atomic positions and parameters of atoms moving. This theorem was also 
proved in the work [4], where authors used mechanical variation principle, in-
troducing one variation number. Introducing more variation numbers and mi-
nimizing mechanical action respective all variation numbers, gives possibility to 
receive a system of equations (“theorem”), which describe the behavior of atoms 
with sufficient accuracy. This procedure of calculation is presented in article [5]. 
For considering the action of high pressure (or interatomic distance) on phase 
transitions, Frenkel elaborated a three-atomic model, built from three identical 
atoms, placed on a straight line. The forces, connecting the atoms, may be con-
sidered as described by expression given in the work of Lennard-Jones. The 
model of Frenkel may be generalized and transformed into a cubic model, where 
the summits occupy immovable atoms and the atom in the inner part of the 
cube can occupy the centre of cube or the centre of the facet. In the first case, the 
cubic structure is represented, and in the second, it is flaky. At high enough 
temperature, an amorphous structure can arise, but for determining the place of 
this structure on the diagram, additions in expression of energy must be intro-
duced. The calculated diagram can be compared with results, gained in numer-
ous experimental investigations (which are not considered) of the transition 
among graphite, diamond and liquid phase of carbon. Some similarity between 
calculated phase diagram and constructed on the basis of experimental results can 
be marked, so theoretical model can be useful in research about this subject. The 
model of Frenkel was used in some works for examination of the phase transitions 
[6] [7] [8]. The present article is established on these works and is the most perfect. 

2. The Cubic Cell Model 

In Figure 1 a cubic cell model with immobile atoms in the summits and mobile 
atom in the inner part of the cell is shown. The origin is placed in the centre of 
the cell, and the coordinate axis x, y, z are directed normal to the facets. The po-
tential energy of moving atom in the inner part of the cell is represented by 
means of fourth power polynom of coordinates 

( ) ( ) ( )2 2 2 4 4 4
0, ,

2 4
c bU x y z U x y z x y z= + + + + + +        (1) 

 

 
Figure 1. The cubic cell model of structural transitions. 
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with the cell edge length l. The form of potential energy is reproduced in neigh-
boring cells, so in two points on the x-axis, symmetrical placed relative to the 
facet, the energy has the same value, so according to Roll theorem the derivative 
of the energy on the facet must be zero 

2

2

0
2 4lx

U l blc
x =

 ∂  = + =  ∂   
                   (2) 

So 

2

4cb
l

= −                            (3) 

Now we mark the values of potential energies in the centre of the cell CU  
and in the centre of facet FU . They have values  

0CU U=                            (4) 

2 2

0 8 8F
l blU U c
 

= + + 
 

                     (5) 

So it will be gained 

( )2

16
F Cc U U

l
= −                        (6) 

( )4

64
F Cb U U

l
= − −                       (7) 

The dependence of the coefficients c, b from the cell dimensions is determined 
from the dependence of the Lennard-Jons potential from the distance between 
atoms. Taking into account only the nearest neighbors in the cell, it can be writ-
ten 

8
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where, as it will be accepted, n = 2 m. From theses expressions it can be found 

( )
2 22 21 2 2 2 21 2 1 2

4 3 3

m nm n

F C m nU U A B
l l

   
      − = − − + −         

   

      (10) 

Because expressions in quadratic brackets are positive and n is greater, than m, 
it follows a change of sign from positive values to negative with increasing length 
of the cell side. Consequently, it exist some value of length *l , where elastic and 
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anharmonic coefficients turns to zero, and the movement of the atom occurs 
unhampered (this question will be considered later). It can be put approximately 

( ) ( )
*

*d
d
cc l l l
l

 = − + 
 

                    (11) 

where the derivative here is negative. Further we consider the movement only 
along x-axis, because movements along all axes are identical. Taking into ac-
count (1) and (3) we write the expression of atom energy in the form 

2 4
0 22

c cU U x x
l

= + −                     (12) 

If the thermal movement is absent, the coordinate is not changed with the 
time and determined through the external influence. The condition of equili-
brium  

3
2

4 0U ccx x
x l

∂
= − =

∂
                     (13) 

leads to the values of coordinate  

0x =  and 
2

2

4
lx =                      (14) 

and these values correspond to the position in the centre of cell (cubic structure) 
and centre of facet (layered structure). The conditions of stability  

2
2

2 2

12 0U cc x
x l

∂
= − >

∂
                    (15) 

for the position in the centre of the cell leads to inequality c > 0, and for the po-
sition in the centre of facet to the inequality c < 0. We consider now the question 
in general case, when the change in structure occurs through the action of ther-
mal motion and mechanical action. Then in expression (1) the coordinate as a 
function of time t is represented in the form   

( )x s u tθ= +                        (16) 

where vibrations are described by means of simple function of time. 
After the elevation of the coordinate in proper power and taking the mean 

time value the free energy is transformed to the form 

( ) ( )2 2 4 2 2 4 4 4
0 6 ln , 3

2 4
c bF U s u s s u u kT uθ θ= + + + + + − =   (17) 

The general equations of state are 

3 23 0F cs bs bsu
s

∂
= + + =

∂
                 (18) 

2 33 3 0F kTcu bs u bu
u u

∂
= + + − =

∂
              (19) 

The general conditions of stability 
2

2 2
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               (20) 
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2
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22 2 2 2
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γ

 ∂ ∂ ∂  − = + + + + + − >   ∂ ∂∂ ∂   
(22) 

From equation (18), equation (19) follows two expressions, describing the 
states conditionally called symmetrical ( 0s = ) and nonsymmetrical ( 0s ≠ ). 
Taking the amplitude as independent variable, one can write the expressions of 
displacement and temperature 

2 40, 3s kT cu bu= = +                   (23) 

2 2 2 43 , 2 6bs c bu kT cu bu= − − = − −              (24) 

In Figure 2 and Figure 3 are shown the dependencies of temperatures from 
amplitude for both structures.  

The coordinates of maximum in Figure 2 are the following (c > 0, b < 0) 
2 2 2

2 ;
6 24 12 48M M
c l c сlu kT
b b

= − = = − =            (25) 

The conditions of stability (20) and (21) are formulated as 

2 2;
3 6
c cu u
b b

< − < −                   (26) 

From these inequalities essential is the second that marks the part of the curve 
to the left side of maximum as stable one and the inequality (22) is a conse-
quence of precedents. The coordinates of maximum in Figure 3 are the follow-
ing (c < 0, b > 0) 
 

 
Figure 2. The dependence of temperature from amplitude for symmetrical structure.  

 

 
Figure 3. The dependence of temperature from amplitude for non symmetrical structure. 
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2 2 2 2
2 2; ;

6 24 6 24 2 8M M M
c l c сl c lu kT s
b b b

= − = = = − = − =    (27) 

Excluding the displacement and reducing we receive the conditions of stability 
for non symmetrical structure in the form 

23 0c bu− − >                       (28) 
22 3 0c bu− − >                      (29) 

( )( )2 23 6 0c bu c bu− − − − >                  (30) 

So the inequality shown in formula (31)  

2

6
cu
b

< −                        (31) 

denotes the stable part of the curve. It is possible to express the temperature of 
maximum MT  through cell dimension l, which is affected to the action of 
pressure. This temperature is the highest temperature, which can exist in consi-
dered structure without transition in the other state (it is possible a transition in 
the liquid state). In Figure 4, the graph of functions describing transitions for 
symmetrical and non symmetrical structures is shown (phase diagram). 

According to diagram it can be concluded that when c is zero the liquid state 
exists at zero temperature. But such result is a consequence of simplifications in 
choice of model, where some potential barriers are not taken into account, but 
can be caused by defects of the structure. Their presence may be taken into ac-
count phenomenological through introducing additional terms in the energy 
and instead of (12) now will be written more general expression 

2 4
* , 0, 0

2 4
c bU U x xε β ε β+ +

= + + > <            (32) 

without any relation between new constants ,ε β . The following calculations 
will be the same, and for temperature of transition may be taken the expression 
(25), where for symmetrical state c > 0 
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( )

( )2 22
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−

               (33) 

 

 
Figure 4. Phase diagram for three atomic models. 
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The dependence of MkT  from c is reproduced by means of mathematical 
function y(x) of the form 

( )2

, 0, 0
x p

y p q
x q
+

= > >
+

                (34) 

graph of which is shown in Figure 5. The value in the origin is non zero but 
2p

q
  

and may be equal to the corresponding value for non symmetric state through 
the choice of new constants. For non symmetrical state (c < 0) according to (27), 
we receive (new constants may have now opposite sign) 

( )
( )

( )2 22

26 24
4

M

c clkT
b lc

ε ε
β β

+ − −
= =

+
− +

              (35) 

Very schematic diagram with marked regions of diamond, graphite and liquid 
carbon existence is represented in Figure 6. This diagram is received on the base 
of experimental synthesis of diamond from graphite, and some resemblance with 
calculated one may be marked [9]-[22]. It is essential, that the line of transition 
diamond-graphite is not a vertical line perpendicular to the line of pressure, but 
is banded to the line of pressure and shows conjointly increase of temperature 
and pressure. Such behavior is characteristic for melting phenomenon and has 
its reason in increase of barrier heights for jump of an atom through the interval 
between the neighbors. Graphite in relation to diamond behaves like a liquid 
and for such behavior are reasons. The density of graphite is less, than the den-
sity of diamond, the carbon nets in graphite are far removed one from another, 
 

 
Figure 5. Mathematical graph of phase line. 

 

 
Figure 6. Phase diagram temperature-pressure for carbon. 
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their mutual interaction is week, so they glide relative one another like mole-
cules. But graphite in relation to liquid carbon behaves like a crystalline corps, 
which temperature of melting falls with increase of pressure. Graphite is a soft 
material and may be changed under the action of pressure. It exist an explora-
tion, where graphite was exposed to γ  radiation before utilization for diamond 
synthesis [23]. His structure was changed and the quantity of diamond dimi-
nished. It can be marked, that in article [24] the line of equilibrium between two 
solid phases is shown as nearly normal to the line of pressure.  

3. Concluding Remarks 

The result of calculations on the basis of dynamical theory of phase transitions is 
the phase diagram temperature-pressure (or cell dimensions) for elaborated here 
cubic model of Frenkel. Comparison with diagrams, constructed on the basis of 
numerous experimental investigations of phase transition graphite-diamond 
shows some resemblance between calculated and experimental diagrams. So, the 
model of Frenkel can serve not only as illustration possibility of phase transi-
tions, but can be used in researches. It can be supposed that a combination of 
such models in linear chain can give possibility to come near to such phenome-
non as rupture and some other anharmonic effects. 
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