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Abstract 
Based on the transcriptome of Rosa rugosa, one anthocyanin-promoting 
R2R3-MYB gene, RrMYB10.1 (Accession Nos:MH717244), was cloned from 
the petals of Rosa rugosa ‘Zizhi’. Sequence analysis results showed that 
RrMYB10.1 had a full length opening reading frame of 747bp, encoding 249 
amino acids. Sequence analysis revealed that RrMYB10.1 contained the con-
served R2R3-MYB domain, two atypical anthocyanin-promoting motifs and a 
conserved amino acid signature for the interaction with bHLH protein. The 
results of phylogenic tree revealed that RrMYB10.1 showed high homology 
with other anthocyanin-promoting proteins in Rosacea, and sharing the 
highest identity (98.39%) with RhMYB10. RT-PCR results showed that 
RrMYB10.1 was mainly expressed in petals among various tissues and ex-
pressed significantly higher in petals in bud stage than in opening period. To 
sum up, these results showed that RrMYN10.1 may play a key role in regu-
lating anthocyanin concentration, thus providing a certain foundation on re-
gulating flower color formation in Rosa rugosa. 
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1. Introduction 

Rosa rugosa, as a deciduous shrub in Rosacea, has many prominent traits such as 
intense perfume, strong resistance to winter hardiness, drought, disease, pests 
and salinization, which makes it highly valued in landscaping application and 
own a great market potential. But monotonous flower color (most flower is rose 
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red, rare is pink and white, lack yellow, orange and other complex color) has se-
riously restricted its application in gardens for a long time. Studies have shown 
that the color of plant tissues is mainly determined by anthocyanins, which is 
water-soluble pigment that belongs to the flavonoid family of compounds and 
giving red, blue and purple colors in a range of flowers, fruits, foliage, seeds and 
roots [1]. Anthocyanin biosynthesis is regulated by structural genes and regula-
tory genes. Structural genes synthesize anthocyanins by encoding a series of 
biosynthetic enzymes in the anthocyanin pathway, while regulatory gene is a 
transcription factor, which can activate or inhibit the temporal and spatial ex-
pression of structural genes through the specific DNA-protein and pro-
tein-protein interactions, thus regulating the synthesis of anthocyanins. There 
are three main types of transcription factors involved in the regulation of an-
thocyanin biosynthesis: MYB, b HLH and WD-40 protein. As the most impor-
tant transcription factors, MYB TFs can not only regulate anthocyanin biosyn-
thesis but participate in many other life activities such as secondary metabolism, 
stress resistance, cell differentiation and regulation of cell differentiation and 
cycle, cell wall formation, lignin precipitation, biosynthesis of glucosinolates, 
plant germination and development of vegetative reproductive organs, and reg-
ulation of transcription factors [2]-[8]. Anthocyanin-regulating MYBs have been 
isolated from many species to date, including Arabidopsis thaliana AtMYB75 or 
PAP1, AtMYB90 or PAP2, AtMYB113 and AtMYB114 [9], Solanum lycopersi-
cum ANT1 [10], Petunia hybrida AN2 [11], Capsicum annuum A [12], Vitis vi-
nifera VvMYB1a [13], Zea mays P [14], Oryza saliva C1 [15], Ipomoea batatas 
IbMYB1 [16], Antirrhinum majus ROSEA1, ROSEA2 and VENOSA [17], Ger-
bera hybrid GhMYB10 [18], Picea mariana MBF1 [19], Garcinia mangostana 
GmMYB10 [20], Malus × domestica MdMYB10, MdMYB1/MdMYBA [21] [22] 
[23], and Gentian GtMYB3 [24]. Although structural genes operating in this 
biosynthetic pathway in Rosa rugosa have been well characterized [25] [26], to 
date there is little research on the transcriptional level in regulating anthocyanin 
biosynthesis. 

Basing on the transcriptome of R. rugosa, we cloned one R2R3-MYB gene as-
sociated with anthocyanin biosynthesis, named RrMYB10.1, then analyzed its 
bioinformatics and constructed phylogenetic tree to predict its functions. The 
expression level of RrMYB10.1 in different tissues and different flower develop-
ments was identified by using qPCR technology. By figuring out how RrMYB10.1 
works in anthocyanin biosynthesis, we may provide a certain foundation on 
moderating the accumulation of anthocyanin and further design the petal color 
of R. rugosa. 

2. Materials and Methods 

The experiment was conducted at the flower germplasm resource nursery of 
Shandong Agricultural University and the Flower Institute of Forestry Col-
lege. 
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2.1. Plant Material 

We chose healthy individuals with stable floral inheritance of Rosa rugosa ‘Zizhi’ 
as experiment material, which grown in the field of rose germplasm resource 
nursery. The petals in different stages of bud development (identified as S1-S5 in 
Table 1 and Figure 1) and flowering periods (identified according to the me-
thod of Chen Chen, the flower opening period is divided into five stages: bud 
stage (S5), early opening stage (S6), half opening stage (S7), full blooming stage 
(S8), and late blooming stage (S9)) were harvested in May for qPCR to analyze 
its expression in petals of different developments. Stages, Sepals, stems, leaves, 
stamens, pistils and petals in early opening stage were collected for gene spatial 
expression. All samples were collected and frozen in liquid nitrogen immediate-
ly, then stored at −80˚C until used. 

2.2. Methods 
2.2.1. RNA Extraction, cDNA Synthesis and Gene Cloning 
The extraction of RNA from petals in early opening period was operated ac-
cording to the instructions of EASYspin plant RNA rapid extraction kit, the in-
tegrity of RNA was detected by 1% agarose gel electrophoresis and its concentra-
tion and purity were tested by ultraviolet spectrophotometer. The cDNA was 
synthesized by RNA reverse transcription kit according to the description of 
abm reverse transcription kit. Based on the transcriptome, one R2R3-MYB gene 
was selected, the sequence was identified as complete CDS by BLAST. The spe-
cific primers for complete ORF amplification (Table 2) were designed by 
DNAMAN software. The synthesized cDNA was used as template, and the reac-
tion system was as follows: 2 × Gflex PCR Buffer 12.5 µL, the target gene up-
stream and downstream primers each 1 µL, template cDNA 1 µL, TKS Gflex 
DNA Polymerase 0.5 µL, sterilization ddH2O supplement to 25 µL; The PCR 
reaction conditions are as follows: 94˚C for 1 min; 98˚C for 10 s, 55˚C for 15 s, 
and 68˚C for 30 s for a total of 30 cycles. The PCR products was detected by 1% 
agarose gel electrophoresis, and the target product was reclaimed according to 
the description of Hipure Gel Pure DNA Mini Kit(Magen), then ligated with the 
carrier pMD18-T to transform Escherichia coli DH5α. Positive clones were se-
lected and sequenced at Ruibiotech. 
 
Table 1. Identification and characteristics of different stages in bud development. 

Name 
Bud diameter 

(mm) 
The proportion of exposed  

petal to the total surface of petal 
Petal color 

S1 5 0 green 

S2 6 Less than 1/5 Faint yellow 

S3 8 1/4 ~ 1/3 Faint pink 

S4 10 1/3 ~ 1/2 Rose purple 

S5 12 1/2 ~ 2/3 Deep rose purple 
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Table 2. Primers used to clone and expression analysis of RrMYB10.1 in R. rugose. 

Primer name Nucleotide sequence(5’-3’) Purpose 

RrMYB10.1-F ATGGGTGGTATTCCATGGAC 
Gene cloning 

RrMYB10.1-R TTATGAAGAATCAGTAACCCA 

RrMYB10.1-S-F ACTAGTATGGGTGGTATTCCATGGAC 
Vector construction 

RrMYB10.1-B-R GGTGACCTTATGAAGAATCAGTAACCCA 

RrMYB10.1-Q-F GCTGAGGAAATGCATAGAGAAG 

RT-PCR 
RrMYB10.1-Q-R AAAGCTCCCTCTCTTGATGTTC 

Actin-F TGAGGCCATTTACGACAT 

Actin-R AGATCACAGGAGCATAGGAG 

 

 
(a) 

 
(b) 

Figure 1. Characteristics of petals in different development in bud stage. (a) Diameter of 
bud in different developments; (b) petal color in n different developments in bud stage. 

2.2.2. Bioinformatics Analysis 
The ORF finder (NCBI) was used to search for an open reading frame, and the 
Conserved Domains database (NCBI) was used to analyze the conserved do-
mains. ExPaSy-SOPMA was used to predict protein secondary structure. We 
used BLASTX (NCBI) to study the homology of the nucleotide sequence and 
conducted multiple sequence alignment by DNAMAN, and then constructed 
phylogenetic tree with other anthocyanin-promoting proteins by MEGA5.0 
software. The phylogenetic tree was constructed according to the neighbor-joining 
method, and tested by bootstrap, which was repeated 1000 times. 
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2.2.3. Expression Analysis of RrMYB10.1 in Different Tissues and  
Different Flower Developments 

The cDNA synthesized from RNA in different tissues and different flower de-
velopments was used as template, and it was carried out following the instruc-
tion of SYBR®Premix ExTaqTM kit by CFX96TM Real-Time System RT-qPCR 
instrument. The suitable primers of RrMYB10.1 for RT-PCR were selected by 
standard curve method. The specific primers and internal reference primers 
(Actin) are shown in Table 2. The reaction system is: Mix10ul, cDNA 1 µL, 0.4 
µL each of upstream and downstream primer, adding sterilizing ddH2O up to 20 
µL. The reaction procedure was: predenaturation at 95˚C for 30 s; 95˚C for 30 s, 
60˚C for 30 s for a total of 39 cycles. The relative expression level was calculated 
by the method of 2−ΔΔCT. And the data analysis was graphed through Sigmap-
lot10.0. 

2.2.4. Construction of Expression Vector 
Choosing Spe I and Bst EII as restriction enzymes, designing primers with re-
striction enzyme sites and then cloning the full length. Then the RrMYB10.1 and 
expression vector pCAMBIA1304 were digested by restriction endonucleases Spe 
I and Bst EII, and the target fragments were recycled and connected with solu-
tion I. Positive clones were selected and sequenced at Ruibiotech. The diagram 
of pCAMBIA1304 were shown in Figure 2. 

3. Results and Analysis 
3.1. Cloning and Sequence Analysis of RrMYB10.1 

One R2R3-MYB TF, RrMYB10.1 was cloned from the petals in early opening 
stage of Rosa rugosa ‘Zizhi’. We acquired a clear single target band about 
750bp by PCR (Figure 3). Multiple sequence alignment analysis showed that 
RrMYB10.1 had a full length of 750bp, encoding 249 amino acids. The align-
ment showed that the conserved ANDV motif (Box A in Figure 4) in R3 domain 
and conserved KPRPR[S/T]F motif (Box B in Figure 4, which were identified to 
contribute to anthocyanin biosynthesis, were present in RrMYB10.1 and were 
modified to GNDV and RPQASKY respectively [27] [28]. A conserved amino 
acid signature (EL × 2R × 3L × 6L × 3R) (the locations indicated by the arrows 
in Figure 4) has been shown to be functionally important for the interaction 
between MYB and R/B-like bHLH proteins [29]. The phylogenic tree con-
structed with anthocyanin-promoting MYBs revealed that RrMYB10.1 showed 
high similarity with other proteins in Rosacea and sharing the highest identity 
(98.39%) with RhMYB10. And the MYBs from dicot species cluster into one 
group, while monocot species (Rice and Maize) grouped into another clade 
(Figure 5). 

3.2. Bioinformatics Analysis of RrMYB10.1 Gene 

There are 249 amino acids encoded by RrMYB10.1. The protein’s formula is 
C1248H1970N374O395S14 with a molecular weight of 28982.48 and a theoretical pI:  
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Figure 2. Diagram of pCAMBIA1304. 

 

 
Figure 3. RrMYB10.1 gene cloning. M: Marker A: 
RrMYB10.1. 

 
5.86. There are 39 negatively charged residues (Asp + Glu), 34 positively charged 
residues (Arg + Lys), and 176 neutral amino acids. RrMYB10.1 belongs to unst-
able protein with an instability index of 55.13 and it’s a hydrophilic protein with 
the total average hydrophobic index at −0.847. The secondary structure of 
RrMYB10.1 demonstrates that there are 73α-helix, 150 random coil, 14 extended 
peptide chain, and 12 β-turn. The phosphorylation site prediction results reveals 
that there are 18 Ser phosphorylation sites, 6 Thr phosphorylation sites, and 5 
Tyr phosphorylation sites, so we can infer that it may participate in phosphory-
lation control. 
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Figure 4. Multiple alignment of theRrMYB10.1 with other MYB TFs. Box (A) a con-
served motif [A/S/G]NDV in the R2R3 domain for dicot anthocyanin-promoting MYBs. 
Box (B) a C-terminal-conserved motif [R/K] Px [P/A/R] xx [F/Y] for anthocya-
nin-promoting MYBs [27]. Arrows indicate specific residues that contribute to a motif 
implicated in b HLH co-factor interaction [29]. 

3.3. Expression Analysis of RrMYB10.1 in Different Tissues and 
Different Flower Developments 

The RT-PCR results in different tissues showed that the expression level of 
RrMYB10.1 was significantly high in petals (at the early opening stage ) , while it 
could be detected in other tissues(stems, leaves, stamens , sepals and pistil) with 
little difference but was relatively low (Figure 6(a)). When it comes to the flower 
development, the expression level increased from stage 1 in bud stage, which was 
relatively low, to the highest transcript level at stage 5 in bud stage, then declined 
rapidly with the flower opening (Figure 6(b)). Totally, the transcript level of 
RrMYB10.1 in petals in bud stage was significantly higher than in opening period. 

3.4. Construction of Plasmid for Transient Gene Expression Assay 

The RrMYB10.1 and expression vector pCAMBIA1304 were digested by restric-
tion endonucleases Spe I and Bst EII, and the target fragments were recycled and  
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Figure 5. Phylogenetic relationships between RrMYB10.1 and other anthocyanin-related 
MYBs of rosaceous and other species. 

 

 
(a)                                                          (b) 

Figure 6. Relative expression level of RrMYB10.1. (a) RrMYB10.1 relative expression level in different development stages; (b) 
RrMYB10.1 relative expression level in different tissues. 

 
connected with solution I. Enzyme digestion analysis and DNA sequencing 
showed that the co-expressed protein expressing vectors were constructed suc-
cessfully. Next, we are going to transfer the recombinant plasmid RrMYB10.1- 
pCAMBIA1304 to Arabidopsis thaliana to verify its function. 
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3.5. Construction of Plasmid for Transient Gene Expression Assay 

The RrMYB10.1 and expression vector pCAMBIA1304 were digested by restric-
tion endonucleases Spe I and Bst EII, and the target fragments (as shown in 
Figure 7) were recycled and connected with solution I. Enzyme digestion analy-
sis and DNA sequencing showed that the co-expressed protein expressing vec-
tors were constructed successfully. Next, we are going to transfer the recombi-
nant plasmid RrMYB10.1-pCAMBIA1304 to Arabidopsis thaliana to verify its 
function. 

4. Discussion 

One MYB TF, RrMYB10.1, was cloned from Rosa rugosa ‘Zizhi’. And the mul-
tiple sequence analysis showed that RrMYB10.1 had conservedR2R3 domain, 
two anthocyanin-promoting motifs and a conserved amino acid signature for 
the interaction with b HLH proteins. These results showed that RrMYB10.1 be-
longed to R2R3-MYB subfamily and may interact with b HLH proteins to regu-
late anthocyanin biosynthesis. Studies have shown that R2R3-MYB plays a key 
role in regulating anthocyanin biosynthesis in many plants such as Arabidopsis 
thaliana [30], Prunus avium [31], Daucus carota [32] and Muscari spp [33]. 
Some R2R3-MYB TFs can regulate specific structural genes individually, how-
ever, many reports show that the R2R3-MYB TFs interact with common bHLH 
and WD-40 factors form a MYB–bHLH–WD40 (MBW) transcriptional activator 
complex to regulate the anthocyanin biosynthesis. For example, In Arabidopsis 
thaliana, AtPAP1 (MYB), AtTT8 (b HLH) and AtTTG1(WD-40) form a ternary 
complex to activate the structural genes AtANS, AtDFR, AtUFGT to regulate the 
anthocyanin concentration in seed coat [34]. In Malus domestica, MdMYBA 
bind to the promoter regions of MDANS [35], while MDMYB1 and MDBHLH3 
directly bound to the promoter regions of MDUFGT and MDDFR to regulate 
anthocyanin accumulation [36]. In Grape hyacinth, the expression of MaMybA 
alone cannot activate the expression of early genes, but it can activate the ex-
pression of late structural genes MaDFR and MaANS. While MaAN2 can’t acti-
vate structural genes alone, but can activate MaDFR and MaANS significantly 
when binding with MabHLH1 or AtTT8 [33]. What’s more, R2R3-MYB TFs also 
participant in many biological processes, such as cell morphogenesis and re-
sponse to abiotic and biological stress. The phylogenic tree showed that 
MYB10.1 clustered according to their taxonomic relationship, for RrMYB10.1 is 
closely related to the members in Rosacea with the highest homology to 
RhMYB10 of 98% identify. And the MYBs from dicot species cluster into one 
group, while monocot species (Rice and Maize) grouped into another clade. 

The RT-PCR results showed that RrMYB10.1 exhibited a tissue-specific ex-
pression, for its expression level in petals was significantly higher than in other 
tissues. In bud stage, the expression level of RrMYB10.1 increased with the petal 
color deepening, and reached the highest level at late bud stage, then it decreased 
rapidly in initial opening period and continued to decline slightly with flower  
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Figure 7. Identification of recombinant expression vector by double enzyme. M: Marker; 
A: RrMYB10.1 by Spe I and Bst EII double enzyme; B: pCAMBIA1304 by Spe I and Bst 
EII double enzyme; C: pCAMBIA1304 with no enzyme 

 
opening, finally reached the minimum expression in late blooming period. It in-
dicated that RrMYB10.1 was mainly expressed in the petals in bud stage and ex-
pressed at a low level in flower opening stage, which was consistent with the an-
thocyanin accumulation trend in Rosa rugosa. Study has shown that anthocya-
nin has synthesized completely in late bud stage, and some anthocyanin is de-
graded with petals opening when exposed to sunlight [37]. So we may draw a 
conclusion that RrMYB10.1 plays a key role in the pathway of anthocyanin bio-
synthesis in Rosa rugosa. 

5. Conclusion 

In summary, one R2R3-MYB TF, RrMYB10.1, was cloned and found to play a 
key role in regulating anthocyanin concentration in Rosa rugosa, thus providing 
a certain foundation on regulating flower color formation. Finally, it needs fur-
ther study on the function of RrMYB10.1 and how it interacts with b HLH pro-
teins to co-regulate specific structural genes to control anthocyanin biosynthesis 
in Rosa rugosa. 
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