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Abstract 
We study a general framework for assessing the injury probability corres-
ponding to an input dose quantity. In many applications, the true value of 
input dose may not be directly measurable. Instead, the input dose is esti-
mated from measurable/controllable quantities via numerical simulations 
using assumed representative parameter values. We aim at developing a sim-
ple modeling framework for accommodating all uncertainties, including the 
discrepancy between the estimated input dose and the true input dose. We 
first interpret the widely used logistic dose-injury model as the result of dose 
propagation uncertainty from input dose to target dose at the active site for 
injury where the binary outcome is completely determined by the target dose. 
We specify the symmetric logistic dose-injury function using two shape pa-
rameters: the median injury dose and the 10 - 90 percentile width. We relate 
the two shape parameters of injury function to the mean and standard devia-
tion of the dose propagation uncertainty. We find 1) a larger total uncertainty 
will spread more the dose-response function, increasing the 10 - 90 percentile 
width and 2) a systematic over-estimate of the input dose will shift the injury 
probability toward the right along the estimated input dose. This framework 
provides a way of revising an established injury model for a particular test 
population to predict the injury model for a new population with different 
distributions of parameters that affect the dose propagation and dose estima-
tion. In addition to modeling dose propagation uncertainty, we propose a 
new 3-parameter model to include the skewness of injury function. The pro-
posed 3-parameter function form is based on shifted log-normal distribution 
of dose propagation uncertainty and is approximately invariant when other 
uncertainties are added. The proposed 3-parameter function form provides a 
framework for extending skewed injury model from a test population to a 
target population in application.  
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1. Introduction 

In many injury assessment situations, injury status of a subject is simply 
characterized in the form of binary outcome. For example, in a study of skull 
fracture injury related to highway traffic safety [1] and in a study of rib fracture 
injury caused by blunt-impact non-lethal weapons [2], in each situation subjects 
tested are classified as either fractured or not fractured. Mathematically, 
occurrences of binary injury outcomes are statistically described by injury 
probability (also called injury risk). Let  
 ( )1 2, , , kv v v  be a list of input factors that affect the injury outcome, 
 I be the binary injury outcome (random variable), and  
 p be the corresponding injury probability: p = Pr (I = “injured”)  

Here the binary injury outcome I is a random variable even when all input 
factors ( )1 2, , , kv v v  are given and fixed. One approach of building a simple 
and practical model for assessing the injury risk is to use a single metric x to 
capture the overall effects of all input variables ( )1 2, , , kv v v  [3] [4]. Quantity x 
is called the input dose, serving as the single metric best predictor of the injury 
probability. Input dose x may be one of the input variables ( )1 2, , , kv v v  or a 
combination of these input variables. Depending on the application situations, 
input dose x is also called the determinant of injury, the risk factor, the exposure 
level, or the predictor variable [3] [4]. 

When the input dose x is directly controllable and measurable, an 
experimental data set consists of m entries, each containing a measured value of 
input dose and the corresponding binary injury outcome in an independent 
trial:  

( ){ }Data , , 1, 2, , .j jx I j m= = 
                   (1) 

Injury models are constructed in the general form of injury probability vs 
input dose.  

( ) injury probability at input dosep x x=  

In many application situations, however, the input dose is not directly 
measurable. For example, for bone fracture injuries, we may use the stress at the 
impact site as the input dose. But it is difficult to measure directly the stress at 
impact site. In a study of behind-armor blunt trauma (BABT) [5] and a study of 
human body response to blunt impacts using advanced total body model 
(ATBM) [6], an estimated value of stress caused by the impact is calculated via 
computer simulations. The estimation is based on the measured mass and 
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velocity of projectile and using representative median material properties of the 
projectile, the subject body and the armor. When the true input dose is not 
directly measurable, an experimental data set contains pairs of estimated input 
dose and the corresponding binary injury outcome:  

( )( ){ }Data , , 1, 2, , .est
j jx I j m= =                   (2) 

In these situations, practical injury models are constructed in the form of 
injury probability vs the estimated input dose  

( )( ) ( )injury probability at estimated input doseest estp x x=  

The estimated input dose, in general, is different from the true input dose, and 
the discrepancy between the two is population dependent since the actual 
material properties of individual subjects are different from the selected 
representative material properties and are population dependent. In addition, 
the relation of injury probability vs true input dose is also population dependent 
because the material properties of subjects significantly affect the injury outcome 
even when the true input dose is fixed. For example, at a fixed impact force, the 
injury probability varies considerably among groups of different ages, among 
groups of different body types, body sizes and body compositions. The 
experimentally established relation of injury probability vs estimated input dose 
is heavily influenced by the particular population tested. As a result, applying the 
injury model established for one population, straightforwardly without 
modification, to assess the injury risk of a different population will inevitably 
lead to large errors. In many applications, however, we face exactly this task: we 
are given an injury model established on a particular test population and we 
need to predict the injury risk of a different population. For example, a data set 
for human forearm fracture was assembled in [7] from drop test results 
conducted on PMHS forearms from cadaver donors of average age 55. The 
purpose of assembling the data set, however, is to build an injury model for 
assessing the risk of forearm fracture among a population of live human subjects 
with an age distribution significantly different from that of cadaver donors. In 
this study, we develop a simple mathematical framework for this task. The key 
idea is based on interpreting the probabilistic injury model as the consequence 
of dose propagation uncertainty from input dose to target dose at the active site 
for injury where the binary outcome is uniquely determined by the target dose. 
The framework of dose propagation uncertainty makes it mathematically 
convenient to accommodate different uncertainties associated with different 
populations. The formulation developed provides a mechanism of mapping 
injury function from one population to another by simply updating the model 
parameters. 

2. Mathematical Formulation 

We first review the logistic model for binary outcomes [8]. Note that the injury 
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probability p is not directly observable in experiments unless we repeat the 
experiment a large number of times at each fixed value of input dose. The 
logistic regression model was designed by working with the hidden injury 
probability p and considering the logit function of p, which is defined as the  

logarithm of the injury odds: ( )logit log
1

pp
p

 
≡  − 

. In the logistic model, 

( )logit p  is postulated to be a linear function of input dose x,  

( ) ( )50logit p x Dα= −                          (3) 

Writing probability p as a function of x, we obtain the logistic dose response 
relation  

( )( ) ( )( ) ( )1
50 logistic

50

1logit
1 exp

p x D f x
x D

α
α

−= − = ≡
+ − −

       (4) 

We write the linear function in (3) as ( )50x Dα −  so that constant 50D  has 
the meaning of the median injury dose, at which the injury probability is 50%: 
( )50 50%p D =  [9]. In general, we introduce Dη  to denote the dose value at 

which ( ) %p Dη η= . For example, 90D  is the dose with ( )90 90%p D = . 
Coefficient α  controls the steepness of transition (i.e., the sensitivity of injury 
probability with respect to dose change). We define the width of injury function 
as  

90 10W D D≡ −  

Conceptually, the width W is not the 10 - 90 percentile range of x since dose x 
is not a random output of an experiment; it is the controlled input. However, if 
we view the injury function as the cumulative distribution function (CDF) for x 
and draw random samples of x based on the CDF, then the width W is indeed 
the 10 - 90 percentile range of random samples drawn. For simplicity, we shall 
call W the 10 - 90 percentile width even though x is not a random variable. In 
the logistic model, the width W is inversely proportional to coefficient α .  

( )
90 10

2 ln 9
W D D

α
≡ − =                      (5) 

We point out that the steepness coefficient α  exists only in the logistic 
model. In contrast, the width of injury function is universally defined and 
meaningful for all injury models. To facilitate the comparison of various models, 
we shall use the width (W) instead of coefficient α  whenever it is appropriate 
to do so. The logistic model in terms of shape parameters ( )50 ,D W  has the 
expression.  

( ) ( )
( )logistic 50

50

1 ; ,
2 ln 9

1 exp
p f x D W

x D
W

= ≡
 

+ − − 
 

        (6) 

Logistic model is widely used as a phenomenological model for binary 
outcomes [3] [4] [10]. In this study, we interpret it and approximate it in the 
framework of dose propagation uncertainty from input dose to target dose. The 
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key assumption in our interpretation is that there is an active site at which target 
dose Z uniquely determines the binary outcome I. Mathematically, target dose Z 
at the active site has the features described below:  
 Binary outcome I is the indicator function of ( )cZ z>  

( )1, if
0, otherwise

cZ zI
 >= 


                      (7) 

where ( )cz  is the critical threshold for target dose in transition from non-injury 
to injury. The transition is a discontinuous jump with respect to target dose Z at 
the active site. However, with respect to the input dose x that is away from the 
active site, the injury probability vs x generally is a smooth and gradual 
transition.  
 The target dose Z is caused by the input dose x. While in most experiments 

the input dose x can be controlled, at least to some extent, the target dose Z is 
neither directly observable nor directly controllable.  

 For a given input dose x, the corresponding target dose Z is a random 
variable, reflecting the uncertainty in the propagation from input dose to 
target dose.  

We use an example to illustrate the propagation from input dose to target 
dose.  

Example: Passing exam vs amount of study time  
In this example, the input dose x is the amount of study time. Note that 

although the target dose Z is caused by the input dose x, quantities Z and x may 
have different physical dimensions. For passing an exam, the target dose Z is the 
effective fraction of actual exam contents correctly completed in the exam by the 
student. We use a flow chart to show a possible propagation from input dose to 
target dose.  

x = the nominal amount of study time invested 
→Z1 = effective amount of study time  
affected by the student’s attentiveness, effciency, and overall load  
→Z2 = amount of course contents learned  
affected by the student’s prior preparation and ability of memorizing key 

items 
→Z3 = fraction of actual exam contents learned 
affected by the exam scope and weighting of components in exam 
→Z = effective fraction of actual exam contents correctly completed 
affected by the student’s general health condition on exam day, and ability of 

working under time pressure and in presence of noise/disturbance         (8) 
Mathematically, we write the target dose explicitly as ( ),Z x ω , emphasizing 

that Z is a random variable depending on the input dose x and depending on the 
random factor ω  in the dose propagation. The probability that a given input 
dose x leads to injury is  

( ) ( ) ( )( )Pr injured Pr , cI Z x zω= = >“ ”                (9) 
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We consider two models for uncertainty in dose propagation: 1) target dose 
( ),Z x ω  has a normal distribution; and 2) target dose ( ),Z x ω  is expressed in 

terms of a normally distributed intermediate variable. For example, intermediate 
variable ( ) ( )( )0, ln ,Y x Z x xω ω≡ −  has a normal distribution, and target dose 
( ),Z x ω  is a shifted log normal distribution, expressed in terms of intermediate 

variable ( ),Y x ω  as ( ) ( )( ) 0, exp ,Z x Y x xω ω= + . 

3. Logistic Dose-Injury Relation Interpreted as Normally  
Distributed Target Dose 

We model the target dose as proportional to the sum of the input dose and an 
additive Gaussian noise.  

( ) ( ),Z x r xω µ σε= × − +  

where ( )~ 0,1Nε , a standard normal random variable. We scale target dose Z 
and the associated critical threshold ( )cz  to make 1r =  by changing the 
physical unit for measuring z-values, or equivalently by changing the physical 
unit for measuring x-values. Thus, we set 1r =  and proceed with  

( ),Z x xω µ σε= − +                      (10) 

In this section, we first examine the dose-response relation for normally 
distributed dose uncertainty, which is the probit model [11]. Then we discuss 
how to accommodate different uncertainties corresponding to different 
populations, including how to incorporate additional uncertainties into the 
dose-response relation. 

3.1. Dose-Response Relation 

The binary injury outcome is governed by the sign of random variable  

( ) ( ) ( ), c cZ x z x zω µ σε− = − − +                 (11) 

The injury probability (p) corresponding to input dose x is  

( )( )( )
( )

Pr 0 Pr
c

c x zp x z µ
µ σε ε

σ
 − −

= − − + > = − <  
 

 

Recall that the cumulative distribution function (CDF) of standard normal is 
given by the error function, ( )erf u , which is defined as  

( ) ( )2
0

2erf exp d
π

u
u s s≡ −∫  

The dose response relation for normally distributed target dose Z has the 
expression:  

( )
( )normal

1 1 erf
2 2 2

cx zp f xµ
σ

 − −
= + ≡  

 
             (12) 

We approximate dose-response relation (12) using the logistic function form 
(4) with tunable parameters 50D  and α . First, we match the two functions at 
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50%p =  to obtain ( )
50

cD z µ= + . To simplify the search for optimal α , we 
apply the transformation  

old 50
new

x Dx
σ
−

=  

After the transformation, (4) and (12) as functions of newx  have standard 
forms:  

( ) ( ) ( )logistic old
1

1 expLf x f x
xα

≡
′+ −

              (13) 

( ) ( )normal old
1 1 erf
2 2 2N

xf x f x  ≡ +  
 

             (14) 

where the scaled coefficient α′  is related to α  by α σα′ = . For conciseness, 
we denote newx  simply as x. The task of approximating (12) with (4) is reduced 
to finding an optimal value of α′  such that the distance between ( )Nf x  and 

( )Lf x  is minimized. Using numerical optimization, we find that the best 
approximation is achieved at opt 1.701α′ = . 

Figure 1 compares functions (14) and (13) at opt 1.701α′ = . It is clear that the 
two functions are very good approximations of each other. The maximum 
difference is bounded by 0.01 (i.e., difference in predicted injury probability is 
less than 1%). With that error tolerance, the logistic model and the normal 
distribution model can practically substitute each other. In other words, the 
widely used logistic model can be viewed as a very good approximation of the 
normal distribution model, which was derived based on normally distributed 
dose propagation uncertainty from input dose to target dose. 

Models (13) and (14) are nevertheless mathematically different. When the 
data set of binary injury outcomes (I) is sufficiently large, eventually, the two 
models will be distinguishable. Let m be the number of samples in the data set. 
We look into the question of how large m needs to be in order to statistically 
distinguish the two models. We consider a collection of independent data sets, 
each of the form 
 

 

Figure 1. Comparison of ( ) 1 1 erf
2 2 2N

xf x  ≡ +  
 

 and ( ) ( )
1

1 expLf x
xα

≡
′+ −

 at  

opt 1.701α′ = . Left panel: plots of the two functions. Right panel: plot of the difference 

between the two functions. The results shown demonstrate that the two functions are 
very good approximations to each other. 
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( ){ }, , 1, 2, ,j jD x I j m= = 
 

where jx  is the input dose of the j-th experiment and jI  the corresponding 
binary injury outcome. To test if the two models are statistically distinguishable, 
we generate data sets according to the normal distribution model ( )Nf x  in 
(14). In all data sets, values of input dose { }jx  are uniformly distributed in 
[ ]3,3− , and for each input dose jx  the corresponding binary injury outcome 

jI  is sampled using injury probability ( )N jf x . 
Given data set D, the log-likelihood for a general probability function ( )f x  

is  

( )( ) ( )( ) ( ) ( )( )( )
1

1| log 1 log 1
m

j j j j
j

f D I f x I f x
m =

⋅ ≡ + − −∑      (15) 

We use log-likelihood (15) to compare models ( )Nf x  and ( )Lf x . Since 
( )Nf x  is the exact probability model for the data set while ( )Lf x  is a slightly 

incorrect model, the difference in log-likelihood ( )( ) ( )( )| |N Lf D f D⋅ − ⋅   is 
expected to be positive. However, due to randomness of data sets, the difference 
in log-likelihood between two models fluctuates from one date set to another. 
We examine the sample distribution of differences in log-likelihood based on 

100000N =  independent data sets. Figure 2 plots the histograms of  
( )( ) ( )( )| |N Lf D f D⋅ − ⋅   for various values of m, the size of each data set. 

 

 

Figure 2. Histograms of ( )( ) ( )( )| |N Lf D f D⋅ − ⋅   for various values of m, the size of 

individual data sets, each yielding a sample for the histogram. Top left panel: histogram 
based on 100000N =  independent data sets, each containing 500m =  samples; top 
right panel: 1000m = ; bottom left panel: 2000m = ; and bottom right panel: 4000m = . 
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To clarify, here N is the number of data sets used in each histogram and m is 
the number of binary outcomes in each data set. In Figure 2, each sample of 
difference in log-likelihood requires one data set. That is why we use 

100000N =  independent data sets to plot each histogram. 
Suppose we use the sign of ( )( ) ( )( )| |N Lf D f D⋅ − ⋅   to classify data sets as 

the normal distribution model (positive sign) or as the logistic model (negative 
sign). All data sets examined in Figure 2 are generated based on the normal 
distribution model. Thus, data sets with ( )( ) ( )( )| | 0N Lf D f D⋅ − ⋅ <   will be 
falsely identified as the logistic model (false negative). In Figure 2, all counts to 
the left of the dashed black line in each histogram correspond to false negative 
identification. For data sets of 500m =  samples each (top left panel), the false 
negative rate is 25.26%. For 1000m =  (top right panel), the false negative rate 
decreases to 19.44%. When the sample size is increased to 2000m =  (bottom 
left panel), the false negative rate falls to 12.49%. Finally, when the sample size is 
doubled again to 4000m =  (bottom right panel), the false negative rate drops 
down to 5.63%. Based on the simulation results, we see that to reduce the false 
negative rate to less than 20%, for example, we need to work with data sets, each 
consisting of 1000m =  samples. This is above the typical sample size of data 
sets for injury models. Thus, in real applications, the normal distribution model 
(14) and logistic model (13) are practically the same unless we work with injury 
data sets of very large sample size. 

We go back to the pre-transformation logistic model, function (4) specified by 
steepness coefficient α , and function (6) specified by width W. The 
corresponding optimal values for α  and for W are respectively  

( ) ( )

opt
opt

opt
opt

1.701

2ln 9 2ln 9
2.584

1.701
W

α
α

σ σ

σ σ
α

′
= =

= = =
                (16) 

Since the 10 - 90 percentile width is well defined for all injury functions, we 
choose to specify the logistic model using width W instead of coefficient α . We 
conclude that normal distribution model (12) based on dose propagation 
uncertainty is practically equivalent to logistic model (6) with shape parameters 
( )50 ,D W  given by  

( )
502.584 , cW D zσ µ= = +                   (17) 

(17) describes the best approximation to the normal distribution model (12) 
from the logistic model family (6). The best approximation is obtained 
numerically by minimizing the distance between the two functions (Figure 1). 
Alternatively, a straightforward approximation can be written out by simply 
matching the widths of two injury functions. The width of normal distribution 
model is given by the inverse error function  

( )1
normal 2 2erf 0.8 2.563W σ σ−= =  

Notice that the two widths, the width of normal distribution model normalW  
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and the width of its best logistic model approximation optW , are indeed very 
close to each other. We will use these two interchangeably. 

Similar to the situation of logistic model, the normal distribution model is also 
completely specified by the shape parameters ( )50 ,D W . It has the form  

( ) ( ) ( )
1

50
normal 50

2erf 0.81 1 erf ; ,
2 2

x D
p f x D W

W

− ⋅ −
= + ≡  

 
       (18) 

where shape parameters ( )50 ,D W  are related to parameters of dose 
propagation uncertainty in (17). It should be pointed out that in general, the 
target dose Z is hidden, not observable or controllable; none of parameters 

( )cz , µ  or σ  is directly observable. These are internal quantities in the 
mathematical model, explaining why the injury probability follows the normal 
distribution model (12). In an idealized situation, the input dose x should be a 
controllable/measurable variable, and shape parameters ( )50 ,D W  may be 
determined from experimental measurements. In realistic applications, however, 
the true input dose x may not be directly measurable, which we will discuss in 
next subsection. At the end of this subsection, we summarize the normal 
distribution model for dose propagation uncertainty, and its connection to the 
widely used logistic model. 

Summary of the injury model based on dose propagation uncertainty 
 We select the physical unit for measuring the target dose Z such that in the 

absence of dose propagation uncertainty, target dose Z is the same as input 
dose x:  

( )zero uncertainty .Z x=  

 In the normal distribution model, the difference between target dose and 
input dose is an additive Gaussian noise:  

( ) ( ), 0,1 .Z x x Nω µ σ− = − +  

 The binary injury outcome is completely determined by the condition 
( ) ( ), cZ x zω >  where ( )cz  is the critical threshold for target dose Z.  

 The probability of injury caused by the input dose x is described by the CDF 
of normal distribution. Practically the injury probability is very well 
approximated by the widely used logistic dose-response relation.  

 As given in (17), the median injury dose of injury function is the critical 
threshold for the target dose, shifted by the bias in the dose propagation:  

( )
50 ,cD z µ= +  

and the width of injury function is proportional to the uncertainty in dose 
propagation (standard deviation of the Gaussian noise):  

2.584W σ=  

The larger the uncertainty, the more spread out the injury function is.  
 In terms of shape parameters ( )50 ,D W , the logistic model is expressed in (6); 

the normal distribution model is given in (18).  
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Next, we study how to incorporate additional uncertainties in the framework 
of dose-response relation, and how to model a new population with different 
uncertainty. 

3.2. Effects of Additional Uncertainties 

In the previous subsection, we interpreted the dose-response relation as a 
consequence of dose propagation uncertainty. In this subsection we study how 
to incorporate additional uncertainties by changing the shape parameters 
( )50 ,D W  in logistic model (6) or in normal distribution model (18). 

We start by considering a homogeneous population consisting of statistically 
identical subjects, which means quantities ( )cz , µ  and σ  are fixed and stay 
the same for all subjects in the population. In a homogeneous population, the 
dose propagation uncertainty is statistically the same for all subjects. Its effect is 
already reflected in the dose response relation specified by shape parameters 
( )50 ,D W , which are related to internal parameters ( )( ), ,cz µ σ  in (17). In 
particular, the width W is proportional to the standard deviation of uncertainty. 
If there is no uncertainty present in the dose propagation, the dose-response 
relation would be a sharp transition (a step function). 

Now we consider a more realistic situation: a heterogeneous population 
consisting of subjects with variable critical threshold ( )cz , denoted here in the 
new setting as ( )cZ , following the convention of using uppercase letters for 
random variables. In addition to the uncertainty in ( )cZ , the input dose x may 
not be directly measurable. In some situations, the input dose x is not directly 
measured; instead, input dose x is derived from a controllable/measurable 
variable y. In these situations, the value of input dose x is calculated via 
computer simulations from measurable quantities using idealized representative 
properties of subjects, such as the 50-percentile properties of the general 
population [5] [6]. We use the example below to illustrate the situation of 
controllable variable y vs true input dose ( )trueX  vs estimated input dose ( )estX . 
Consider the experiment in which we test the shatter resistance of a product by 
dropping it from a specified height. In this example, the various quantities in the 
model are described as follows:  
 The height y is the controllable/measurable variable.  
 The estimated input dose ( )estX  is the impact force calculated in a computer 

simulation from height y using the representative median properties, such as 
the weight of the product, the aerodynamic properties, the mechanical 
properties of the product and the ground surface, and the orientation angle 
of the product at impact.  

 The true input dose ( )trueX  is the actual impact force, which in general is 
different from the estimated input dose ( )estX . The difference 

( ) ( )( )true estX X−  depends on how much the true properties deviate from the 
selected representative properties. The distribution of difference varies from 
one population to another.  
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 The target dose ( )( ),trueZ X ω  is the maximum stress at the most vulnerable 
part of the product.  

The bottom line is that the true input dose ( )trueX  is a random variable when 
the controllable variable y is specified. We model the difference ( ) ( )( )true estX X− , 
the dose propagation uncertainty ( )( ) ( )( ),true trueZ X Xω − , and the critical 
threshold ( )cZ  as additive Gaussian noises. Mathematically, we formulate the 
problem as  

( )( ) ( )( ) 1 1 1,true trueZ X Xω µ σ ε− = − +                (19) 

( ) ( )( ) 2 2 2
true estX X µ σ ε− = − +                   (20) 

( ) ( )
3 3 3

c cZ z µ σ ε= + +                     (21) 

where { }1 2 3, ,ε ε ε  are i.i.d. samples of ( )0,1N . The binary injury outcome is 
governed by the sign of random variable  

( )( ) ( ) ( ) ( ) ( ) 2 2 2
1 2 3 1 2 3,true c est cZ X Z X zω µ µ µ σ σ σ ε− = − − + + + + +   (22) 

At a given value of ( )estX , random variable ( )( ) ( )( ),true cZ X Zω −  has the 
same mathematical form as random variable ( ) ( )( ), cZ x zω −  in (11). As a 
result, the injury probability vs the estimated input dose has the expression  

( )
( ) ( )( )

( ) ( )

2 2 2
1 2 3 1 2 3

1 2 3

2 2 2
1 2 3

Pr 0

1 1 erf
2 2 2

est
c

X x

c

p x z

x z

µ µ µ σ σ σ ε

µ µ µ

σ σ σ

=
 = − − + + + + + >  

 − − + +
 = +
 + + 

   (23) 

Injury function (23) has the same form as (12). Thus, ( )estX xp
=

 is described 
by the normal distribution model with shape parameters ( )50 ,D W  given as 
follows.  

( ) ( )normal 50; ,estX xp f x D W
=
=                    (24) 

2 2 2
1 2 32.584W σ σ σ= + +  

( ) ( )50 1 2 3
cD z µ µ µ= + + +  

In a well controlled lab setting, the true input dose ( )trueX  is measurable. For 
example, in experiments of male forearm fracture [12], a cylinder of specified 
mass is dropped from a specified height along a vertical track onto the PMHS 
forearm sample. Both the forearm sample and the cylinder are connected to 
accelerometers, allowing accurate measurements of the dynamic impactor load 
and the support loads. In addition, in situ strain gauges are used to record time 
series of strains at various locations during the loading. In this idealized setting, 
there is no measurement error in ( )trueX . The injury probability as a function of 
the true input dose, ( )trueX xp

=
, can be determined from the observed binary 

injury outcomes vs measured values of ( )trueX . Injury function ( )trueX xp
=

 
follows the normal distribution model with shape parameters ( ) ( )( )0 0

50 ,D W  
given below.  
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( )
( ) ( )( )0 0

normal 50; ,trueX xp f x D W
=
=                  (25) 

( )0 2 2
1 32.584W σ σ= +  

( ) ( ) ( )0
50 1 3

cD z µ µ= + +  

With this formulation, we can map back and forth between injury functions 

( )trueX xp
=

 and ( )extX xp
=

. We can also revise the injury function ( )extX xp
=

 
measured on one population to construct the injury function for a different 
population. We now discuss these two problems. 

Problem 1: 
Suppose we are given an injury model ( )trueX xp

=
, specified by shape 

parameters ( ) ( )( )0 0
50 ,D W . The given injury function is for an idealized setting 

where the true input dose is directly measured. Our goal is to extend the given 
injury function ( )trueX xp

=
 to predict the injury probability, ( )extX xp

=
, as a 

function of estimated input dose for the same population when the true input 
dose is not measurable. 

Solution: 
Injury function ( )trueX xp

=
 is specified by shape parameters ( ) ( )( )0 0

50 ,D W  given 
in (25) while injury function ( )extX xp

=
 is specified by shape parameters 

( )50 ,D W  given in (24). Combining (25) with (24), we write ( )50 ,D W  as an 
update on ( ) ( )( )0 0

50 ,D W .  

( )
( )

22 2 2
0 2

0
50 50 2

2.584W W

D D

σ

µ

= +

= +
                    (26) 

Problem 2: 
Suppose we are given an injury model ( )extX xp

=
, specified by shape 

parameters ( )50 ,D W . The given injury function is established based on 
measurements of a heterogeneous population, labeled population 1. Population 
1 is characterized by uncertainties in the input dose estimation and in the critical 
threshold, as described in (20) and (21)  

( ) ( )( ) ( )2
2 2,true estX X N µ σ− = −  

( ) ( ) ( )2
3 3,c cZ z N µ σ= +  

Now consider a different heterogeneous population, labeled population 2, 
with uncertainties described by  

( ) ( )( ) ( )2
2 2,true estX X N µ σ− = −    

( ) ( ) ( )2
3 3,c cZ z N µ σ= +    

Here we assume that the propagation uncertainty from true input dose to 
target dose ( )( ) ( )( ) ( )2

1 1, ,true trueZ X X Nω µ σ− = −  is statistically the same for the 
two populations. Our goal is to predict the injury function ( )( )2

extX xp
=

 for 
population 2 based on the given injury function ( )extX xp

=
 for population 1. 

Solution: 
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Injury function ( )extX xp
=

 for population 1 is specified by shape parameters 
( )50 ,D W  while injury function 2=)( )(

xestX
p  for population 2 is specified by 

shape parameters ( )50 ,D W  . We write ( )50 ,D W   as an update on ( )50 ,D W  to 
take into account the differences in uncertainties between the two populations.  

( ) ( )
( ) ( )

22 2 2 2 2 2
2 2 3 3

50 50 2 2 3 3

2.584W W

D D

σ σ σ σ

µ µ µ µ

= + − + −

= + − + −



 



 

              (27) 

4. Dose-Injury Function for Target Doze of Log-Normal  
Distribution 

For the discussion below, we adopt the normal-distribution model as the base 
formulation, switching away from the logistic model. There are several reasons 
behind the switching.  
 The normal-distribution model is based on 1) viewing the binary injury 

outcome as completely determined by the target dose at the active site, 2) 
explaining the randomness in injury outcome as the consequence of 
uncertainty in dose propagation from input dose to target dose, and 3) 
modeling the dose propagation uncertainty as an additive Gaussian noise. 
This interpretation is both theoretically and operationally appealing.  

 Mathematically, the injury function form of normal-distribution model is 
exactly invariant when additional normally distributed noise/uncertainty is 
incorporated into the model.  

 We will study dose-injury models based on normally distributed 
intermediate variable. Mathematically, such an injury model is conveniently 
treated as a transformation of the normal-distribution model since the target 
doze is expressed as a function of the normally distributed intermediate 
variable.  

 As we demonstrated in the previous section, the logistic model is practically 
equivalent to the normal-distribution model with the same shape parameters 
( )50 ,D W .  

We first recall the function form of the normal-distribution model. In terms 
of internal variables ( )( ), , czσ µ , it is given by (12). In terms of shape 
parameters ( )50 ,D W , it is expressed in (18). Geometric quantities 50D , 10D , 

90D  and W of the injury function are related to internal variables ( )( ), , czσ µ  
as  

( )

( )

( )

( )

50

1
10 50

1
90 50

1
90 10

erf 0.8 2

erf 0.8 2

2 2erf 0.8

cD z

D D

D D

W D D

µ

σ

σ

σ

−

−

−

= +

= −

= +

≡ − =

                (28) 

Because of the symmetry of error function ( )erf z , the normal distribution 
model (18) is symmetric around the median injury dose 50D :  
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( ) ( )normal 50 normal 50
1 1Symmetry :
2 2

f D x f D x+ − = − −       (29) 

We now study a skewed injury function that breaks this symmetry. Consider 
the situation where the target dose ( ),Z x ω  has a log-normal distribution  

( ) ( ), expZ x xω µ σε= ⋅ − +  

Again ( )~ 0,1Nε  is a standard normal random variable. In this case, 
( )( )ln ,Z x ω  and ( )ln x  are simply related by an additive Gaussian noise.  

( )( ) ( )ln , lnZ x xω µ σε= − +                  (30) 

If we use ( )ln x  and ( )( )ln ,Z x ω  to measure, respectively, the input dose 
and the target dose, then the injury probability vs ( )ln x  follows the same 
function form as (12) with ( )( ); cx z  replaced by ( ) ( )( )( )ln ; ln cx z : 

( ) ( ) ( )( )( ) ( ) ( )( )
normal

ln ln1 1ln ; ln erf
2 2 2

c
c

x z
p x f x z

µ

σ

 − −
 = = +
 
 

  (31) 

We examine the injury probability as a function of the original input dose x. 
The purpose is to investigate 1) under what condition the injury probability vs x 
can be approximated by the symmetric normal-distribution model, and 2) when 
the normal distribution approximation is invalid, what additional parameter we 
need to introduce to describe the injury function for the original input dose x. 

Since the injury probability vs ( )ln x  follows the normal distribution model 
(12), we use results (28) for (12) to write out ( )ln

50D , ( )ln
10D  and ( )ln

90D  for 
quantity ( )ln x .  

( ) ( )( )
( ) ( ) ( )
( ) ( ) ( )

ln
50

ln ln 1
10 50

ln ln 1
90 50

ln

erf 0.8 2

erf 0.8 2

cD z

D D

D D

µ

σ

σ

−

−

= +

= −

= +

                (32) 

The corresponding 50D , 10D  and 90D  for quantity x are  
( )( ) ( )

( )( ) ( )( )
( )( ) ( )( )

ln
50 50

ln 1
10 10 50

ln 1
90 90 50

exp e

exp exp erf 0.8 2

exp exp erf 0.8 2

cD D z

D D D

D D D

µ

σ

σ

−

−

= = ⋅

= = ⋅ −

= = ⋅

          (33) 

In this case, it is clear that ( ) ( )90 50 50 10D D D D− > − . The injury probability vs 
quantity x is not exactly symmetric around 50D . We introduce a measure of 
skewness to represent the asymmetry of injury probability vs quantity x.  

90 50

50 10

ln
D D
D D

γ
 −

≡  
− 

                     (34) 

Specifically, γ  defined above measures the skewness of interval [ ]10 90,D D  
around 50D .  
 When 0γ = , interval [ ]10 90,D D  is symmetric around 50D .  
 When 0γ > , we have ( ) ( )90 50 50 10D D D D− > − , which implies that the 
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upper half (above 50D ) of injury function is flatter than the lower half 
(below 50D ).  

 When 0γ < , we have ( ) ( )90 50 50 10D D D D− < − , and that the upper half of 
injury function is steeper than the lower half.  

Skewness γ  is an indicator of how well the injury function for x can be 
approximated by the symmetric normal distribution model. For a target dose of 
log-normal distribution, the skewness is ( )1erf 0.8 2γ σ−= . When σ  is small, 
the skewness 0γ ≈ , and the injury function is nearly symmetric around 50D . 
When 2 0σ > , the skewness γ  is positive, and in (31) the injury probability as 
a function of x is not symmetric. In this case, the injury function is characterized 
by three shape parameters: ( )50 , ,D W γ .  

( )

( )( )
( )

50

1
90 10 50

190 50

50 10

e

2sinh erf 0.8 2

ln = erf 0.8 2

cD z

W D D D

D D
D D

µ

σ

γ σ

−

−

= ⋅

≡ − = ⋅

 −
≡  

− 

          (35) 

Notice that even though expressions of ( )50 , ,D W γ  in (35) contain three 
variables ( )( ), , czµ σ , two variables µ  and ( )cz  appear only as a combination 

( )( )ecz µ⋅  in 50D . Mathematically, the three shape parameters ( )50 , ,D W γ  are 
completely specified by ( )50 ,D σ , and thus, have only two degrees of freedom. 
As a result, the three shape parameters ( )50 , ,D W γ  cannot be set independently 
of each other. For example, in (35) when γ  is small, the width W will be small 
unless the median dose 50D  is large. Formulation (35), based on target dose of 
log-normal distribution (30), cannot accommodate any negative skewness 
( 0γ < ). It cannot even accommodate the simple symmetric case of 0γ =  with 
finite 0W >  and 50D < +∞ . We like to revise the formulation and construct 
an injury model in which the three shape parameters ( )50 , ,D W γ  can be set 
independently of each other. 

5. A Dose-Injury Model with Skewness Based on a Normally  
Distributed Intermediate Variable 

We construct a model that accommodates the median injury dose ( 50D ), the 
width (W) and the skewness ( γ ) as 3 independent parameters. In previous 
section, we studied the formulation based on target dose of log-normal 
distribution, in which the skewness is always positive and the 3 shape parameters 
( )50 , ,D W γ  are not independent of each other. A log-normal random variable 
can be viewed as the exponential of normal random variable. To accommodate 
negative skewness and to make ( )50 , ,D W γ  independent of each other, we 
extend the formulation to the case of target dose being a more general function 
of normal random variable. 

We consider the situation where the dose propagation uncertainty is an 
additive Gaussian noise in quantity 0ln x x−  with 0x  as a new tunable 
parameter. The target dose ( ),Z x ω  and the input dose x are related by  
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( ) ( ) ( )0 0, expZ x x x xω µ σε− = − − +  

In this setting, ( )( )0,Z x xω −  has the same sign as ( )0x x− . The domain of 
x is divided by 0x  into two regions: 0x x>  and 0x x< . Only the region 
containing the critical threshold ( )cz  will be relevant for the injury model. The 
other region of x produces target dose ( ),Z x ω  always above or always below 

( )cz . For example, when ( )
0

cx z> , only the region 0x x<  is relevant for the 
injury model; the region 0x x>  leads to target doze ( ) ( )

0, cZ x x zω > >  and 
thus, leads to an injury probability of 100%. We discuss separately the case of 

( )
0

cx z>  and the case of ( )
0

cx z< . 

5.1. Case 1: ( )cx z0 <  

In this case, the region 0x x<  yields target dose ( ) ( )
0, cZ x x zω < <  and an 

injury probability of 0%. We focus on the region 0x x> , the relevant region for 
the injury model. The logarithm of shifted target dose ( )( )0ln ,Z x xω −  and 
logarithm of shifted input dose ( )0ln x x−  are related by an additive Gaussian 
noise.  

( )( ) ( )0 0ln , lnZ x x x xω µ σε− = − − +              (36) 

where ( )~ 0,1Nε . We apply the shift 0new oldx x x= −  on all dose quantities 
(including 50D  and ( )cz ). After the shift, problem (36) above is exactly the 
same as problem (30) in the previous section. It follows that the injury 
probability has the same function form as (12) with ( )( ); cx z  replaced by 

( ) ( )( )( )0 0ln ; ln cx x z x− −   

( ) ( ) ( )( )( ) ( )

( ) ( )( )
normal 0 0 0

0 0

ln ; ln for

ln ln1 1 erf
2 2 2

c c

c

p x f x x z x x z

x x z x µ

σ

= − − <

 − − − −
 = +
 
 

       (37) 

Based on results (33) and (35), we write out ( )50 , ,D Wγ  for injury function 
(37).  

( )( )
( ) ( )( )
( ) ( )( )

( ) ( )( )
( )

50 0 0

1
10 0 50 0

1
90 0 50 0

1
90 10 50 0

190 50

50 10

e

exp erf 0.8 2

exp erf 0.8 2

2sinh erf 0.8 2

ln erf 0.8 2

cD x z x

D x D x

D x D x

W D D D x

D D
D D

µ

σ

σ

σ

γ σ

−

−

−

−

− = − ⋅

− = − ⋅ −

− = − ⋅ +

≡ − = − ⋅

 −
≡ = 

− 

        (38) 

Note that both ( )cz  and 50D  are on the right side of 0x  in the case of 
( )

0
cx z< . As we will see, 50D  and ( )cz  are always on the same side of 0x . 

With Formulas (38) for the case of ( )
0

cx z< , we can accommodate shape 
parameters ( )50 , ,D W γ  with positive skewness 0γ > . Specifically, at any fixed 
µ , for each given set of ( )50 , , 0D W γ >  there is a unique corresponding set of 
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( )( )0 , , cx zσ .  

( )

( )
( )( ) ( )

( ) ( )

1

50 0 0 50 50 01

0 50 0

erf 0.8 2

, .
2sinh erf 0.8 2

ec

WD x x D D x

z x D x µ

γσ

σ

−

−

−

=

− = = − −

= + −

    (39) 

This works for any positive skewness 0γ > , corresponding to the situation 
where the injury probability has a flatter rise above the median injury dose 50D  
than below it. 

To accommodate negative skewness 0γ < , however, we need ( )0 cx z> . 

5.2. Case 2: ( )cx z0 >  

In this case, we focus on the region 0x x<  since the region 0x x>  yields target 
dose ( ) ( )

0, cZ x x zω > >  and an injury probability of 100%. The target dose and 
input dose are related by  

( )( ) ( )0 0ln , lnx Z x x xω µ σε− − = − − + +              (40) 

where ( )~ 0,1Nε . Here we consider quantity ( )( )0ln ,x Z x ω− −  with the 
negative sign because it is an increasing function of ( ),Z x ω . Injury occurs 
when the target dose is above the critical threshold: ( ) ( ), cZ x zω > , which 
translates to  

( )( ) ( )( )( )0 0Injury probability Pr ln , ln cx Z x x zω= − − > − −  

The injury probability has the expression  

( ) ( ) ( )( )( ) ( )

( ) ( )( )
normal 0 0 0

0 0

ln ; ln for

ln ln1 1 erf
2 2 2

c c

c

p x f x x x z x z

x x x z µ

σ

= − − − − >

 − − + − +
 = +
 
 

      (41) 

Notice that (31) with quantities denoted by (' ) and (41) are connected by 
transformation  

( ) ( )( ) ( )0 0
1 1, ,c

c
x x z x

x z
µ µ

− − ′− = − = = −
′ ′

 

We use results (33) and (35) for injury function (31) to write out ( )50 , ,D Wγ  
for (41).  

( )( )
( ) ( )( )
( ) ( )( )

( ) ( )( )
( )

50 0 0

1
10 0 50 0

1
90 0 50 0

1
90 10 50 0

190 50

50 10

e 0

exp erf 0.8 2 0

exp erf 0.8 2 0

2sinh erf 0.8 2 0

ln erf 0.8 2 0

cD x x z

D x D x

D x D x

W D D D x

D D
D D

µ

σ

σ

σ

γ σ

−

−

−

−

− = − − ⋅ <

− = − ⋅ <

− = − ⋅ − <

≡ − = − − ⋅ >

 −
≡ = − < − 

      (42) 
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In the case of ( )
0

cx z> , both ( )cz  and 50D  are on the left side of 0x . With 
Formulas (42) for the case of ( )

0
cx z> , we can accommodate shape parameters 

( )50 , ,D W γ  with negative skewness 0γ < . Specifically, at any fixed µ , for 
each given set of ( )50 , , 0D W γ <  there is a unique corresponding set of 

( )( )0 , , cx zσ .  
( )
( )

( )
( )( ) ( )

( ) ( )

1

50 0 0 50 50 01

0 50 0

erf 0.8 2

, .
2sinh erf 0.8 2

ec

WD x x D D x

z x D x µ

γ
σ

σ

−

−

−

−
=

−
− = = − −

= + −

    (43) 

This works for 0γ < , which indicates that the injury probability has a steeper 
rise above the median injury dose 50D  than below it. 

Next we combine the results of ( )
0

cx z<  and ( )
0

cx z>  to derive a unified 
formulation for accommodating shape parameters ( )50 , ,D W γ  regardless of the 
sign of γ . 

5.3. A Unified Formulation for All Values of Skewness 

In the previous sub-section, we studied models based on target dose of shifted 
log normal distribution with shift as a parameter. We now synthesize the results 
obtained to develop a unified formulation of injury function in which the 3 
shape parameters ( )50 , ,D W γ  can be specified independently. 

First, we show that at any fixed value of µ , there is one-to-one 
correspondence between ( )( )0 , , cx zσ  and ( )50 , ,D W γ . For any given set of 
shape parameters ( )50 , ,D W γ  regardless of the sign of γ , we combine results 
(39) and (43) to write out the corresponding ( )( )0 , , cx zσ .  

( )

( )
( ) ( )

1

0 50

0 50 0

erf 0.8 2

2sinh

ec

Wx D

z x D x µ

γ
σ

γ

−

−

=

= −

= + −

                     (44) 

Conversely, for any given set of ( )( )0 , , cx zσ , we combine results (38) and (42) 
to write out the corresponding shape parameters ( )50 , ,D W γ .  

( )( )
( )( )

( )( ) ( )

50 0 0

1
50 0

1
0

e

2sinh erf 0.8 2

sign erf 0.8 2

c

c

D x z x

W D x

z x

µ

σ

γ σ

−

−

= + − ⋅

= − ⋅

= − ⋅

              (45) 

Again, 50D  and ( )cz  are always on the same side of 0x . Next we combine 
(37) for ( )

0
cx z<  and (41) for ( )

0
cx z>  to write out a unified injury 

probability vs x.  

( )
( )( )

( )( )
0 0

0

sign1 1 erf ln
2 2 2 e

c

c

z x x xp x
z x µσ

  − −  = +   −   

        (46) 
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To specify the unified injury function in terms of shape parameters 
( )50 , ,D W γ , we express all quantities in (46) using only ( )50 , ,D W γ  and x.  

( )( ) ( )1
0sign erf 0.8

2

cz x

γσ

−−
=  

( )( ) ( ) ( )0 50 0e
2sinh

c Wz x D xµ

γ
− = − =  

( ) ( ) ( ) ( )0 50 50 0 50 2sinh
Wx x x D D x x D

γ
− = − + − = − +  

With these expressions, we write the unified injury function as  

( ) ( ) ( ) ( ) ( )
1

50
50

erf 0.81 1 erf ln 2sinh 1 ; , ,
2 2

x D
p x G x D W

W
γ γ

γ

−  −
= + + ≡     

 (47) 

In injury model (47), the 3 shape parameters ( )50 , ,D W γ  can be specified 
independently of each other. In particular, for small skewness 1γ  , expanding 
(47) in terms of γ  reduces it to the symmetric normal-distribution model (18)  

( ) ( ) ( ) ( )
1

50
50

2erf 0.81 1; , , erf
2 2

x D
G x D W O

W
γ γ

− ⋅ −
= + +  

 
 

Figure 3 illustrates several injury functions of the form (47), respectively, for 
positive, zero and negative skewness. All injury functions shown have the same 
width 5W = . In the left panel of Figure 3, injury functions are aligned at 

50 16D = . This alignment demonstrates that for 0γ >  the left half of injury 
function is steeper than the right half; for 0γ <  the left half of injury function 
is flatter than the right half; and for 0γ =  the injury function is symmetric. In 
the right panel, injury functions are shifted to be aligned at 10 13.5D =  and thus 
also aligned at 90 10 18.5D D W= + =  because they all have the same width  
 

 
Figure 3. Injury functions with positive, zero and negative values of skewness. All injury functions have the same width 5W = . 
Left panel: injury functions are aligned at the median injury dose 50 16D = . Right panel: injury functions are shifted to have the 

same interval [ ] [ ]10 90, 13.5,18.5D D = . 
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5W = . With 10 13.5D =  fixed, the median dose 50D  varies with skewness γ  
from 50 14.1D =  at 2γ = , to 50 16D =  at 0γ = , and to 50 17.9D =  at 

2γ = − . The alignment of interval [ ]10 90,D D  highlights that as γ  increases 
from negative to zero to positive, the injury function becomes more concave 
down. 

6. Effect of Input Dose Uncertainty on the Injury Function  
with Skewness 

We study the effect of input dose estimation uncertainty on the dose-injury 
function with skewness. We use the term “composite injury function” to denote 
the injury model after the input dose uncertainty has been incorporated into the 
model. In general, the composite injury function will be somewhat different 
from the 3-parameter function form (47) we derived in the previous section. We 
calculate the three shape parameters ( )50 , ,D W γ  of the composite injury 
function. Then we explore approximating the composite injury function using 
function form (47). We examine the difference between the composite injury 
function and model (47) with the same shape parameters ( )50 , ,D W γ . If the 
approximation error is small, then the 3-parameter function form (47) is 
approximately invariant with respect to input dose uncertainty, and it serves as 
an adequate framework for accommodating uncertainty in estimating the input 
dose. Furthermore, framework (47) provides a mechanism of mapping the 
injury function for one particular dose propagation uncertainty to that for a 
different uncertainty. Using this mechanism, we can construct an injury model 
for a target population in application, based on measured injury data for a test 
population in experiments. 

We start with a function of injury probability vs true input dose that is exactly 
of form (47) specified by 3 shape parameters ( )50 , ,D W γ :  

( )( ) ( )( )0 50; , ,true truep x G x D W γ=  

We consider the situation where the true input dose ( )truex  is not measurable. 
Instead, an estimated input dose, x, is obtained as an approximation for ( )truex . 
We assume  
 the difference ( )( )truex x−  is a normal random variable, and 
 the difference ( )( )truex x−  is independent of x. 

We assess the injury probability as a function of the estimated input dose x. 
For each fixed value of x, the corresponding ( )truex  is a normal random variable: 

( )truex x µ σε= + +  where ( )~ 0,1Nε . The composite injury function, ( )p xσ , 
representing the injury probability at estimated input dose x, is a Gaussian 
weighted average of ( )( )0

truep x :  

( ) ( )( )

( )

50

2

50 22

; , ,

1; , , exp d
22π

p x E G x D W

sG x s D W s

σ µ σε γ

µ γ
σσ

∞

−∞

= + +

 −
= + +  

 
∫

      (48) 

When injury function ( )G ⋅  has non-zero skewness, the Gaussian weighted 
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average of ( )G ⋅  on the right hand side of (48) does not have a simple analytical 
expression. We use numerical integration to calculate the composite injury 
function ( )p xσ  and calculate its shape parameters ( ) ( ) ( )( )50 , ,D Wσ σ γ σ . 
We examine numerically if ( )p xσ  is still well described by function form (47) 
with ( )p xσ ’s shape parameters ( ) ( ) ( )( )50 , ,D Wσ σ γ σ . 

In our numerical study, )( )(
0

truexp , the injury probability vs the true input 
dose before input dose uncertainty is incorporated, has function form (47) and is 
specified by shape parameters 50 16D = , 5W = , and 0.8γ = . We consider 
input dose uncertainty of normal distribution with 0µ =  (mean) and various 
values of σ  (standard deviation). The composite injury function, ( )p xσ , 
contains the effect of input dose uncertainty, showing injury probability vs 
estimated input dose x. Figure 4 examines the composite injury function 

( )p xσ  for σ  between 0 and 3. 
The left panel of Figure 4 shows the injury probability vs the estimated input 

dose x, respectively, for 0,1,2,3σ = . The most pronounced effect of input dose 
uncertainty is to spread out the injury function and increase the width. We 
examine the trend of shape parameters ( ) ( ) ( )( )50 , ,D Wσ σ γ σ  when the input 
dose uncertainty σ  is added and increased. The right panel shows 

( ) ( ) ( )( )50 , ,D Wσ σ γ σ  vs σ , of the composite injury function. As the input 
dose uncertainty σ  increases, both the median injury dose ( )50D σ  and the 
width ( )W σ  increase monotonically, with W increasing more prominently 
than 50D . At the same time, when σ  increases, the asymmetry of injury 
function is smoothed out by the Gaussian noise and as a result, the skewness 
( )γ σ  decreases. The change in median injury dose ( )50D σ  is attributed to 

the presence of skewness: the median injury dose increases (moves toward the 
right) when an injury function with positive skewness is smoothed out by a 
Gaussian noise. Conversely, the median injury dose decreases (moves toward the  
 

 
Figure 4. Effect of the input dose uncertainty σ  on the injury function with skewness. Left panel: composite injury functions for 
several values of σ . Right panel: shape parameters ( ) ( ) ( )( )50 , ,D Wσ σ γ σ  vs σ  of the composite injury function. 
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left) when an injury function with negative skewness is smoothed out. The 
movement of the median injury dose is caused by smoothing an asymmetric 
function (see Figure 3 for the general shape of injury functions with positive, 
zero, and negative skewness). For an injury function of zero skewness, ( )50D σ  
is invariant with respect to σ  when the injury function is smoothed out by a 
Gaussian noise. 

Next we examine whether or not the composite injury functions for 2 0σ >  
shown in Figure 4 are still approximately described by model (47). Figure 5 
compares the composite injury function and the approximation using function 
form (47) with shape parameters ( ) ( ) ( )( )50 , ,D Wσ σ γ σ  of the composite 
injury function. The left panel of Figure 5 compares the composite injury 
function for 1σ =  and its approximation. The two functions are barely 
distinguishable from each other. To quantitatively examine the error of 
approximation, in the right panel we plot the difference between the composite 
injury function and its approximation. For all values of σ  examined, the 
maximum error in approximation is less than 0.01 (1%). The results 
demonstrate that function form (47) specified by 3 independent shape 
parameters ( )50 , ,D W γ  is an adequate model for quantitatively describing 
general injury functions with skewness. 

With the framework of function form (47) and mapping transformation (48), 
we can filter out the effect of input dose uncertainty in measured injury data. 
Suppose we are given a measured injury function, ( )

1
p xσ , of form (47) for a 

particular population with input dose uncertainty 1σ . We use transformation 
(48) to map it back to ( )( )0

truep x , the injury function for the case of zero input 
dose uncertainty ( 0σ = ). From there, we can apply the mapping transformation 
again to predict the injury model for another population with input dose 
uncertainty 2σ . There is no simple analytical expression for the mapping  

 

 
Figure 5. Approximation of the composite injury function ( )p xσ  using function form (47) with shape parameters 

( ) ( ) ( )( )50 , ,D Wσ σ γ σ . Left panel: comparison of ( )p xσ  and its approximation for 1σ = . Right panel: error of the 

approximation for several values of input dose uncertainty σ . 
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transformation. Both the forward and backward mappings need to be 
implemented numerically. The detailed numerical procedure will be discussed in 
a subsequent study. 

7. Concluding Remarks 

We considered injury models in the framework of dose propagation uncertainty. 
The mathematical formulation is based on that the binary injury outcome is 
completely determined by the target dose at the active site and the critical 
threshold. The randomness in the occurrence of injury at a given input dose is 
attributed to the dose propagation uncertainty from input dose to target dose. 
The normal distribution model describes the situation where the dose 
propagation uncertainty is normally distributed. We interpreted the widely used 
logistic model as a good approximation to the normal distribution model, and 
thus, interpreted it approximately as a consequence of normally distributed dose 
propagation uncertainty. In many applications, the input dose is not directly 
measurable. Instead, an estimated input dose is calculated via computer 
simulations from measured quantities using representative median parameter 
values of the general population. In many practical situations, injury models are 
constructed in the form of injury probability vs estimated input dose. The 
discrepancy between the estimated input dose and the true input dose can be 
viewed as an uncertainty in the input dose. With the interpretation of dose 
propagation uncertainty, the input dose uncertainty is conveniently 
incorporated into the injury model. The framework of dose propagation 
uncertainty provides a mechanism of extending an injury function established 
on a test population to predict the injury model for a different population in 
application. Both the logistic model and the normal distribution model are 
specified by two shape parameters: the median injury dose and the 10 - 90 
percentile width. The mapping between the injury functions of two populations 
has a simple analytical form of updating the two shape parameters. Both the 
logistic model and the normal distribution model are symmetric around the 
median injury dose and have no skewness. To accommodate injury functions 
with skewness, we studied dose propagation uncertainties of shifted log normal 
distribution with shift as a parameter. Based on the shifted log normal model, we 
developed a function form for injury probability vs input dose that is specified 
by three shape parameters: median injury dose, the width, and the skewness. The 
proposed function form allows the three shape parameters to be set independent 
of each other. In particular, the proposed function form is capable of 
accommodating arbitrary skewness, positive or negative. In addition, we showed 
numerically that the proposed 3-parameter function form is approximately 
invariant with respect to additions or changes in input dose uncertainty. 
Therefore, the 3-parameter function form serves as a broad framework for 
modeling input dose uncertainty and modeling injury function skewness at the 
same time. This broad framework allows us to map injury function with 
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skewness from a test population to a different population in applications. 
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