Is $\boldsymbol{A}^{\boldsymbol{- 1}}$ an Infinitesimal Generator?

Ru Liu
College of Information Science and Engineering, Chengdu University, Chengdu, China
Email: srb40305079@163.com

How to cite this paper: Liu, R. (2018) Is $-A^{-1}$ an Infinitesimal Generator? Journal of $A p$ plied Mathematics and Physics, 6, 1979-1987.
https://doi.org/10.4236/jamp.2018.610169
Received: September 12, 2018
Accepted: October 7, 2018
Published: October 10, 2018

Copyright © 2018 by author and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Abstract

There are some researchers considering the problem whether A^{-1} is the generator of a bounded C_{0}-semigroup if A generates a bounded C_{0}-semigroup. Actually, it is a very basic and important problem. In this paper, we discuss whether $-A^{-1}$ is the generator of a bounded α-times resolvent family if $-A$ generates a bounded α-times resolvent family.

Keywords

α-Times Resolvent Family, Analytic α-Times Resolvent Family, Fractional Power of Generator

1. Introduction

In paper [1], the author studies the problem whether A^{-1} is the generator of a bounded C_{0}-semigroup if A generates a bounded C_{0}-semigroup. We know that α-times resolvent operator family is generalization of C_{0}-semigroup and C_{0}-semigroup is 1-times resolvent operator family. So, in this paper, we will show that when the operator $-A$ generates a bounded α-times resolvent operator family, under certain condition, $-A^{-1}$ is also the generator of a bounded α-times resolvent operator family. The representation of such bounded α-times resolvent operator family will be obtained, too. Furthermore, we will consider the problem whether $-A^{-b}$ owns this property.

Let us first recall the definitions of α-times resolvent operator family. Let A be a closed densely defined linear operator on a Banach space X and $\alpha \in(0,2]$. $E_{\alpha}(t)=\sum_{j=0}^{\infty} \frac{t^{j}}{\Gamma(\alpha j+1)}$ is a Mittag-Leffler function.

Definition 1.1 [2] A family $S_{\alpha}(t) \subset B(X)$ is called an α-times resolvent operator family for A if the following conditions are satisfied:

1) $S_{\alpha}(t)$ is strongly continuous for $t \geq 0$ and $S_{\alpha}(0)=I$;
2) $S_{\alpha}(t) D(A) \subset D(A)$ and $A S_{\alpha}(t) x=S_{\alpha}(t) A x$ for $x \in D(A)$ and $t \geq 0$;
3) For $x \in D(A), \quad S_{\alpha}(t) x$ satisfies

$$
S_{\alpha}(t) x=x+\int_{0}^{t} g_{\alpha}(t-s) S_{\alpha}(s) A x \mathrm{~d} s, t \geq 0
$$

where $g_{\alpha}(t):=\frac{t^{\alpha-1}}{\Gamma(\alpha)}, t>0$.
If $\left\|S_{\alpha}(t)\right\| \leq M_{A} e^{\omega_{A} t}$ where $M_{A} \geq 1, \omega_{A} \geq 0$, we write as $A \in C^{\alpha}\left(M_{A}, \omega_{A}\right)$ (or shortly $A \in C^{\alpha}$). Then we give the definitions of analytic α-times resolvent operator family.

Definition 1.2 [2] An α-times resolvent family $S_{\alpha}(\cdot, A)$ is called analytic if $S_{\alpha}(\cdot, A)$ admits an analytic extension to a sector $\Sigma_{\theta_{0}} \backslash\{0\}$ for some $\theta_{0} \in(0, \pi / 2]$, where $\Sigma_{\theta_{0}}:=\left\{\lambda \in \mathbb{C}:|\arg \lambda|<\theta_{0}\right\}$. An analytic solution operator is said to be of analyticity type $\left(\theta_{0}, \omega_{0}\right)$ if for each $\theta<\theta_{0}$ and $\omega>\omega_{0}$, there is $M=M(\theta, \omega)$ such that $\left\|S_{\alpha}(z, A)\right\| \leq M \mathrm{e}^{\omega R e z}, z \in \Sigma_{\theta}$.

Then we give a Lemma which will be used later.
Lemma 1.1 [2] $0 \leq \alpha \leq 2$. Then $A \in C^{\alpha}\left(M_{A}, \omega_{A}\right)$ if and only if $\left(\omega_{A}^{\alpha}, \infty\right) \subset \rho(A)$ and there is a strongly continuous operator-valued function $S(t)$ satisfying $\|S(t)\| \leq M_{A} \mathrm{e}^{\omega_{A} t}, t \geq 0$, and such that

$$
\lambda^{\alpha-1} R\left(\lambda^{\alpha}, A\right) x=\int_{0}^{\infty} \mathrm{e}^{-\lambda t} S(t) x \mathrm{~d} t, \lambda>\omega_{A}, x \in X
$$

2. Main Theorem and Conclusion

Theorem 2.1. On a Hilbert space H, the following statements are equivalent.
(1) $A \in \mathcal{C}^{\alpha}(1,0), \alpha \in(0,2]$;
(2) A is a closed, densely defined operator, $(0, \infty) \subset \rho(A)$, and for $\forall \lambda>0$, $\left\|\lambda^{\alpha} R\left(\lambda^{\alpha}, A\right)\right\| \leq 1$;
(3) A is a closed, densely defined operator, for $\forall x \in D(A), \operatorname{Re}(A x, x) \leq 0$ and $\lambda^{\alpha} I-A$ is invertible for some $\lambda>0$.

Proof. (2) \Rightarrow (3) For $\forall \lambda>0,\left\|\lambda^{\alpha} R\left(\lambda^{\alpha}, A\right)\right\| \leq 1$, then we have for $\forall x \in D(A)$,

$$
\begin{equation*}
\left\|\left(\lambda^{\alpha}-A\right) x\right\| \geq \lambda^{\alpha}\|x\| \tag{1}
\end{equation*}
$$

hence we know $\lambda^{\alpha}-A$ is invertible from the proposition 1.5 of chapter 3 in book [3]. While, from equation (1), we can also have for $\forall x \in D(A)$, $\left(\lambda^{\alpha} x-A x, x\right) \geq \lambda^{\alpha}(x, x)$, then $\operatorname{Re}(A x, x) \leq 0$.
(3) \Rightarrow (2) Since $\forall x \in D(A), \operatorname{Re}(A x, x) \leq 0$, then for $\forall \lambda>0$, $\left(\lambda^{\alpha} x-A x, x\right) \geq \lambda^{\alpha}(x, x) . \quad \lambda^{\alpha} I-A$ is invertible for some $\lambda>0$ imply that $\lambda^{\alpha} I-A$ is invertible for any $\lambda>0$. Together with A is closed and densely defined, we have $(x, x) \geq\left(\lambda^{\alpha} R\left(\lambda^{\alpha}, A\right) x, x\right)$, hence $(0, \infty) \subset \rho(A)$ and $\left\|\lambda^{\alpha} R\left(\lambda^{\alpha}, A\right)\right\| \leq 1$.
$(1) \Rightarrow(2)$ From lemma 1.3 of [4], we know that A is a closed, densely defined operator. And we can get the other conclusion from theorem 2.8 of [2].
(2) \Rightarrow (1). Firstly, set $A_{n}:=n^{\alpha} A R\left(n^{\alpha}, A\right)=n^{2 \alpha} R\left(n^{\alpha}, A\right)-n^{\alpha} I$. For every $n \in N, A_{n}$ is a bounded operator and can commute with one another. It follows from Theorem 2.5 of [2] that A_{n} generates an α-times resolvent family $S_{n, \alpha}(t):=E_{\alpha}\left(A_{n} t^{\alpha}\right)$ which is also uniformly continuous and exponential bounded.

For $\forall n \in N, \forall x \in D(A), \operatorname{Re}\left(A_{n} x, x\right)=\operatorname{Re}\left(n^{\alpha} A R\left(n^{\alpha}, A\right) x, x\right)$. There exists a $y \in D(A)$, such that $R\left(n^{\alpha}, A\right) x=y$, that is $x=\left(n^{\alpha}-A\right) y$. Then

$$
\begin{aligned}
\operatorname{Re}\left(A_{n} x, x\right) & =\operatorname{Re}\left(n^{\alpha} A y,\left(n^{\alpha}-A\right) y\right) \\
& =\operatorname{Re}\left(n^{\alpha} A y, n^{\alpha} y\right)-\operatorname{Re}\left(n^{\alpha} A y, A y\right) \\
& =n^{2 \alpha} \operatorname{Re}(A y, y)-n^{\alpha} \operatorname{Re}(A y, A y)
\end{aligned}
$$

Since $\operatorname{Re}(A y, y) \leq 0$ and $\operatorname{Re}(A y, A y) \geq 0$, then we have that $\operatorname{Re}\left(A_{n} x, x\right) \leq 0$. It means that for $\forall \lambda>0,\left\|\lambda^{\alpha} R\left(\lambda^{\alpha}, A_{n}\right)\right\| \leq 1$. Consequently, $A_{n} \in \mathcal{C}^{\alpha}(1,0)$, and $\left\|S_{n, \alpha}(t)\right\| \leq 1$.

From Lemma II, 3.4(ii) of [5], we have that A_{n} converges to A pointwise on $D(A)$. If we can get the following properties, we will have $A \in \mathcal{C}^{\alpha}(1,0)$.
(a) $S_{\alpha}(t) x:=\lim _{n \rightarrow \infty} S_{n, \alpha}(t) x \quad\left(^{*}\right)$ exists for $\forall x \in H$;
(b) $S_{\alpha}(t)$ is an α-times resolvent family which is generated by A;
(c) $M=1, \omega=0$.
(a) For $S_{n, \alpha}(t)$ is bounded, we can only need to prove (*) on $D(A)$. For $\forall x \in D(A)$,

$$
S_{n, \alpha}(t) x=x+\int_{0}^{t} P_{n, \alpha}(\tau) A x \mathrm{~d} \tau
$$

where $P_{n, \alpha}(t)=\int_{0}^{t} g_{\alpha-1}(t-s) S_{n, \alpha}(s) \mathrm{d} s \quad((2.52)$ and (2.53) of [2]). Together with $\left\|S_{n, \alpha}(t)\right\| \leq 1$, we can get that $\left\|P_{n, \alpha}(t)\right\| \leq g_{\alpha}(t)$. Thus for $\forall m, n \in N$,

$$
\left\|S_{n, \alpha}(t) x-S_{m, \alpha}(t) x\right\| \leq \int_{0}^{t} g_{\alpha}(\tau) \mathrm{d} \tau\left\|A_{n} x-A_{m} x\right\|=g_{\alpha+1}(t)\left\|A_{n} x-A_{m} x\right\|
$$

By Lemma II, 3.4(ii) of [5], $\left\{A_{n} x\right\}_{n \in N}$ is a Cauchy sequence for each $x \in D(A)$. Therefore $\left\{S_{n, \alpha}(t) x\right\}_{n \in N}$ converges uniformly on each interval $\left[0, t_{0}\right]$.
(b) I. For $\forall x \in D(A), S_{\alpha}(t)$ is the uniformly continuous functions and so is continuous itself. For each $n \in N, S_{n, \alpha}(t)$ is uniformly bounded on every interval $\left[0, t_{0}\right]$ and $S_{n, \alpha}(0)=I$, then so is $S_{\alpha}(t)$. By Lemma I, 5.2 of [5], $S_{\alpha}(t)$ is strongly continuous and $S_{\alpha}(0)=I$.
II. For $\forall n \in N, \forall x \in D(A), S_{n, \alpha}(t) x \in D(A)$ and $S_{n, \alpha}(t) x \rightarrow S_{\alpha}(t) x$. Together with that A is an closed operator, we have that $S_{\alpha}(t) x \in D(A)$. That is $S_{\alpha}(t) D(A) \subset D(A)$.

We have $A_{n} S_{n, \alpha}(t) x=S_{n, \alpha} A_{n} x, A_{n}$ and $S_{n, \alpha}(t)$ converge to A and $S_{\alpha}(t)$ pointwise, respectively. So, we have $A S_{\alpha}(t) x=S_{\alpha} A x$.
III. We know that

$$
S_{n, \alpha}(t) x=x+\int_{0}^{t} g_{\alpha}(t-s) S_{n, \alpha}(s) A_{n} x \mathrm{~d} s
$$

And for $\forall x \in D(A), g_{\alpha}(t) S_{n, \alpha}(t) A_{n} x$ converges uniformly on the interval $[0, t]$, then

$$
\begin{aligned}
S_{\alpha}(t) x & =\lim _{n \rightarrow \infty} S_{n, \alpha}(t) x=x+\lim _{n \rightarrow \infty} \int_{0}^{t} g_{\alpha}(t-s) S_{n, \alpha}(s) A_{n} x \mathrm{~d} s \\
& =x+\int_{0}^{t} g_{\alpha}(t-s) \lim _{n \rightarrow \infty} S_{n, \alpha}(s) A_{n} x \mathrm{~d} s \\
& =x+\int_{0}^{t} g_{\alpha}(t-s) S_{\alpha}(s) A x \mathrm{~d} s
\end{aligned}
$$

For all the above, we can obtain that $S_{\alpha}(t)$ is an α-times resolvent family which is generated by A.
(c) For each $n \in N,\left\|S_{n, \alpha}(t)\right\| \leq 1$ and $S_{n, \alpha}(t)$ converges to $S_{\alpha}(t)$ pointwise, so $\left\|S_{\alpha}(t)\right\| \leq 1$, too. That is $M=1, \omega=0$.

To sum up the above (a), (b) and (c), we can conclude that $A \in \mathcal{C}^{\alpha}(1,0)$.
Theorem 2.2. $A \in \mathcal{C}^{\alpha}(1,0), \alpha \in(0,1] \Leftrightarrow A$ is a closed, densely defined operator, $(0, \infty) \subset \rho(A)$, and for $\forall \lambda>0,\left\|\lambda^{\alpha} R\left(\lambda^{\alpha}, A\right)\right\| \leq 1$.

Proof. In the proof of the previous theorem, we have only used the properties of Hilbert space in the acquisition of $\left\|S_{n, \alpha}(t)\right\| \leq 1$ and we can get $\left\|S_{n, \alpha}(t)\right\| \leq 1$ without the properties of Hilbert space.

In fact, on a Banach space, for each $n \in N, A_{n}$ can generate a C_{0}-semigroup $T_{n}(t)$. Moreover,

$$
\left\|T_{n}(t)\right\|=\left\|\mathrm{e}^{A_{n} t}\right\|=\left\|\mathrm{e}^{n^{2 \alpha} R\left(n^{\alpha}, A\right) t-n^{\alpha} I t}\right\| \leq 1
$$

From the subordination principle, we have $S_{n, \alpha}(t)=\int_{0}^{\infty} t^{-\alpha} \Phi_{\alpha}\left(s t^{-\alpha}\right) T_{n}(s) \mathrm{d} s$, where $\Phi_{\gamma}(z):=\sum_{0}^{\infty} \frac{(-z)^{n}}{n!\Gamma(-\gamma n-\gamma+1)}=\frac{1}{2 \pi i} \int_{\Gamma} \mu^{\gamma-1} \exp \left(\mu-z \mu^{\gamma}\right) \mathrm{d} \mu, 0<\gamma<1$. So

$$
\left\|S_{n, \alpha}(t)\right\| \leq \int_{0}^{\infty} t^{-\alpha} \Phi_{\alpha}\left(s t^{-\alpha}\right)\left\|T_{n}(s)\right\| \mathrm{d} s=\int_{0}^{\infty} \Phi_{\alpha}\left(s t^{-\alpha}\right) \mathrm{d}\left(s t^{-\alpha}\right)=1
$$

We can obtain that this theorem is tenable from the proof of the previous theorem.

Theorem 2.3. On a Hilbert space H, if $-A \in \mathcal{C}^{\alpha}(1,0), \alpha \in(0,2]$ and $-A^{-1}$ exists as a closed, densely defined operator, then $-A^{-1} \in \mathcal{C}^{\alpha}(1,0)$.

Proof. From the above Theorem 2.1, we have $(0, \infty) \subset \rho(-A)$, and for $\forall x \in D(-A), \operatorname{Re}(-A x, x) \leq 0$. And $-A^{-1}$ exists as a closed, densely defined operator, so it is easy to show that $\lambda^{\alpha} I+A^{-1}$ is bounded invertible for some $\lambda>0$, from (8) of [1]. Further more, for $\forall y \in D\left(-A^{-1}\right)$, then $y \in R(-A)$, thus there exists an $x \in D(-A)$, such that $-A x=y$. Then $\operatorname{Re}\left(-A^{-1} y, y\right)=\operatorname{Re}(x,-A x) \leq 0$. By Theorem 2.1, we can obtain that $-A^{-1} \in \mathcal{C}^{\alpha}$.
Theorem 2.4. If $-A \in \mathcal{C}^{\alpha}(0), \alpha \in(0,2], S_{\alpha}(t)$ is the α-times resolvent family generated by it and $\left\|S_{\alpha}(t)\right\|=O\left(t^{-\frac{-}{4} \varepsilon}, t \rightarrow \infty, \forall \varepsilon>0\right.$. And if $-A^{-1}$ exists as a closed, densely defined operator, then $-A^{-1}$ generates an α-times resolvent family $S_{\alpha_{-}}(t)$, which is given by

$$
S_{\alpha_{-}}(t) x=x-\int_{0}^{\infty} t \frac{1}{\sqrt{t \tau}} J_{1}(2 \sqrt{t \tau}) S_{\alpha}(\tau) x \mathrm{~d} \tau, \forall x \in X
$$

where J_{1} is the first order Bessel function [6]. Moreover, there exists an $M>0$, such that $\left\|S_{\alpha_{-}}(t)\right\| \leq 1+M t^{\overline{4}}, \forall t \geq 0$.

Proof. Since $-A \in \mathcal{C}^{\alpha}(0)$, then $\left\{\lambda^{\alpha}: \operatorname{Re} \lambda>0\right\} \subset \rho(-A)$. Together with the assumption that $-A^{-1}$ is a closed, densely defined operator, we have that $\left\{\lambda^{\alpha}: \operatorname{Re} \lambda>0\right\} \subset \rho\left(-A^{-1}\right)$. Because of the property of Bessel function $J_{1}(t) \approx \frac{1}{\sqrt{\pi}} t^{-\frac{1}{4}} \cos \left(2 \sqrt{t}-\frac{3}{4} \pi\right)$ and for large $t,\left\|S_{\alpha}(t)\right\|=O\left(t^{-\frac{1}{4}-\varepsilon}\right), t \rightarrow \infty$, then

$$
\begin{aligned}
& \int_{0}^{\infty}\left\|t \frac{1}{\sqrt{t \tau}} J_{1}(2 \sqrt{t \tau}) S_{\alpha}(\tau) x\right\| \mathrm{d} \tau \\
& =\int_{0}^{1}\left\|t \frac{1}{\sqrt{t \tau}} J_{1}(2 \sqrt{t \tau}) S_{\alpha}(\tau) x\right\| \mathrm{d} \tau+\int_{1}^{\infty}\left\|t \frac{1}{\sqrt{t \tau}} J_{1}(2 \sqrt{t \tau}) S_{\alpha}(\tau) x\right\| \mathrm{d} \tau \\
& \leq \int_{0}^{1} t \frac{1}{\sqrt{t \tau}} \frac{M^{\prime}}{(t \tau)^{\frac{1}{4}}} M_{A}\|x\| \mathrm{d} \tau+\int_{1}^{\infty} t \frac{1}{\sqrt{t \tau}} \frac{M^{\prime}}{(t \tau)^{\frac{1}{4}}} \frac{M^{\prime \prime}}{\tau^{\frac{1}{4}+\varepsilon}}\|x\| \mathrm{d} \tau \\
& =M^{\prime} M_{A} t^{\frac{1}{4}}\|x\| \int_{0}^{1} \tau^{-\frac{3}{4}} \mathrm{~d} \tau+M^{\prime} M^{\prime \prime} t^{\frac{1}{4}}\|x\| \int_{1}^{\infty} \tau^{-(1+\varepsilon)} \mathrm{d} \tau \\
& =4 M^{\prime} M_{A} t^{\frac{1}{4}}\|x\|+\frac{M^{\prime} M^{\prime \prime}}{\varepsilon} t^{\frac{1}{4}}\|x\|:=M t^{\frac{1}{4}}\|x\|
\end{aligned}
$$

Thus, the integral is well defined. Set
$S(t) x:=x-\int_{0}^{\infty} t \frac{1}{\sqrt{t \tau}} J_{1}(2 \sqrt{t \tau}) S_{\alpha}(\tau) x \mathrm{~d} \tau, \forall x \in X$. Obviously, $S(t)$ is strongly continuous and $S(0)=I$. From the above discussion, we can get that

$$
\begin{aligned}
&\|S(t)\| \leq 1+M t^{\frac{1}{4}} . \text { For } \forall \lambda, \text { Re } \lambda>0 \\
& \int_{0}^{\infty} \mathrm{e}^{-\lambda t} S(t) x \mathrm{~d} t=\int_{0}^{\infty} \mathrm{e}^{-\lambda t}\left[x-\int_{0}^{\infty} t \frac{1}{\sqrt{\tau \tau}} J_{1}(2 \sqrt{t \tau}) S_{\alpha}(\tau) x \mathrm{~d} \tau\right] \mathrm{d} t \\
&=\lambda^{\alpha-1} R\left(\lambda^{\alpha},-A^{-1}\right) x
\end{aligned}
$$

Consequently, we can obtain a conclusion that $-A^{-1}$ generates an α-times resolvent family $S_{\alpha_{-}}(t)$ from Lemma 2.1 and
$S_{\alpha_{-}}(t) x=x-\int_{0}^{\infty} t \frac{1}{\sqrt{t \tau}} J_{1}(2 \sqrt{t \tau}) S_{\alpha}(\tau) x \mathrm{~d} \tau,\left\|S_{\alpha_{-}}(t)\right\| \leq 1+M t^{\frac{1}{4}}, \forall t \geq 0$.
Theorem 2.5. A satisfies the assumption of Theorem 2.4, for $\forall b, 0<b<1$, $-A^{-b}$ generates a bounded analytic α-times resolvent family $H_{b, \alpha_{-}}(t)$. If $\frac{1}{4 \alpha} \leq b<1$, then

$$
H_{b, \alpha_{-}}(t) x=\int_{0}^{\infty} f_{\alpha, \alpha}^{b}(t, s) S_{\alpha_{-}}(s) x \mathrm{~d} s, \forall t>0
$$

where

$$
f_{\alpha, \alpha}^{b}(t, s)=\frac{1}{2 \pi i} \int_{\Gamma} E_{\alpha}\left(-\mu^{b} t^{\alpha}\right)(-\mu)^{\frac{1}{\alpha}-1} \mathrm{e}^{-(-\mu)^{\frac{1}{\alpha} s}} \mathrm{~d} \mu
$$

and

$$
\Gamma=\Gamma_{1} \cup \Gamma_{1}^{\prime} \cup \Gamma_{2} \cup \Gamma_{2}^{\prime} \cup \Gamma_{3} \cup \Gamma_{3}^{\prime}
$$

is oriented counterclockwise, where

$$
\begin{gathered}
\Gamma_{1}=\left\{\rho \mathrm{e}^{i \omega}: \rho \geq t^{-\alpha / b}\right\}, \quad \Gamma_{1}^{\prime}=\left\{\rho \mathrm{e}^{-i \omega}: \rho \geq t^{-\alpha / b}\right\}, \\
\Gamma_{2}=\left\{t^{-\alpha / b} \mathrm{e}^{i \theta}: \omega \leq \theta \leq \pi\right\}, \Gamma_{2}^{\prime}=\left\{t^{-\alpha / b} \mathrm{e}^{-i \theta}: \omega \leq \theta \leq \pi\right\}, \\
\Gamma_{3}=\left\{\rho \mathrm{e}^{i \pi}: 0 \leq \rho \leq t^{-\alpha / b}\right\}, \Gamma_{3}^{\prime}=\left\{\rho \mathrm{e}^{-i \pi}: 0 \leq \rho \leq t^{-\alpha / b}\right\},
\end{gathered}
$$

and $\omega \in\left(\pi-\frac{\alpha}{2} \pi, \frac{1}{b}\left(\pi-\frac{\alpha}{2} \pi\right)\right)$.
Proof. $-A \in \mathcal{C}^{\alpha}(0)$, so $A \in \operatorname{Sect}\left(\pi-\frac{\alpha}{2} \pi\right)$ and $A^{-1} \in \operatorname{Sect}\left(\pi-\frac{\alpha}{2} \pi\right)$. For $\forall b, 0<b<1, A^{-b} \in \operatorname{Sect}(\varphi), \varphi<\pi-\frac{\alpha}{2} \pi$. It follows from the Remark 2.8(a) of [7] that $-A^{-b}$ generates a bounded analytic α-times resolvent family $H_{b, \alpha_{-}}(t)$. If $\frac{1}{4 \alpha} \leq b<1$, we set

$$
S(t) x=\int_{0}^{\infty} \frac{1}{2 \pi i} \int_{\Gamma} E_{\alpha}\left(-\mu^{b} t^{\alpha}\right)(-\mu)^{\frac{1}{\alpha}-1} \mathrm{e}^{-(-\mu)^{\frac{1}{\alpha} s}} \mathrm{~d} \mu S_{\alpha_{-}}(s) x \mathrm{~d} s
$$

Since $\left\|S_{\alpha_{-}}(t)\right\| \leq 1+M t^{\frac{1}{4}}, \forall t \geq 0$, then

$$
\begin{aligned}
\|S(t)\|= & \left\|\int_{0}^{\infty} \frac{1}{2 \pi i} \int_{\Gamma} E_{\alpha}\left(-\mu^{b} t^{\alpha}\right)(-\mu)^{\frac{1}{\alpha}-1} \mathrm{e}^{-(-\mu)^{\frac{1}{\alpha} s}} \mathrm{~d} \mu S_{\alpha_{-}}(s) \mathrm{d} s\right\| \\
\leq & \int_{0}^{\infty}\left|\frac{1}{2 \pi i} \int_{\Gamma} E_{\alpha}\left(-\mu^{b} t^{\alpha}\right)(-\mu)^{\frac{1}{\alpha}-1} \mathrm{e}^{-(-\mu))^{\frac{1}{\alpha}} s} \mathrm{~d} \mu\right| \mathrm{d} s \\
& +M \int_{0}^{\infty}\left|\frac{1}{2 \pi i} \int_{\Gamma} E_{\alpha}\left(-\mu^{b} t^{\alpha}\right)(-\mu)^{\frac{1}{\alpha}-1} \mathrm{e}^{-(-\mu)^{\frac{1}{\alpha} s}} \mathrm{~d} \mu\right| s^{\frac{1}{4}} \mathrm{~d} s \\
& :=I+I I .
\end{aligned}
$$

From [8], we have that there exists an M_{1}, such that $I \leq M_{1}$. Next we estimate $I I$, it follows from (2.4) of [8] that

$$
\begin{aligned}
& \int_{0}^{\infty}\left|\frac{1}{2 \pi i} \int_{\Gamma_{1}} E_{\alpha}\left(-\mu^{b} t^{\alpha}\right)(-\mu)^{\frac{1}{\alpha}-1} \mathrm{e}^{-(-\mu)^{\frac{1}{\alpha} s}} \mathrm{~d} \mu\right| s^{\frac{1}{4}} \mathrm{~d} s \\
& \leq \frac{1}{2 \pi} \int_{0}^{\infty} \int_{-\frac{\alpha}{b}}^{\infty}\left|E_{\alpha}\left(-\rho^{b} t^{\alpha} \mathrm{e}^{i b \omega}\right)\right| \rho^{\frac{1}{\alpha}-1} \mathrm{e}^{-\rho^{\frac{1}{\alpha}} \cos \left(\frac{\pi-\omega}{\alpha}\right) s} \mathrm{~d} \rho s^{\frac{1}{4}} \mathrm{~d} s \\
& =\frac{\alpha}{2 \pi} \int_{0}^{\infty} \int_{-\frac{1}{b}}^{\infty}\left|E_{\alpha}\left(-\sigma^{b \alpha} t^{\alpha} \mathrm{e}^{i b \omega}\right)\right| \mathrm{e}^{-\sigma \cos \left(\frac{\pi-\omega}{\alpha}\right) s} \mathrm{~d} \sigma s^{\frac{1}{4}} \mathrm{~d} s \\
& =\frac{\alpha}{2 \pi} \int_{t^{-\frac{1}{b}}}^{\infty} \frac{\Gamma\left(\frac{5}{4}\right)}{\left.\sigma \cos \left(\frac{\pi-\omega}{\alpha}\right)\right]^{\frac{5}{4}}\left|E_{\alpha}\left(-\sigma^{b \alpha} t^{\alpha} \mathrm{e}^{i b \omega}\right)\right| \mathrm{d} \sigma}
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{\alpha \Gamma\left(\frac{5}{4}\right)}{2 \pi \cos ^{\frac{5}{4}}\left(\frac{\pi-\omega}{\alpha}\right)^{t^{-\frac{1}{b}}}} \int_{\sigma^{\frac{5}{4}}\left(1+\sigma^{b \alpha} t^{\alpha}\right)}^{\infty} \mathrm{d} \sigma \\
& \leq \frac{\alpha \Gamma\left(\frac{5}{4}\right)}{2 \pi \cos ^{\frac{5}{4}}\left(\frac{\pi-\omega}{\alpha}\right)} \int_{t_{-\frac{1}{b}}^{\infty}}^{\infty} \frac{C}{\sigma^{b \alpha+\frac{5}{4}}} \mathrm{~d} \sigma \frac{1}{t^{\alpha}} \\
& =\frac{2 \alpha \Gamma\left(\frac{5}{4}\right)}{\pi \cos ^{\frac{5}{4}}\left(\frac{\pi-\omega}{\alpha}\right)(4 b \alpha+1)} t^{\frac{1}{4 b}}
\end{aligned}
$$

The same estimate holds for the integral on Γ_{1}^{\prime}.

$$
\begin{aligned}
& \int_{0}^{\infty} \left\lvert\, \frac{1}{2 \pi i} \int_{\Gamma_{2}} E_{\alpha}\left(-\mu^{b} t^{\alpha}\right)(-\mu)^{\frac{1}{\alpha}-1} \mathrm{e}^{-(-\mu)^{\frac{1}{\alpha} s}} \mathrm{~d} \mu s^{\frac{1}{4}} \mathrm{~d} s\right. \\
& \leq \frac{1}{2 \pi} \int_{0}^{\infty} \int_{\omega}^{\pi}\left|E_{\alpha}\left(-\mathrm{e}^{i b \theta}\right)\right| t^{-\frac{1}{b}} \mathrm{e}^{-t^{-\frac{1}{b}} \cos \left(\frac{\pi-\theta}{\alpha}\right) s} \mathrm{~d} \theta s^{\frac{1}{4}} \mathrm{~d} s \\
& =\frac{\Gamma\left(\frac{5}{4}\right) t^{\frac{1}{4 b}}}{2 \pi} \int_{\omega}^{\pi} \frac{\left|E_{\alpha}\left(-\mathrm{e}^{i b \theta}\right)\right|}{\cos ^{\frac{5}{4}}\left(\frac{\pi-\theta}{\alpha}\right)} \mathrm{d} \theta \leq \frac{\Gamma\left(\frac{5}{4}\right) E_{\alpha}(1)}{2 \cos ^{\frac{5}{4}}\left(\frac{\pi-\omega}{\alpha}\right)} t^{\frac{1}{4 b}}
\end{aligned}
$$

The same estimate holds for the integral on Γ_{2}^{\prime}.

$$
\begin{aligned}
& \int_{0}^{\infty}\left|\frac{1}{2 \pi i} \int_{\Gamma_{3} \cup \Gamma_{3}^{\prime}} E_{\alpha}\left(-\mu^{b} t^{\alpha}\right)(-\mu)^{\frac{1}{\alpha}-1} \mathrm{e}^{-(-\mu)^{\frac{1}{\alpha}} s} \mathrm{~d} \mu\right| s^{\frac{1}{4}} \mathrm{~d} s \\
& \leq \frac{1}{2 \pi} \int_{0}^{\infty} \int_{0}^{-\frac{\alpha}{b}}\left|E_{\alpha}\left(-\rho^{b} t^{\alpha} \mathrm{e}^{-i b \pi}\right)-E_{\alpha}\left(-\rho^{b} t^{\alpha} \mathrm{e}^{i b \pi}\right)\right| \rho^{\frac{1}{\alpha}-1} \mathrm{e}^{-\rho^{\frac{1}{\alpha}} s} \mathrm{~d} \rho s^{\frac{1}{4}} \mathrm{~d} s \\
& =\frac{\alpha}{2 \pi} \int_{0}^{t^{\frac{-1}{b}}} \frac{\Gamma\left(\frac{5}{4}\right)}{\sigma^{\frac{5}{4}}}\left|E_{\alpha}\left(-\sigma^{b \alpha} t^{\alpha} \mathrm{e}^{-i b \pi}\right)-E_{\alpha}\left(-\sigma^{b \alpha} t^{\alpha} \mathrm{e}^{i b \pi}\right)\right| \mathrm{d} \sigma \\
& \leq \frac{\alpha \Gamma\left(\frac{5}{4}\right)}{\pi} \int_{0}^{-t^{-\frac{1}{b}}} \sigma^{-\frac{5}{4}} \sum_{k=1}^{\infty} \frac{\left(\sigma^{b \alpha} t^{\alpha}\right)^{k}}{\Gamma(k \alpha+1)} \mathrm{d} \sigma=\frac{\alpha \Gamma\left(\frac{5}{4}\right)}{\pi} \sum_{k=1}^{\infty} \frac{1}{\Gamma(k \alpha+1)\left(k b \alpha-\frac{1}{4}\right)^{\infty} t^{\frac{1}{4 b}}}
\end{aligned}
$$

To sum up, we can conclude that there exists an M_{2}, such that $I I \leq M_{2} t^{\frac{1}{4 b}}$. So $\|S(t)\| \leq M_{1}+M_{2} t^{\frac{1}{4 b}}$. Then we should show that $S(t)$ is strongly continuous at 0 . It following from the dominated convergence Theorem and Fubini Theorem that

$$
\begin{aligned}
\lim _{t \rightarrow 0} S(t) x & =\lim _{t \rightarrow 0} \int_{0}^{\infty} \frac{1}{2 \pi i} \int_{\Gamma} E_{\alpha}\left(-\mu^{b} t^{\alpha}\right)(-\mu)^{\frac{1}{\alpha}-1} \mathrm{e}^{-(-\mu) \frac{1}{\alpha} s} \mathrm{~d} \mu S_{\alpha_{-}}(s) x \mathrm{~d} s \\
& =\int_{0}^{\infty} \frac{1}{2 \pi i} \int_{\Gamma}(-\mu)^{\frac{1}{\alpha}-1} \mathrm{e}^{-(-\mu)^{\frac{1}{\alpha} s}} \mathrm{~d} \mu S_{\alpha_{-}}(s) x \mathrm{~d} s \\
& =\frac{1}{2 \pi i} \int_{\Gamma}\left(A^{-1}-\mu\right)^{-1} x \mathrm{~d} \mu=x
\end{aligned}
$$

For $\forall \lambda, \operatorname{Re} \lambda>0$, it follows from Fubini Theorem that

$$
\begin{aligned}
\int_{0}^{\infty} \mathrm{e}^{-\lambda t} S(t) x \mathrm{~d} t & =\int_{0}^{\infty} \mathrm{e}^{-\lambda t} \int_{0}^{\infty} \frac{1}{2 \pi i} \int_{\Gamma} E_{\alpha}\left(-\mu^{b} t^{\alpha}\right)(-\mu)^{\frac{1}{\alpha}-1} \mathrm{e}^{-(-\mu)^{\frac{1}{\alpha} s}} \mathrm{~d} \mu S_{\alpha_{-}}(s) x \mathrm{~d} s \mathrm{~d} t \\
& =\frac{1}{2 \pi i} \int_{\Gamma}(-\mu)^{\frac{1}{\alpha}-1} \int_{0}^{\infty} E_{\alpha}\left(-\mu^{b} t^{\alpha}\right) \mathrm{d} t \int_{0}^{\infty} \mathrm{e}^{-(-\mu)^{\frac{1}{\alpha} s}} S_{\alpha_{-}}(s) x \mathrm{~d} s \mathrm{~d} \mu \\
& =\frac{1}{2 \pi i} \int_{\Gamma} \lambda^{\alpha-1}\left(\lambda^{\alpha}+\mu^{b}\right)^{-1}\left(A^{-1}-\mu\right)^{-1} x \mathrm{~d} \mu=\lambda^{\alpha-1} R\left(\lambda^{\alpha},-A^{-b}\right) x
\end{aligned}
$$

From all the above, we can obtain a conclusion that if $\frac{1}{4 \alpha} \leq b<1,-A^{-b}$ generates a bounded analytic α-times resolvent family $H_{b, \alpha_{-}}(t)$,

$$
H_{b, \alpha_{-}}(t) x=\int_{0}^{\infty} f_{\alpha, \alpha}^{b}(t, s) S_{\alpha_{-}}(s) x \mathrm{~d} s, \forall t>0
$$

3. Conclusion

In this paper, we considered when the operator $-A$ generates a bounded α-times resolvent operator family, under certain condition, $-A^{-1}$ as well as $-A^{-b}$ is also the generator of a bounded α-times resolvent operator family. Through the study of the problem whether A^{-1} is the generator of a bounded α-times resolvent operator family if A generates a bounded α-times resolvent operator family, we can know the generator A more clearly. Furthermore, this work can improve the study of the inverse problem.

Acknowledgements

The author was supported by Scientific Research Starting Foundation of Chengdu University, No. 2081915055.

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this paper.

References

[1] Zwart, H. (2007) Is A^{-1} an Infinitesimal Generator? Banach Center Publications, 75, 303-313. https://doi.org/10.4064/bc75-0-18
[2] Bajlekova, E. (2001) Fractional Evolution Equations in Banach Spaces. Ph.D. Thesis, Eindhoven University of Technology.
[3] Jiang, Z.J. and Sun, S.L. (2005) Functional Analysis. 2nd Edition, Higher Education Press, Beijing. (In Chinese)
[4] Liu, R., Li, M., Pastor, J. and Piskarev, S. (2014) On the Approximation of Fractional Resolution Families. Differential Equations, 50, 927-937. https://doi.org/10.1134/S0012266114070088
[5] Engel, K.J. and Nagel, R. (2000) One-Parameter Semigroups for Linear Evolution Equations. Springer, Berlin.
[6] Erdelyi, A., et al. (1955) Higher Transcendental Functions. McGraw-Hill, New-York.
[7] Li, M., Chen, C. and Li, F.-B. (2010) On Fractional Powers of Generators of Fractional Resolvent Families. Journal of Functional Analysis, 259, 2702-2726.
https://doi.org/10.1016/j.jfa.2010.07.007
[8] Chen, C., Li, M. and Li, F.-B. (2011) On Bounded Values of Fractional Resolvent Families. Journal of Mathematical Analysis and Applications, 384, 453-467. https://doi.org/10.1016/j.jmaa.2011.05.074

