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Abstract 
The classical heat conduction equation is derived from the assumption that 
the temperature increases immediately after heat transfer, but the increase of 
temperature is a slow process, so the memory-dependent heat conduction 
model has been reconstructed. Numerical results show that the solution of 
the initial boundary value problem of the new model is similar to that of the 
classical heat conduction equation, but its propagation speed is slower than 
that of the latter. In addition, the propagation speed of the former is also af-
fected by time delay and kernel function. 
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1. Introduction 

Fractional calculus is an important branch of mathematics. The original frac-
tional differential operator has three forms: Grumwald-Letnikov definition, 
Riemann-Liouville definition and Caputo definition. Caputo type fractional de-
rivative is more convenient to solve practical problems. In 2011, Wang & Li [1] 
referring to Caputo type fractional derivative proposed a new derivative called 
memory-dependent derivative. Compared with fractional derivative, its kernel 
function can be selected according to actual conditions and the memo-
ry-dependent interval does not increase with time t. It always concentrates the 
dependency interval on a limited time period related to the past state [ ],t tτ− , 
here τ  is a time delay. The concept of derivative has attracted many scholars’ 
attention. Ezzat et al. used memory-dependent derivatives in generalized ther-
mos-viscoelasticity in [2] [3] [4]. In addition, Wang & Li put forward memo-
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ry-dependent differential equations and studied them deeply in [5]. In [6], we 
studied the classical string vibration equation and heat conduction equation. The 
time derivative is replaced by the memory-dependent derivative. The numerical 
results simulated by MATLAB are between the wave equation and the heat con-
duction equation. With time, both the wave propagation and the energy attenu-
ation occur. This change conforms to the characteristic of the “weighted period” 
function [7]. The diffusion velocity is lower than the heat conduction equation, 
and the wave amplitude is much higher than the wave equation under the same 
initial condition and boundary condition. Compared with the numerical solu-
tions of fractional partial differential equations, the attenuation speed of the 
numerical solutions is slower and the wave phenomenon is more obvious. 

The above research is only a simple substitution for the time derivative, and 
does not construct a model from the actual physical background. The classical 
heat conduction equation has obvious physical background. Its setting is derived 
without considering the motion of the medium, when the temperature rises im-
mediately in a certain region of heat transfer, the problem of infinite velocity will 
arise. 

From the definition of memory-dependent derivative, we can see that it is re-
flected in the average of the overall rate of change over a period of time, com-
pared with the ordinary derivative, it can reflect the dependence of physical 
process on past state. It is more in line with the physical fact that the tempera-
ture rises slowly when heat propagates in the medium of less dense gas in theory. 
Is the heat conduction model made of it more realistic? In this paper, we use 
modeling method to explore. 

2. New Heat Conduction Model 
2.1. Memory-Dependent Derivatives (MDD) 

Based on Caputo fractional differential operator 

( ) ( ) ( ) ( )d ,
t m

a a
D f t K t s f s sα

α= −∫               (2.1) 

here kernel function ( ) ( ) ( )1mK t s t s mα
α α− −− = − Γ −  and ( ) ( )mf t  represents 

the usual m-order derivative, Wang & Li (2011) gives the definition of the 
memory-dependent derivative: 

Definition 1 [1]: Let m be a natural number ( Νm∈ ), then for an m-times 
differentiable function ( )f t  

( ) ( ) ( ) ( )1 d ,
t mm
t

D f t K t s f s sτ ττ −
= −∫              (2.2) 

it is called m-order “memory-dependent derivative” of f at τ  relative to the 
time delay 0τ > , where ( )K t s−  is a m-times differentiable about t and s. 

Compared with the derivative in Equation (2.1), the kernel function of the de-
rivative in Equation (2.2) can be selected according to the actual situation. It is 
found by calculation in [1], Caputo-type derivatives will lead to the failure of 
long-time variation process under large time t, which is the inherent defect of 
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this kind of derivatives, so memory-dependent derivatives are more reasonable. 
We find that the memory-dependent derivative in Equation (2.2) is approx-

imately equal to half of ( ) ( )mf t . In order to keep the values of memo-
ry-dependent derivative and ordinary derivative basically unchanged, an im-
proved definition is given. 

Definition 2 [6]: Let m be a natural number ( Νm∈ ), then for an m-times 
differentiable function ( )f t  

( )
( )

( ) ( ) ( )1 d ,
d

t mm
t t

t

D f t K t s f s s
K t s s

τ τ

τ

−

−

= −
−

∫
∫

         (2.3) 

it is called m-order “memory-dependent derivative” of f at τ  relative to the 
time delay 0τ > , where ( )K t s−  is a m-times differentiable about t and s. 

2.2. Model Construction 

Considering that the temperature rises slowly with time after heat is transferred 
into an object, that is, the rise of temperature is delayed relative to the heat 
transfer process. From the physical process, a one-dimensional heat conduction 
model with memory-dependent derivatives on a cylinder is constructed. The 
specific derivation process is as follows. 

Consider a cylinder (assuming that the cross section area is 1, the object is 
homogeneous and isotropic, without considering thermal expansion). A func-
tion ( ),u x t  is used to represent the temperature at the position x and t at the 
cylinder. As shown in Figure 1, an infinitesimal segment [ ],x x x+ ∆  is selected 
on the cylinder, think heat enters from 0x =  segment. According to the Fouri-
er law of heat transfer, The heat dQ of a body flowing through an infinitesimal 
small area dS (assuming d 1S =  is the cross-sectional area of a cylinder) in the 
direction n  along the normal in an infinitesimal time increment dt (discretized 
equivalent to ∆t) is proportional to the directional derivative u n∂ ∂  of the 
body temperature along the normal direction of the surface dS, That is 

( )d d d ,uQ x S t
n

κ ∂
= −

∂
                   (2.4) 

here ( )k x  is called the thermal conductivity of the object at point x, positive 
value should be taken. The negative sign in Equation (2.4) indicates that heat 
always flows from the side of high temperature to the side of low temperature. 
Therefore, dQ should have a different sign from u n∂ ∂ . Discrete the Equation 
(2.4) and consider the amount of heat flowing into [ ],x x x+ ∆  during the pe-
riod of ( )n tτ τ = ∆ , the amount of heat change is 

( ) ( ), ,
.

u x x t u x t
Q S

x
κ τ

+ ∆ −
∆ = − ∆

−∆
            (2.5) 

The influx of heat changes the temperature inside the body, but the increase in 
temperature is a slow process. Suppose it will delay τ  periods. When tempera-
ture is changed from ( ),u x t  to ( ),u x t τ+ , the amount of heat change is 
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Figure 1. Schematic diagram of thermal incoming process. 

 

( ) ( ) ( ) ( ){
( ) ( )( ) }

1 2, , , 2 ,

, , 1 ,n

Q c S x k u x t t u x t k u x t t u x t t

k u x t u x t n t

ρ

τ

∆ = ∆ ∆ + ∆ − + + ∆ − + ∆      

 + + + − + − ∆ 

(2.6) 

here c is the specific heat, ρ  is density, ( )1,2, ,mk m n= 
 indicates the effect 

of temperature on the final temperature in small time interval t∆ . The 

[ ],t t t+ ∆  time period effect should be minimal and the ( )1 ,t n t t τ+ − ∆ +    
time period has the greatest impact, this is related to time t and delay τ . Availa-
ble from Equation (2.5) and Equation (2.6), have to 

( ) ( ) ( ) ( )( )
1

, , 1, ,
.

n

m
m

u x t m t u x t m tu x x t u x t
c x k t

x t
κ τ ρ

=

+ ∆ − + − ∆+ ∆ −
= ∆ ∆

∆ ∆∑  

Collate 

( ) ( )
( )

( ) ( )( )
2

1

, , 1, , 1 .
n

m
m

u x t m t u x t m tu x x t u x t
k t

c tx
κ
ρ τ =

+ ∆ − + − ∆+ ∆ −
= ∆

∆∆
∑  (2.7) 

Order 0, 0x t∆ → ∆ →  and ( )2a cκ ρ= , have to 

( )
2

2
2

1 d ,
t

t

u ua k t s s
sx ττ +

∂ ∂
= −

∂∂ ∫                  (2.8) 

here, ( )k t s−  is equivalent to the continuous form of ( )1,2, ,mk m n= 
, 

which is related to time t and delay τ . 
In particular, when 0τ → , there should be 

( )1 d .
t

t
s t

u uk t s s
s s

τ

τ
+

=

∂ ∂
− →

∂ ∂∫  

when τ  is small, we apply the mean value theorem for the  

( ) d
t

t

uk t s s
s

τ
τ

+ ∂
−

∂∫ , [ ],t tξ τ∃ ∈ + , 

( ) ( )1 1d d .
t t

t t
s

u uk t s s k t s s
s s

τ τ

ξτ τ
+ +

=

∂ ∂
− = − ⋅

∂ ∂∫ ∫  

Therefore, when 0τ → , ( )d 1
t

t
k t s s

τ
τ

+
− →∫ , In order to satisfy the  

minimum influence of time t on the temperature, the time t τ+  has the great-
est influence, whether τ  is small or not, it should be satisfied  

( )1 d 1.
t

t
k t s s

τ

τ
+

− =∫  

Mark ( ) ( )k t s CK t s− = − , be 
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( )1 d 1,
t

t
CK t s s

τ

τ
+

− =∫  

have to 

( )
.

d
t

t

C
K t s s

τ

τ
+=

−∫
 

Here, ( )K t s−  is a core function that can be chosen according to needs, and 
bring C back to (8) 

2 ,xxa u D uτ=                          (2.9) 

among 

( )
( )1 d

d

t

t t

t

uD K t s s
sK t s s

u
τ

τ τ

+

+

∂
= −

∂−
∫

∫
 

equivalent to a forward first-order memory-dependent derivative and Equation 
(2.9) is a one-dimensional heat conduction model with first-order forward memo-
ry-dependent derivative. 

3. Numerical Simulation 

In the previous section, a memory-dependent heat conduction model is deduced. 
In this section, we mainly study the solution of the initial-boundary value prob-
lem under the first boundary condition, discuss the effect of time delay and kernel 
function on the solution and compare it with the classical heat conduction equa-
tion. 

3.1. The Initial Boundary Value Problem of the New Model 

The initial boundary value problem of the memory-dependent heat conduction 
model is discussed 

( )
( ) ( ) ( )
( ) ( ) ( )

2 0 ,0

,0 sin π 0

0, , 0 0

xxa u D x L t T

u x x x L

u t u L t

u

t T

τ = < < < <
 = < <
 = = < <

               (3.1) 

among 

( )
( )1 d ,

d

t

t t

t

uD K t s s
sK t s s

u
τ

τ τ

+

+

∂
= −

∂−
∫

∫
 

the kernel function ( )K t s−  takes the form of a linear function, that is 

( ) .s tK t s
τ
−

− =  

Through calculation, ( )d 2
t

t
K t s s

τ
τ

+
− =∫ . Easy to find, except diffusion  

coefficient a, time delay τ  is the main factor affecting the numerical solu-
tion of problem (3.1).  

The problem (3.1) is discretized by the finite difference method, take ∆t as 
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time step, ∆x as space step, let M T t= ∆ , N L x= ∆ , n tτ = ∆ , 
, 1, 2, , 1iK i n i n= = −  is the discrete form of the kernel function 

( ) ( )K t s s t τ− = − , ( )( )22 2r a xτ ∆⋅= , get down 

( )

( )

1
1

1 1
1

0

0

1 ,

sin π , 1, 2, , 1,

0, 0,1, 2, , .

n
i n i i i m
j j j m m j

mn n

j

i i
N

KU rU r U K K U
K K

U j x j N

U U i M

−
+ +

+ +
=

  
= + − − −  

 


= ∆ = −
 = = =

∑





 

in the form of one 1,2, , 1j N= − , 0,1, ,i M n= − . 
The temperature function of the first 1n −  time period is used in numeri-

cal calculation, which is discrete form of classical heat conduction equation, 
That is 

( ) ( ) ( )

2 2 2
1

1 12 2 2

21 ,i i i i
j j j j

a t a t a tU U U U
x x x

+
+ −

 ∆ ∆ ∆ = + − +
 ∆ ∆ ∆ 

 

there 0,1, , 2i n= − , 1,2 , 1j N= − . When fixed 20, 1T L= =  and 0.1a = , 
separately select 5 ,150t tτ = ∆ ∆  (When the t∆  is time step), the MATLAB 
software is implemented in Figure 2. 

It is found from Figure 2 that the numerical solution function of the new 
model is also diffusive, and the effect on the global behavior of the solution is 
small when the delay τ  is small (see (a) (b)). When the kernel function and 
the diffusion coefficient are fixed, the diffusion condition changes with time 
delay τ . Because the temperature function in the first 1n −  time period is 
given by the classical heat conduction equation, the temperature function in 
this 1n −  time period can be regarded as the initial temperature. It can be 
found that the initial temperature decreases with the increase of time delay, 
which affects the diffusion. As can be seen from the image, the temperature 
decreases faster with the increase of time delay (see (c)). But considering the 
tangent slope at different times at the same location, it is found that the larger 
the time delay, the smaller the tangent slope. Reflects the increase in the rate of 
diffusion and slows down at any time. (see (d)). 

3.2. Comparison with Classical Heat Conduction Equation 

The heat conduction equation we know well. 

( )
( ) ( ) ( )
( ) ( ) ( )

2 0 ,0

,0 sin π 0

0, , 0 0

t xxu a u x L t T

u x x x L

u t u L t t T

 = < < < <
 = < <
 = = < <

              (3.2) 

the numerical solution has obvious characteristics. Comparison questions (3.1) 
and problems (3.2). 

The above problems are discretized by the finite difference method, and the 
following Figure 3 is achieved by MATLAB software. 

As can be seen from Figure 3, the classical heat conduction equation is a  

https://doi.org/10.4236/am.2018.99072


W. W. Sun, J. L. Wang   
 

 

DOI: 10.4236/am.2018.99072 1078 Applied Mathematics 
 

 
Figure 2. Influence of different delays on solutions. 

 

 
Figure 3. In case a = 0.1, the numerical-simulating results for (a) new model with delay of 
5 steps; (b) heat conduction equation; (c) particular case for this two kinds of problems 
with x = 0.5.  
 
diffusion equation with a fast diffusion rate over time (see (b)); the solution of 
the new model is similar to the classical heat conduction equation, and there is a 
diffusion phenomenon over time (see (a)), but the diffusion rate is slightly slow-
er than that of the latter (see (c)). It is found that the new model is more effective 
in describing the real heat transfer phenomena. 

3.3. The Influence of Kernel Function on the New Model 

In the new model, the kernel function of memory-dependent derivative is a li-
near function and the effect of time delay on the solution is studied. By the defi-
nition of memory-dependent derivative, the kernel function is also one of the 
important factors affecting the solution. The influence of kernel function on so-
lutions is discussed in this section. We mainly compare the influence of the ker-
nel function on the nature of the solution when kernel function is a linear func-
tion and a quadratic function. The kernel function is chosen as follows. 

( ) ( )
2

1 2, .s t s tK t s K t s
τ τ
− − − = − =  

 
 

The discretization of the problems under different kernel functions is performed  
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Figure 4. Influence of different kernel functions on solutions. 
 
by the finite difference method, select 0.01, 5a tτ= = ∆ , using MATLAB to 
achieve Figure 4 

As can be seen from Figure 4, the solutions under different kernel functions 
are roughly the same and the general behavior of the solutions remains the same, 
but the diffusion rates under different kernel functions are different (see (c)). 
When 0.01, 5a tτ= = ∆  and the kernel function is a linear function, the diffu-
sion rate is a little faster. The influence of different kernel functions on the solu-
tion still needs further study. 

4. Conclusion 

The classical heat conduction equation is proposed on the basis of the instanta-
neous rise of temperature after heat transfer. In fact, the rise of temperature is 
not instantaneous, but a slow process. Numerical results show that: 1) The solu-
tion of the new model is diffusion type. When the kernel function is unchanged, 
the diffusion rate slows down with the increase of time delay. 2) Compared with 
the classical heat conduction equation, the two properties are similar, but the 
diffusion rate of the new model is even slower. 3) It is found that the kernel 
function is also one of the factors affecting the diffusion rate, but how to influ-
ence the diffusion rate needs further study. 
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