
Journal of Computer and Communications, 2018, 6, 1-13
http://www.scirp.org/journal/jcc

ISSN Online: 2327-5227
ISSN Print: 2327-5219

DOI: 10.4236/jcc.2018.69001 Sep. 4, 2018 1 Journal of Computer and Communications

Development of a Measurement Software for
the Characterization of WORM Devices for
Novel Memory Storage Applications

Mirko Congiu1*, Miguel H. Boratto1, Paride Pica2, Carlos F. O. Graeff1,3

1POSMAT—Post-Graduate Program in Materials Science and Technology, School of Sciences,
UNESP—São Paulo State University, Bauru, SP, Brazil
2Department of Chemistry-Piazzale Aldo Moro, University of Rome “La Sapienza”, Rome, RM, Italy
3Department of Physics, School of Sciences, UNESP—São Paulo State University, Bauru, SP, Brazil

Abstract
We hereby propose a software solution to perform high quality electrical
measurements for the characterization of WORM (write-once read many), a
new generation memory device which is being intensively studied for
non-volatile data storage. The as-proposed software is completely based
on .NET framework and sample C# code. The paper performed a relevant
measurement based on this software. Working WORM devices, based on a
polymeric matrix embedded with gold and copper sulfide nanoparticles, have
been used for test measurements. The aim of this paper is to show the main
steps to develop a fully working measurement software without using any
expensive dedicated software.

Keywords
WORM, Memristor, Electrical Measurements, Memory Devices

1. Introduction

One of the new challenges of modern technology is the improvement of the da-
ta-storage devices. The progress of silicon-based devices is approaching to its
physical limit (~10 nm) [1]. In this respect, new incoming technologies are being
studied all over the world such as memristors (MEMs) for non-volatile memo-
ries and write-once read-many (WORM) for non-volatile memory storage.
MEMs were described by Chua et al. in 1971 “the missing element” in the cir-
cuit’s theory, filling the missing relationship between the charge Q(t) and the
current flux J(t) [2]. Until it’s realization in 2008 by the HP labs [3], MEMs have

How to cite this paper: Congiu, M., Bo-
ratto, M.H., Pica, P. and Graeff, C.F.O.
(2018) Development of a Measurement Soft-
ware for the Characterization of WORM
Devices for Novel Memory Storage Appli-
cations. Journal of Computer and Commu-
nications, 6, 1-13.
https://doi.org/10.4236/jcc.2018.69001

Received: August 14, 2018
Accepted: September 1, 2018
Published: September 4, 2018

Copyright © 2018 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2018.69001
http://www.scirp.org
https://doi.org/10.4236/jcc.2018.69001
http://creativecommons.org/licenses/by/4.0/

M. Congiu et al.

DOI: 10.4236/jcc.2018.69001 2 Journal of Computer and Communications

remained as a theoretical object. Belonging to MEMs, resistive switching memo-
ries (RRAMs) represent an interesting and multidisciplinary topic of modern
scientific and technologic research. For instance, RRAMs may found application
in different fields of technology such as memory storage [4] [5], computing and
logic operations [6] [7], neuromorphic computing applications [8] [9] and ana-
log circuits [10]. Basically, a RRAM is can be described as a resistive element
whose resistance can be switched by means of a voltage pulse [3]. Normally, a
RRAM can exist in two states: the high resistance state (HRS) and the low resis-
tance state (LRS). The value of the resistances of the above-mentioned states can
be defined as RON and ROFF. This kind of elementary cell-unit can operate as a
Boolean logic switch returning (0) if the state returns ROFF value and (1) when
RON [6]. As the RRAM is a reversible state device, the information is stored over
time as a non-volatile memory similarly to the widespread used flash memories.
Among with MEMs, WORM (write-once read-many) represents another class of
modern devices, which are being intensively studied nowadays. The latter, diffe-
rently from MEMs, is a non-volatile memory (read only ROM). The purpose of a
non-volatile memory is to keep the information and ensure that the latter can be
read many times [11] [12]. Basically, a WORM is a two-terminal device with an
insulating film placed between two metallic electrodes. The information can be
written by applying a voltage pulse which induces the formation of a stable con-
ductive bridge (short-circuit) between the two electrodes. So the device, at the
initial state, shown a huge value of resistance and, after the writing process, the
resistance become very low due to the short-circuit formation [13]. In a similar
way to MEMs, WORMs have two resistance states, one with high resistance and
the other one with a low resistance allowing to store analogic values (0 - 1). The
characterization of a WORM requires some fundamental steps which require a
collection of precise and reliable set of methods. One of the first operations is the
cyclic voltammetry measurement (CV), in which the current flowing through
the devise is measured as a function of a cyclic voltage-sweep between two limit
voltages. This characterization allows seeing the resistance transitions happening
into the device due to the application of an electronic field. Subsequently, the
device should be studied in pulsed-voltage regime, to verify that the short-circuit
(data writing) can be performed using square pulses. This last analysis should be
done by trying successive pulses of different intensity and duration sweeping the
voltage in a well-defined range, defined through CV scans. One of the main
problems in beginning a research project on MEMs and WORMS is the lack of
dedicated measurement software. In fact, most of the research group must spend
a lot of time to build its own analysis tools. A very common solution is the use of
commercial visual programming software such as VEE (Keysight) or LabView
(National InstrumentsTM). The latest combine a visual-programming interface to
directly access to the main function of measurement instruments. Both allow the
creation of measuring application with data-saving and analysis built-in func-
tions along with other professional stuffs. However, the choice of this kind of
solutions requires a large initial money investment due to the software license

https://doi.org/10.4236/jcc.2018.69001

M. Congiu et al.

DOI: 10.4236/jcc.2018.69001 3 Journal of Computer and Communications

purchasing and the multi-level training courses to learn the visual-programming
language. In fact, these softwares work with a graphical-dataflow interface which
simplifies the programming operations, however it does not exempt the research
staff from learning the basic mechanisms of programming (loops, arrays, va-
riables, data handling etc.). Another limitation of these softwares is the impossi-
bility of build a stand-alone software, executable on a generic computer. Both
the mentioned software allows to build executable files which look-like a
stand-alone-programs however the latest require a specific run-time environ-
ment installed on the hosting computer or a higher and more expensive software
license (e.g. LabView pro). The as-mentioned commercial solutions are reliable
and offer a wide range of programming tools and can be chosen after a careful
consideration of advantages, disadvantages and costs involved. In this paper we
want to show another programming approach, which uses freeware resources to
build a powerful stand-alone software based on two freeware solutions: Micro-
soft Visual Studio and .NET environment, programming with the widespread C#
language. Our approach requires a little bit higher effort in the programming
phase however it is free, reliable and can be considered to build your own soft-
ware, designed taking into consideration the experimental necessities and ex-
ecutable on a generic computer requiring just the measurement instruments
drivers (normally distributed for free). Especially, we want to show how to
wrap the original driver of a commonly used source-meter equipment family
(Keithley 24xx). The proposed software has been tested on real WORM sam-
ples.

2. Methods

The software was developed using Microsoft Visual Studio Community 2017 (V.
15.7.2), keithley 2400C Source Meter (SM) was used as the measurement inter-
face using the driver Ke24xx, compatible with all the 24xx instrument series. The
connection between the SM and the computer was performed using a USB/GPIB
interface 82357B by Agilent Technologies. Real WORM samples were prepared
using a modified method from our research group, based on copper sulfide na-
nocrystals [14] dispersed in a polymethylmethacrylate (PMMA) matrix embedded
with gold nanoparticles capped with biphenyl groups [15]. As the device prepa-
ration method is beyond the scope of the paper and is under further investiga-
tion it will not be discussed here.

2.1. Software Design

The first step of the development of this solution is the planning of the funda-
mental elements necessary to perform a complete characterization of the mem-
ory device. As discussed in the previous paragraph, the initial characterization
should be based on a sweep-voltage analysis. This tool is extremely powerful be-
cause it allows seeing the switching process induced by the application of a
sweeping voltage. In physical terms, a CV consists of the generation of a trian-
gular wave with a defined amplitude (voltage limits), a certain frequency and a

https://doi.org/10.4236/jcc.2018.69001

M. Congiu et al.

DOI: 10.4236/jcc.2018.69001 4 Journal of Computer and Communications

duration. During the application of this voltage wave, the equipment performs
repeated measurements of the flowing current and stored the data. Several SM
such as Keithley, have a built-in sweep function which can be accessed from the
frontal panel or from remote (driver). This function allows defining the voltage
limits, the number of points and the measurement speed. However, this kind of
sweep cannot show real-time results because the data are sent to the remote unit
(PC) just at the end of the sweep. In this kind of measurement, the voltage is in-
creased linearly as a function of the time and the current is samples as fixed in-
tervals, once the voltage reaches one of the limit value, the direction of the sweep
is changed until the next limit voltage and the operation can be repeated in cyc-
lic regimen. Another approach to perform current vs voltage (IV) measurement
is the staircase voltammetry. In this technique, the voltage is increased in a series
of steps just like a stair. Each step-voltage is maintained over a certain time and
the current is sampled before the next step [16] [17]. In most SMs this function
can be implemented just by remote operation (software).

The entire program can be schematized as shown in Figure 1. A generic
measurement program should have a module containing a graphic user interface
(GUI, Figure A1) in which the user inserts the experimental parameters such as:
the desired function, the values of voltages, compliance current (maximum al-
lowed current), the number of points and all the necessary information. These
parameters should be checked by a function which verifies the compliance of the
input values in accordance to the instrument specification, to avoid problems
during the measurement. When the check is completed, and the experiment is
validated, the program calls methods from the external dynamic-link library
(dll) of the instrument, i.e. the driver, to start the communication and run the

Figure 1. Flowchart representation of the measurement software. The experimental pa-
rameters are defined by the user through the GUI and, after a validity check, the selected
function is executed by the driver-wrapper module built-in in the software. The I/O in-
terface sends the information to the SM and the measurements are read and visualized in
the GUI. At the end of the loop the measurements are stored into a data file.

https://doi.org/10.4236/jcc.2018.69001

M. Congiu et al.

DOI: 10.4236/jcc.2018.69001 5 Journal of Computer and Communications

selected functions. After the realization of the measurements, the software stores
the data into a datafile.

2.2. Driver Wrapping

The core element of the as proposed software is the driver communication mod-
ule. The driver of the equipment can be represented as a collection of functions
which can be called by an external application. In our case, the first step is to
reference the specific dll in the C# project and create the instrument as an object
specifying the virtual software application architecture (VISA) address (e.g.
Ke24xx instr = new Ke24xx (“GPIB0::15::INSTR”, false, true)). The two bool
values, following the VISA are respectively the option which resets the equip-
ment and the instrument handling to start a communication session. More in-
formation about the parameters requested in the method can be found on the
instrument driver manual. When the object instrument is declared into the
software, all the front-panel function can be called from the main class Ke24xx.
The following lines represent the commands used to set the equipment in the
voltage source mode:

Ke24xx instr = new Ke24xx(“GPIB0::15::INSTR”, false, true);
instr.reset();//reset the equipment
instr.ConfigureSourceMode(Ke24xxConstants.SourceVoltageFunction,

Ke24xxConstants.SourceFixedMode, Ke24xxConstants.SourceDcShape,
Ke24xxConstants.AutoRange);

In this mode, the equipment works as a voltage source and is ready to apply a
voltage and measure a current in a specified current range or in “Auto Range”
mode. The voltage (V, double) can be applied to the sample after enabling the
digital output:

instr.EnableSourceOutput(true);
instr.ConfigureSourceLevel(Ke24xxConstants.SourceVoltageFunction, V, 0);
These functions can be included in a generic loop which increases the applied

voltage in the selected range by a specific step and time. More source code ex-
amples can be found into the supplementary information (SI).

2.3. WORM and RRAMs Measurement Methods

As discussed in the introduction, the first characteristic to be investigated is the
resistance-change transition to identify our device as a WORM or a RRAM (if
the transition is reversible). So, the first measurement should be a staircase CV
or a sweep between two defined voltages. The following Figure 2 shows an ex-
ample of a resistance transition in a real WORM sample. In Figure 2(a) one can
see the current vs voltage response of a virgin device, showing a shape characte-
ristic of a capacitor. When the voltage is sweep between 1.0 and −1.0 V no sharp
transitions are visible in the graph. This confirms that the device is stable under
the applied bias, thus the reading voltage can be chosen into the selected range.
To induce the resistance transition (writing process), we have extended the
scanning range from −6.0 to 6.0 V, as shown in Figure 2(b).

https://doi.org/10.4236/jcc.2018.69001

M. Congiu et al.

DOI: 10.4236/jcc.2018.69001 6 Journal of Computer and Communications

(a)

(b)

(c)

Figure 2. Cyclic voltammetry of a typical WORM based on PMMA/CuS/AuBi blend. The
scans were performed from 0.0 V up to the voltage limits defined for the experiment: ±1.0
V for the reading measurements (a and c) and ±6.0 for the writing operation (b). First,
the virgin (VGN) device was characterized in the reading range showing a capacitive be-
havior (a). When the voltage sweep is extended (b) a sharp increase in the flowing current
sets the device in its ON state, which results stable over the rest of the scan.

https://doi.org/10.4236/jcc.2018.69001

M. Congiu et al.

DOI: 10.4236/jcc.2018.69001 7 Journal of Computer and Communications

In the region between 3.0 and 4.8 V, the current shows a higher noise as well
as a sharp increase due to the formation of the short-circuit which brings the de-
vice from it OFF state to the ON state. In binary terms this transition can be un-
derstood as the writing of the bit “1” replacing the bit “0”. Once the device is set
to its ON state which shown a current ratio (ON/OFF) of about 103 considering
the current of the virgin (VGN) device (Figure 2(c)). After the wiring operation,
the device shows the typical CV response of a resistor without any capacitive ef-
fect. This can be due to the breaking of the insulating layer.

From CV characterization it is possible to identify the resistance switching
behavior of the device under investigation. From this graph it is possible to iden-
tify the voltages in which such transition occurs. This is a key point of our cha-
racterization method. Notice that, for direct informatics applications, the
switching operations are performed by pulsed voltages (square wave). For this
reason, the next measurement module was designed to perform voltage pulses in
a specific voltage range, to determine the switching voltage, the pulse duration
and the minimum number of pulses to switch the device ON [18] [19]. Figure 3
represents a schematic view of the pulsed voltage measurement module (PVMM)
proposed in this software. To perform this measurement, the user defines some
fundamental parameters such as: the limit voltages (V1 and V2); the number of
points in which the range will be split; the reading voltage (VR) in which the
sample is read; the number of readings (NR), the number of pulses (N), pulses
duration (T1) and the delay between each pulse (T2).

Figure 3. Flowchart representation of the pulse voltage measurement module. This func-
tion applies square voltage pulses to the sample. The pulse voltage is increased by a fixed
value and is ranged into a specific voltage range. After the application of the pulses, the
software read the current (C) value and check if it is higher than a fixed current value
which identifies the ON state.

https://doi.org/10.4236/jcc.2018.69001

M. Congiu et al.

DOI: 10.4236/jcc.2018.69001 8 Journal of Computer and Communications

The voltage (intensity) of the square pulse is ranged between the values V1
and V2. Then, the software performs a current measurement and acquires this
value storing it into a variable (C). This value is then compared with the ex-
pected current’s value of the ON state of the device (CON). If the read value C is
lower than CON the voltage is increased and a new cycle is started; else the loop is
stopped and the last applied voltage is defined as the ON switching voltage. Also,
this function allows optimizing the number of pulses and the duration. The core
of this function, in a typical C# namespace, should consist in a loop (for) defin-
ing the number (i) of repeated iterations corresponding to the desired number of
voltage points. In each cycle the software applies 0.0 V during a certain delay
time, then applies the voltage during the pulse duration time and finally applies
0.0 V again. Notice that, if one needs to apply multiple pulses, the function must
be structured as a loop (voltage points) of loops (multiple pulses). At the end of
the pulses, the reading voltage is set, and the current is sampled, and its average
value is plotted in a graph (current vs pulse voltage). The example code can be
found in Appendix A. After the measurement of the current, the variable cor-
responding to the applied voltage is increased by a fixed value and the cycle is
repeated. The results of a typical switching experiment are reported in Figure 4.
In this example, the pulse intensity was investigated between 0 and 9 volts using
two different pulse duration times: 30 and 1000 ms.

In Figure 4(a), square dots represent the average current values (n = 10)
measured after the application of 1 pulse with an intensity ranging from 0.0 to
9.0 V with a duration of 30 ms. As shown by the plot, these experimental condi-
tion does not induce the OFF to ON transition. In fact, in the whole voltage
range, the current remains below CON. Notice that it should be useful to intro-
duce a tolerance threshold instead of precisely define CON as a strict barrier be-
tween the OFF and the ON state (gray and green regions). In the successive
measurement, the dwell time of the pulse was extended to 300 ms (Figure 4(b))
and, after 4.0 V, the device shown the irreversible switch transition maintaining
the ON state at higher voltages.

3. Conclusion

We proposed a software structure based on .NET framework, C# language and
freeware resources for the characterization of resistance switch devices. In this
work we have shown the main functions of the original driver of keithley mea-
surement instruments (Ke24xx) but the same concepts could be traduced to
work with other equivalent equipment. Besides the illustration of the main soft-
ware procedure we have proposed a measurement routine for the characteriza-
tion of WORM devices including both current vs voltage curves and square vol-
tage pulse characterization. Our initial results demonstrate that the use of ex-
pensive software suites for visual virtual instrument programming could not be
compulsory for the realization of an efficient measurement program. A basic
knowledge of C# and Visual Studio allows the user to directly perform a link

https://doi.org/10.4236/jcc.2018.69001

M. Congiu et al.

DOI: 10.4236/jcc.2018.69001 9 Journal of Computer and Communications

(a)

(b)

Figure 4. Square pulses measurements performed on WORM samples using the PVM
module of the software. The current is sampled ten times after the application of the
square pulse. Different dwell time was studied: 30 ms (a) and 300 ms (b). Notice that,
when the dwell time is extended up to 300 ms the device is set in its ON state between 3.5
and 4.0 V.

between the software and the equipment using the original instrument driver as
an external reference.

Acknowledgements

This work was supported by FAPESP (proc: 2013/07396-7); PNPD/CAPES,
CAPES 024/2012 Pro-equipamentos; Department of Chemistry, University of
Rome Sapienza and Project “TornoSubito 2017” supported by Lazio Region of

https://doi.org/10.4236/jcc.2018.69001

M. Congiu et al.

DOI: 10.4236/jcc.2018.69001 10 Journal of Computer and Communications

Italy, with FSE (FondoSocialeEuropeo, ID code: 9266). In memory of Congiu
Massimo (1966-2018).

Author Contributions

1) Dr. Mirko Congiu: Software development, debugging and testing on real
WORMs samples.

2) Dr. Miguel Henrique Boratto and Dr. Paride Pica: Data analysis and sample
preparation.

3) Dr. Prof. Carlos Frederico De Oliveira Graeff: Coordination of the research
group activities, discussion of the obtained results.

All the authors contributed to the writing of the paper.

Conflicts of Interest

No conflict of interest was reported by the authors.

References
[1] Tang, S., Tesler, F., Marlasca, F.G., Levy, P., Dobrosavljevic, V. and Rozenberg, M.

(2016) Shock Waves and Commutation Speed of Memristors. Physical Review X, 6,
Article ID: 011028. https://doi.org/10.1103/PhysRevX.6.011028

[2] Chua, L. (1971) Memristor—The Missing Circuit Element. IEEE Transactions on
Circuit Theory, 18, 507-519.

[3] Strukov, D.B., Snider, G.S., Stewart, D.R. and Williams, R.S. (2008) The Missing
Memristor Found. Nature, 453, 80-83. https://doi.org/10.1038/nature06932

[4] Waser, R. and Aono, M. (2007) Nanoionics-Based Resistive Switching Memories.
Nature Materials, 6, 833-840. https://doi.org/10.1038/nmat2023

[5] Yang, Y., Choi, S. and Lu, W. (2013) Oxide Heterostructure Resistive Memory. Na-
no Letters, 13, 2908-2915. https://doi.org/10.1021/nl401287w

[6] Borghetti, J., Snider, G.S., Kuekes, P.J., Yang, J.J., Stewart, D.R. and Williams, R.S.
(2010) “Memristive” Switches Enable “Stateful” Logic Operations via Material Im-
plication. Nature, 464, 873-876. https://doi.org/10.1038/nature08940

[7] Strukov, D.B. and Likharev, K.K. (2005) CMOL FPGA: A Reconfigurable Architec-
ture for Hybrid Digital Circuits with Two-Terminal Nanodevices. Nanotechnology,
16, 888-900. https://doi.org/10.1088/0957-4484/16/6/045

[8] Ohno, T., Hasegawa, T., Tsuruoka, T., Terabe, K., Gimzewski, J.K. and Aono, M.
(2011) Short-Term Plasticity and Long-Term Potentiation Mimicked in Single In-
organic Synapses. Nature Materials, 10, 591-595. https://doi.org/10.1038/nmat3054

[9] Pickett, M.D., Medeiros-Ribeiro, G. and Williams, R.S. (2013) A Scalable Neuristor
Built with Mott Memristors. Nature Materials, 12, 114-117.
https://doi.org/10.1038/nmat3510

[10] Driscoll, T., Quinn, J., Klein, S., et al. (2010) Memristive Adaptive Filters. Applied
Physics Letters, 97, Article ID: 093502. https://doi.org/10.1063/1.3485060

[11] Möller, S., Perlov, C., Jackson, W., Taussig, C. and Forrest, S.R. (2003) A Poly-
mer/Semiconductor Write-Once Read-Many-Times Memory. Nature, 426, 166-169.
https://doi.org/10.1038/nature02070

[12] Fang, J., Wang, Q., Yue, X., Wang, G. and Jiang, Z. (2015) A WORM Type Polymer
Electrical Memory Based on Polyethersulfone with Carbazole Derivatives. High

https://doi.org/10.4236/jcc.2018.69001
https://doi.org/10.1103/PhysRevX.6.011028
https://doi.org/10.1038/nature06932
https://doi.org/10.1038/nmat2023
https://doi.org/10.1021/nl401287w
https://doi.org/10.1038/nature08940
https://doi.org/10.1088/0957-4484/16/6/045
https://doi.org/10.1038/nmat3054
https://doi.org/10.1038/nmat3510
https://doi.org/10.1063/1.3485060
https://doi.org/10.1038/nature02070

M. Congiu et al.

DOI: 10.4236/jcc.2018.69001 11 Journal of Computer and Communications

Performance Polymers, 28, 1183-1191. https://doi.org/10.1177/0954008315621122

[13] Smith, S. and Forrest, S.R. (2004) A Low Switching Voltage Organic-on-Inorganic
Heterojunction Memory Element Utilizing a Conductive Polymer Fuse on a Doped
Silicon Substrate. Applied Physics Letters, 84, 5019.
https://doi.org/10.1063/1.1763632

[14] Congiu, M., Albano, L.G.S., Nunes-Neto, O. and Graeff, C.F.O. (2016) Printable
ReRAM Devices Based on the Non-Stoichiometric Junction CuS/Cu2−x S. Electron-
ics Letters, 52, 1871. https://doi.org/10.1049/el.2016.2901

[15] Fontana, L., Bassetti, M., Battocchio, C., Venditti, I. and Fratoddi, I. (2017) Synthe-
sis of Gold and Silver Nanoparticles Functionalized with Organic Dithiols. Colloids
Colloids and Surfaces A: Physicochemical and Engineering Aspects, 532, 282-289.
https://doi.org/10.1016/j.colsurfa.2017.05.005

[16] Christie, J.H. and Lingane, P.J. (1965) Theory of Staircase Voltammetry. Journal of
Electroanalytical Chemistry (1959), 10, 176-182.
https://doi.org/10.1016/0022-0728(65)85021-5

[17] Hai, B., Tolmachev, Y.V., Loparo, K.A., Zanelli, C. and Scherson, D. (2011) Cyclic
versus Staircase Voltammetry in Electrocatalysis: Theoretical Aspects. Journal of
The Electrochemical Society, 158, F15-F19. https://doi.org/10.1149/1.3512914

[18] Liu, C.Y., Shih, Y.R. and Huang, S.J. (2013) Unipolar Resistive Switching in a
Transparent ITO/SiOx/ITO Sandwich Fabricated at Room Temperature. Solid State
Communications, 159, 13-17. https://doi.org/10.1016/j.ssc.2013.01.008

[19] Whitcher, T.J., Woon, K.L., Wong, W.S., et al. (2016) Interfacial Behavior of Resis-
tive Switching in ITO-PVK-Al WORM Memory Devices. Journal of Physics D: Ap-
plied Physics, 49, Article ID: 075104.
https://doi.org/10.1088/0022-3727/49/7/075104

https://doi.org/10.4236/jcc.2018.69001
https://doi.org/10.1177/0954008315621122
https://doi.org/10.1063/1.1763632
https://doi.org/10.1049/el.2016.2901
https://doi.org/10.1016/j.colsurfa.2017.05.005
https://doi.org/10.1016/0022-0728(65)85021-5
https://doi.org/10.1149/1.3512914
https://doi.org/10.1016/j.ssc.2013.01.008
https://doi.org/10.1088/0022-3727/49/7/075104

M. Congiu et al.

DOI: 10.4236/jcc.2018.69001 12 Journal of Computer and Communications

Appendix A

The following C# code belongs to the pulse voltage measurement module of the
main program (Async Void). Notice that just the core functions are reported
without mentioning other code lines such as the variables declaration. The core
consists of a loop in which the software applies the square wave pulse(s) and
performs a current measurement and increase the variable cVolt which represents
the voltage to be applied in the next cycle. The initial value of cVolt will be equal
to the lower limit of the selected voltage range and will be increased (cVolt +=
step) up to the upper limit of the voltage range. The variables onDelay and on-
Duration represents respectively the delay before the voltage application and the
pulse duration while the variable millis represents the overall experiment time,
which could be also substituted by a timer object (System.Timers.Timer). The
measurement of the current is performed by performing 10 measurements to
obtain an average value. For this reason, at the beginning of the cycle the varia-
ble “currents” is declared as 1D array. To perform the measurement, the Read()
method can be called specifying which value is requested (Ke24xxCons-
tants.ReadCurrent), an out integer (numread) to count the number of the ac-
quisition (in case of multiple read) and a 1D array in which the data will be
dumped (readBuffer). The data are plotted directly into a chart object (chart
1).

for(inti = 0; i<= numberOfVoltagePoints; i++)//loop of voltage points
 {
double[] currents=newdouble[10];
//apply 0 volts
instr.ConfigureSourceLevel(Ke24xxConstants.SourceVoltageFunction, 0, 0);
for (inti = 0; i<numberOfPulses); i++)//loop of multiple pulses
 {
awaitTask.Delay(onDelay); //delay before the pulse
millis += onDelay; //increase the time count variable

instr.ConfigureSourceLevel(Ke24xxConstants.SourceVoltageFunction, cVolt, 0);
awaitTask.Delay(onDuration);
millis += onDuration;
//apply 0 volts agai-

ninstr.ConfigureSourceLevel(Ke24xxConstants.SourceVoltageFunction, 0, 0);
 }
//reading, 10 measurements of current
for (inti = 0; i< 10; i++)
 {
double[] readBuffer = newdouble[20];
instr.ConfigureSourceLevel(Ke24xxConstants.SourceVoltageFunction, read-

Volt, 0);
awaitTask.Delay(90);
instr.Read(Ke24xxConstants.ReadCurrent, outnumread,readBuffer);

https://doi.org/10.4236/jcc.2018.69001

M. Congiu et al.

DOI: 10.4236/jcc.2018.69001 13 Journal of Computer and Communications

awaitTask.Delay(10);
instr.ConfigureSourceLevel(Ke24xxConstants.SourceVoltageFunction, 0, 0);

 chart1.Series[0].Points.AddXY(millis, readBuf-
fer[0]);

 chart1.Series[2].Points.AddXY(millis, cVolt);
 currents[i] = readBuffer[0];//dump the value
millis += 100
 }
//calculate the average value of the current
doubleaverage = (currents.Sum() / currents.Count());
//increase the voltage for the next pulse(s)
cVolt += step;
}

Figure A1. Screenshot of the software developed using the code functions presented in
this work during a routine debugging operation in Visual Studio 2017. The graphical user
interface (GUI) allows the user to input all of the necessary parameters for the experi-
ment.

https://doi.org/10.4236/jcc.2018.69001

	Development of a Measurement Software for the Characterization of WORM Devices for Novel Memory Storage Applications
	Abstract
	Keywords
	1. Introduction
	2. Methods
	2.1. Software Design
	2.2. Driver Wrapping
	2.3. WORM and RRAMs Measurement Methods

	3. Conclusion
	Acknowledgements
	Author Contributions
	Conflicts of Interest
	References
	Appendix A

