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Abstract 
There are some researchers considering the problem whether 1A−  is the ge-
nerator of a bounded C0-semigroup if A generates a bounded C0-semigroup. 
Actually, it is a very basic and important problem. In this paper, we discuss 
whether 1A−−  is the generator of a bounded α-times resolvent family if A−  
generates a bounded α-times resolvent family. 
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1. Introduction 

In paper [1], the author studies the problem whether 1A−  is the generator of a 
bounded C0-semigroup if A generates a bounded C0-semigroup. We know that 
α-times resolvent operator family is generalization of C0-semigroup and 
C0-semigroup is 1-times resolvent operator family. So, in this paper, we will 
show that when the operator A−  generates a bounded α-times resolvent 
operator family, under certain condition, 1A−−  is also the generator of a 
bounded α-times resolvent operator family. The representation of such bounded 
α-times resolvent operator family will be obtained, too. Furthermore, we will 
consider the problem whether bA−−  owns this property. 

Let us first recall the definitions of α-times resolvent operator family. Let A be 
a closed densely defined linear operator on a Banach space X and ( ]0,2α ∈ . 

( ) ( )0 1

j

j

tE t
jα α

∞

=
=

Γ +∑  is a Mittag-Leffler function. 

Definition 1.1 [2] A family ( ) ( )S t B Xα ⊂  is called an α-times resolvent 
operator family for A if the following conditions are satisfied: 

1) ( )S tα  is strongly continuous for 0t ≥  and ( )0S Iα = ; 
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2) ( ) ( ) ( )S t D A D Aα ⊂  and ( ) ( )AS t x S t Axα α=  for ( )x D A∈  and  
0t ≥ ; 

3) For ( )x D A∈ , ( )S t xα  satisfies 

( ) ( ) ( )
0

d , 0,
t

S t x x g t s S s Ax s tα α α= + − ≥∫  

where ( ) ( )
1

: tg t
α

α α

−

=
Γ

, 0t > . 

If ( ) e At
AS t M ω

α ≤  where 1, 0A AM ω≥ ≥ , we write as ( ),A AA C Mα ω∈  
(or shortly A Cα∈ ). Then we give the definitions of analytic α-times resolvent 
operator family. 

Definition 1.2 [2] An α-times resolvent family ( ),S Aα ⋅  is called analytic if 
( ),S Aα ⋅  admits an analytic extension to a sector { }

0
\ 0θΣ  for some 

( ]0 0,π 2θ ∈ , where { }0 0: : argθ λ λ θΣ = ∈ < . An analytic solution operator is 
said to be of analyticity type ( )0 0,θ ω  if for each 0θ θ<  and 0ω ω> , there is 

( ),M M θ ω=  such that ( ), e ,RezS z A M zω
α θ≤ ∈Σ . 

Then we give a Lemma which will be used later. 
Lemma 1.1 [2] 0 2α≤ ≤ . Then ( ),A AA C Mα ω∈  if and only if 

( ) ( ),A Aαω ρ∞ ⊂  and there is a strongly continuous operator-valued function 
( )S t  satisfying ( ) e , 0At

AS t M tω≤ ≥ , and such that 

( ) ( )1
0

, e d , , .t
AR A x S t x t x Xα α λλ λ λ ω

∞− −= > ∈∫  

2. Main Theorem and Conclusion 

Theorem 2.1. On a Hilbert space H, the following statements are equivalent: 
(1) ( )1,0A α∈ , ( ]0,2α ∈ ; 
(2) A is a closed, densely defined operator, ( ) ( )0, Aρ∞ ⊂ , and for 0λ∀ > , 

( ), 1R Aα αλ λ ≤ ; 
(3) A is a closed, densely defined operator, for ( )x D A∀ ∈ , ( ), 0Re Ax x ≤  

and I Aαλ −  is invertible for some 0λ > . 
Proof. (2) ⇒ (3) For 0λ∀ > , ( ), 1R Aα αλ λ ≤ , then we have for 

( )x D A∀ ∈ , 

( ) ,A x xα αλ λ− ≥
                      

(1) 

hence we know Aαλ −  is invertible from the proposition 1.5 of chapter 3 in 
book [3]. While, from equation (1), we can also have for ( )x D A∀ ∈ , 

( ) ( ), ,x Ax x x xα αλ λ− ≥ , then ( ), 0Re Ax x ≤ . 
(3) ⇒ (2) Since ( )x D A∀ ∈ , ( ), 0Re Ax x ≤ , then for 0λ∀ > , 

( ) ( ), ,x Ax x x xα αλ λ− ≥ . I Aαλ −  is invertible for some 0λ >  imply that 
I Aαλ −  is invertible for any 0λ > . Together with A is closed and densely 

defined, we have ( ) ( )( ), , ,x x R A x xα αλ λ≥ , hence ( ) ( )0, Aρ∞ ⊂  and  

( ), 1R Aα αλ λ ≤ . 
(1) ⇒ (2) From lemma 1.3 of [4], we know that A is a closed, densely defined 

operator. And we can get the other conclusion from theorem 2.8 of [2]. 

https://doi.org/10.4236/jamp.2018.610169


R. Liu 
 

 

DOI: 10.4236/jamp.2018.610169 1981 Journal of Applied Mathematics and Physics 
 

(2) ⇒ (1). Firstly, set ( ) ( )2: , ,nA n AR n A n R n A n Iα α α α α= = − . For every 
n N∈ , nA  is a bounded operator and can commute with one another. It 
follows from Theorem 2.5 of [2] that nA  generates an α-times resolvent family 

( ) ( ), :n nS t E A tαα α=  which is also uniformly continuous and exponential 
bounded. 

For ( ),n N x D A∀ ∈ ∀ ∈ , ( ) ( )( ), , ,nRe A x x Re n AR n A x xα α= . There exists a 
( )y D A∈ , such that ( ),R n A x yα = , that is ( )x n A yα= − . Then 

( ) ( )( )
( ) ( )

( ) ( )2

, ,

, ,

, ,

nRe A x x Re n Ay n A y

Re n Ay n y Re n Ay Ay

n Re Ay y n Re Ay Ay

α α

α α α

α α

= −

= −

= −

 

Since ( ), 0Re Ay y ≤  and ( ), 0Re Ay Ay ≥ , then we have that ( ), 0nRe A x x ≤ . 
It means that for 0λ∀ > , ( ), 1nR Aα αλ λ ≤ . Consequently, ( )1,0nA α∈ , and 

( ), 1nS tα ≤ . 
From Lemma II, 3.4(ii) of [5], we have that nA  converges to A pointwise on 
( )D A . If we can get the following properties, we will have ( )1,0A α∈ . 
(a) ( ) ( ),: limn nS t x S t xα α→∞=  (*) exists for x H∀ ∈ ; 
(b) ( )S tα  is an α-times resolvent family which is generated by A; 
(c) 1, 0M ω= = . 
(a) For ( ),nS tα  is bounded, we can only need to prove (*) on ( )D A . For 

( )x D A∀ ∈ , 

( ) ( ), ,0
d ,

t
n nS t x x P Axα α τ τ= + ∫  

where ( ) ( ) ( ), 1 ,0
d

t
n nP t g t s S s sα α α−= −∫  ((2.52) and (2.53) of [2]). Together with 

( ), 1nS tα ≤ , we can get that ( ) ( ),nP t g tα α≤ . Thus for ,m n N∀ ∈ , 

( ) ( ) ( ) ( ), , 10
d

t
n m n m n mS t x S t x g A x A x g t A x A xα α α ατ τ +− ≤ − = −∫  

By Lemma II, 3.4(ii) of [5], { }n n N
A x

∈
 is a Cauchy sequence for each 

( )x D A∈ . Therefore ( ){ },n n N
S t xα ∈

 converges uniformly on each interval 

[ ]00, t . 

(b) I. For ( )x D A∀ ∈ , ( )S tα  is the uniformly continuous functions and so 
is continuous itself. For each n N∈ , ( ),nS tα  is uniformly bounded on every 
interval [ ]00, t  and ( ), 0nS Iα = , then so is ( )S tα . By Lemma I, 5.2 of [5], 

( )S tα  is strongly continuous and ( )0S Iα = . 
II. For n N∀ ∈ , ( )x D A∀ ∈ , ( ) ( ),nS t x D Aα ∈  and ( ) ( ),nS t x S t xα α→ . 

Together with that A is an closed operator, we have that ( ) ( )S t x D Aα ∈ . That 

is ( ) ( ) ( )S t D A D Aα ⊂ . 

We have ( ), ,n n n nA S t x S A xα α= , nA  and ( ),nS tα  converge to A and ( )S tα  

pointwise, respectively. So, we have ( )AS t x S Axα α= . 

III. We know that 
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( ) ( ) ( ), ,0
d .

t
n n nS t x x g t s S s A x sα α α= + −∫  

And for ( )x D A∀ ∈ , ( ) ( ),n ng t S t A xα α  converges uniformly on the interval 
[ ]0, t , then 

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

, ,0

,0

0

lim lim d

lim d

d .

t
n n nn n
t

n nn
t

S t x S t x x g t s S s A x s

x g t s S s A x s

x g t s S s Ax s

α α α α

α α

α α

→∞ →∞

→∞

= = + −

= + −

= + −

∫

∫

∫

 

For all the above, we can obtain that ( )S tα  is an α-times resolvent family 
which is generated by A. 

(c) For each n N∈ , ( ), 1nS tα ≤  and ( ),nS tα  converges to ( )S tα  
pointwise, so ( ) 1S tα ≤ , too. That is 1, 0M ω= = . 

To sum up the above (a), (b) and (c), we can conclude that ( )1,0A α∈ . 
Theorem 2.2. ( )1,0A α∈ , ( ]0,1α ∈  ⇔ A is a closed, densely defined 

operator, ( ) ( )0, Aρ∞ ⊂ , and for 0λ∀ > , ( ), 1R Aα αλ λ ≤ . 
Proof. In the proof of the previous theorem, we have only used the properties 

of Hilbert space in the acquisition of ( ), 1nS tα ≤  and we can get ( ), 1nS tα ≤  
without the properties of Hilbert space. 

In fact, on a Banach space, for each n N∈ , nA  can generate a C0-semigroup 
( )nT t . Moreover, 

( ) ( )2 ,
e e 1.n

n R n A t n ItA t
nT t

α α α−
= = ≤  

From the subordination principle, we have ( ) ( ) ( ), 0
dn nS t t st T s sα α

α α
∞ − −= Φ∫ , 

where ( ) ( )
( ) ( )1

0

1: exp d ,0 1
! 1 2π

nz
z z

n n i
γ γ

γ µ µ µ µ γ
γ γ

∞ −

Γ

−
Φ = = − < <

Γ − − +∑ ∫ . So 

( ) ( ) ( ) ( ) ( ), 0 0
d d 1.n nS t t st T s s st stα α α α

α α α
∞ ∞− − − −≤ Φ = Φ =∫ ∫  

We can obtain that this theorem is tenable from the proof of the previous 
theorem. 

Theorem 2.3. On a Hilbert space H, if ( )1,0A α− ∈ , ( ]0,2α ∈  and 1A−−  
exists as a closed, densely defined operator, then ( )1 1,0A α−− ∈ . 

Proof. From the above Theorem 2.1, we have ( ) ( )0, Aρ∞ ⊂ − , and for 

( )x D A∀ ∈ − , ( ), 0Re Ax x− ≤ . And 1A−−  exists as a closed, densely defined 

operator, so it is easy to show that 1I Aαλ −+  is bounded invertible for some 
0λ > , from (8) of [1]. Further more, for ( )1y D A−∀ ∈ − , then ( )y R A∈ − , thus 

there exists an ( )x D A∈ − , such that Ax y− = . Then  

( ) ( )1 , , 0Re A y y Re x Ax−− = − ≤ . By Theorem 2.1, we can obtain that 1A α−− ∈ .  

Theorem 2.4. If ( )0A α− ∈ , ( ]0,2α ∈ , ( )S tα  is the α-times resolvent 
family generated by it and ( )

1
4 , , 0S t O t t

ε

α ε
− − 

= →∞ ∀ >  
 

. And if 1A−−  
exists as a closed, densely defined operator, then 1A−−  generates an α-times 
resolvent family ( )S tα−

, which is given by 
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( ) ( ) ( )10

1 2 d , ,S t x x t J t S x x X
tα ατ τ τ
τ−

∞
= − ∀ ∈∫  

where 1J  is the first order Bessel function [6]. Moreover, there exists an 
0M > , such that ( )

1
41 , 0S t Mt tα−

≤ + ∀ ≥ . 
Proof. Since ( )0A α− ∈ , then { } ( ): 0Re Aαλ λ ρ> ⊂ − . Together with the 

assumption that 1A−−  is a closed, densely defined operator, we have that 

{ } ( )1: 0Re Aαλ λ ρ −> ⊂ − . Because of the property of Bessel function 

( )
1
4

1
1 3cos 2 π

4π
J t t t

−  ≈ − 
 

 and for large t, ( )
1
4 ,S t O t t

ε

α

− − 
= →∞  

 
, then 

( ) ( )

( ) ( ) ( ) ( )

( ) ( )
( )

10

1
1 10 1

1

1 1 10 1
4 4 4

1 3 1
1 14 4 4
0 1

1 1 1
4 4 4

1 2 d

1 12 d 2 d

1 1d d

d d

4 :

A

A

A

t J t S x
t

t J t S x t J t S x
t t

M M Mt M x t x
t tt t

M M t x M M t x

M MM M t x t x Mt x

α

α α

ε

ε

τ τ τ
τ

τ τ τ τ τ τ
τ τ

τ τ
τ ττ τ τ

τ τ τ τ

ε

∞

∞

∞

+

− ∞ − +

= +

′ ′ ′′
≤ +

′ ′ ′′= +

′ ′′
′= + =

∫

∫ ∫

∫ ∫

∫ ∫

 

Thus, the integral is well defined. Set  

( ) ( ) ( )10

1: 2 d ,S t x x t J t S x x X
t ατ τ τ
τ

∞
= − ∀ ∈∫ . Obviously, ( )S t  is strongly 

continuous and ( )0S I= . From the above discussion, we can get that 

( )
1
41S t Mt≤ + . For , 0Reλ λ∀ > , 

( ) ( ) ( )

( )
10 0 0

1 1

1e d e 2 d d

, .

t tS t x t x t J t S x t
t

R A x

λ λ
α

α α

τ τ τ
τ

λ λ

∞ ∞ ∞− −

− −

 
= − 

 

= −

∫ ∫ ∫
 

Consequently, we can obtain a conclusion that 1A−−  generates an α-times 
resolvent family ( )S tα−

 from Lemma 2.1 and  

( ) ( ) ( )10

1 2 dS t x x t J t S x
tα ατ τ τ
τ−

∞
= − ∫ , ( )

1
41 , 0S t Mt tα−

≤ + ∀ ≥ . 

Theorem 2.5. A satisfies the assumption of Theorem 2.4, for ,0 1b b∀ < < , 
bA−−  generates a bounded analytic α-times resolvent family ( ),bH tα−

. If 

1 1
4

b
α
≤ < , then 

( ) ( ) ( ), ,0
, d , 0,b

bH t x f t s S s x s tα α α α− −

∞
= ∀ >∫  

where 

( ) ( )( ) ( )
11 1

,
1, e d ,

2π
sb bf t s E t

i
αµα αα α α µ µ µ− − −

Γ
= − −∫  
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and 

1 1 2 2 3 3′ ′ ′Γ = Γ Γ Γ Γ Γ Γ      

is oriented counterclockwise, where 

{ } { }1 1e : , e : ,i b i bt tω α ω αρ ρ ρ ρ− − −′Γ = ≥ Γ = ≥  

{ } { }2 2e : π , e : π ,b i b it tα θ α θω θ ω θ− − −′Γ = ≤ ≤ Γ = ≤ ≤  

{ } { }π π
3 3e : 0 , e : 0 ,i b i bt tα αρ ρ ρ ρ− − −′Γ = ≤ ≤ Γ = ≤ ≤  

and 
1π π, π π

2 2b
α α

ω
  ∈ − −  

  
. 

Proof. ( )0A α− ∈ , so π π
2

A Sect α ∈ − 
 

 and 1 π π
2

A Sect α−  ∈ − 
 

. For 

,0 1b b∀ < < , ( ) , π π
2

bA Sect α
ϕ ϕ− ∈ < − . It follows from the Remark 2.8(a) of 

[7] that bA−−  generates a bounded analytic α-times resolvent family ( ),bH tα−
. 

If 1 1
4

b
α
≤ < , we set 

( ) ( )( ) ( ) ( )
11 1

0

1 e d d .
2π

sbS t x E t S s x s
i

αµα αα αµ µ µ
−

∞ − − −

Γ
= − −∫ ∫  

Since ( )
1
41 , 0S t Mt tα−

≤ + ∀ ≥ , then 

( ) ( )( ) ( ) ( )

( )( ) ( )

( )( ) ( )

1

1

1

1 1

0

1 1

0

11 1 4
0

1 e d d
2π

1 e d d
2π

1 e d d
2π

: .

sb

sb

sb

S t E t S s s
i

E t s
i

M E t s s
i

I II

α

α

α

µα αα α

µα αα

µα αα

µ µ µ

µ µ µ

µ µ µ

−

∞ − − −

Γ

∞ − − −

Γ

∞ − − −

Γ

= − −

≤ − −

+ − −

= +

∫ ∫

∫ ∫

∫ ∫

 

From [8], we have that there exists an 1M , such that 1I M≤ . Next we 
estimate II , it follows from (2.4) of [8] that 

( )( ) ( )

( )

( )

( )

1

1

1

1

1

11 1 4
0

π1 1cos1
4

0

π 1cos
4

0

5
4

1 e d d
2π

1 e e d d
2π

e e d d
2π

5
4 e d

2π πcos

b

b

b

sb

s
b ib

t

s
b ib

t

b ib

t

E t s s
i

E t s s

E t s s

E t

α

α

α

µα αα

ωρ
α ω αα

α

ωσ
α α ω α

α

α α ω
α

µ µ µ

ρ ρ ρ

α
σ σ

α
σ σ

ωσ
α

−

−

−

∞ − − −

Γ

− −−  ∞ ∞  

− −  ∞ ∞  

∞

− −

≤ −

= −

 Γ 
 = −

 −  
    

∫ ∫

∫ ∫

∫ ∫

∫
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( )

( )

1

1

5 5
4 4

5 5
4 4

1
4

5
4

5
4 d
π2π cos 1

5
14 d

π2π cos

52
4

ππ cos 4 1

b

b

t b

bt

b

C

t

C
t

t
b

α α

αα

α
σ

ω σ σ
α

α
σ

ω σ
α

α

ω α
α

−

−

∞

∞

+

 Γ 
 ≤

−  + 
 
 Γ 
 ≤

− 
 
 

 Γ 
 =

−  + 
 

∫

∫  

The same estimate holds for the integral on 1′Γ . 

( )( ) ( )

( )

( ) ( )

1

2

1

11 1 4
0

π1 1cosπ
4

0

1
4

1
π 4

5 5
4 4

1 e d d
2π

1 e e d d
2π

5 5 1e4 4d
2π π πcos 2cos

b

sb

t s
ib b

b ib

b

E t s s
i

E t s s

t EE
t

αµα αα

θ
θ α

αω

θ α
α

ω

µ µ µ

θ

θ
θ ω

α α

−

∞ − − −

Γ

− −−  ∞  

− −

≤ −

   Γ Γ   −   = ≤
− −   

   
   

∫ ∫

∫ ∫

∫

 

The same estimate holds for the integral on 2′Γ . 

( )( ) ( )

( ) ( )

( ) ( )

( )
( )

1

3 3

1

1

1

11 1 4
0

1 11π π 4
0 0

π π
50
4

5
4

0
1

1 e d d
2π

1 e e e d d
2π

5
4 e e d

2π

5 5
4 4d

π 1 π

b

b

b

sb

t b ib b ib s

t b ib b ib

kb
t

k k

E t s s
i

E t E t s s

E t E t

t

k

α

α

α

µα αα

α α ρα
α α

α α α α
α α

α α

µ µ µ

ρ ρ ρ ρ

α σ σ σ
σ

α ασ
σ σ

α

−

−

−

∞ − − −

′Γ Γ

−∞ − −

−

∞−

= =

− −

≤ − − −

 Γ 
 = − − −

   Γ Γ   
   ≤ =

Γ +

∫ ∫

∫ ∫

∫

∑∫



( )

1
4

1

1
11
4

bt
k kbα α

∞

 Γ + − 
 

∑

 

To sum up, we can conclude that there exists an 2M , such that 
1

4
2

bII M t≤ . 
So ( )

1
4

1 2
bS t M M t≤ + . Then we should show that ( )S t  is strongly 

continuous at 0. It following from the dominated convergence Theorem and 
Fubini Theorem that 

( ) ( )( ) ( ) ( )

( ) ( ) ( )

( )

1

1

1 1

00 0

1 1

0

11

1lim lim e d d
2π

1 e d d
2π

1 d
2π

sb

t t

s

S t x E t S s x s
i

S s x s
i

A x x
i

α

α

µα αα α

µ
α α

µ µ µ

µ µ

µ µ

−

−

∞ − − −

Γ→ →

∞ − − −

Γ

−−

Γ

= − −

= −

= − =

∫ ∫

∫ ∫

∫
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For , 0Reλ λ∀ > , it follows from Fubini Theorem that 

( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

1

1

1 1

0 0 0

1 1

0 0

1 11 1 1

1e d e e d d d
2π

1 d e d d
2π
1 d ,

2π

st t b

sb

b b

S t x t E t S s x s t
i

E t t S s x s
i

A x R A x
i

α

α

µλ λ α αα α

µαα α α

α α α α

µ µ µ

µ µ µ

λ λ µ µ µ λ λ

−

−

∞ ∞ ∞ − − −− −

Γ

∞ ∞− − −
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From all the above, we can obtain a conclusion that if 1 1
4

b
α
≤ < , bA−−  

generates a bounded analytic α-times resolvent family ( ),bH tα−
, 

( ) ( ) ( ), ,0
, d , 0.b

bH t x f t s S s x s tα α α α−

∞

−
= ∀ >∫  

3. Conclusion 

In this paper, we considered when the operator A−  generates a bounded 
α-times resolvent operator family, under certain condition, 1A−−  as well as 

bA−−  is also the generator of a bounded α-times resolvent operator family. 
Through the study of the problem whether 1A−  is the generator of a bounded 
α-times resolvent operator family if A generates a bounded α-times resolvent 
operator family, we can know the generator A more clearly. Furthermore, this 
work can improve the study of the inverse problem. 
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