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Abstract 
Astrophysics = the star physics was beginning its development without a 
supporting of measurement data, which could not be obtained then. Still as-
trophysics exists without this support, although now astronomers collected a 
lot of valuable information. This is the main difference of astrophysics from 
all other branches of physics, for which foundations are measurement data. 
The creation of the theory of stars, which is based on the astronomical mea-
surements data, is one of the main goals of modern astrophysics. Below, the 
principal elements of star physics based on data of astronomical measure-
ments are described. The theoretical description of a hot star interior is obtained. 
It explains the distribution of stars over their masses, mass-radius-temperature 
and mass-luminosity dependencies. All theoretical predictions are in a good 
agreement with the known measurement data, which confirms the validity of 
this consideration. 
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1. Introduction 
1.1. Astrophysics and Astronomical Measurements 

It is obvious that the primary goal of modern astrophysics is to create a star 
theory that can explain the dependencies of parameters of stars and of the Sun, 
which are measured by astronomers. 

The technical progress of astronomical measurements in the last decade has 
revealed the existence of different relationships that associate together the 
physical parameters of the stars. 

To date, such data have accumulated about a dozen: they are dependencies of 
temperature-radius-luminosity-mass of stars, the spectra of seismic oscillations 
of the sun, distribution of stars on mass, the dependence of the magnetic fields 
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of stars from their moments and speeds of rotation, etc. 
All these relationships are defined by phenomena occurring inside stars. So 

the theory of the internal structure of stars should be based on these quantitative 
data as on boundary conditions. 

Existing theories of stellar interiors can not explain the new data. The modern 
astrophysics1 prefers a speculative approach. It elaborates qualitative theories of 
stars that are not pursued to such quantitative estimates, which could be 
compared with the data of astronomers. Everything is done in such a way as if 
the new astronomical data are absent. Of course, the astrophysical community 
knows about the existence of dependencies of stellar parameters which were 
measured by astronomers. However, in modern astrophysics, it is accepted to 
think, that if an explanation of a dependency is not found, that it can be referred 
to the category of empirical one and it needs no explanation. The so-called empirical 
relations of stellar luminosities and temperatures—the Hertzsprung-Russell 
diagram—are known about the hundred years, but its quantitative explanation is 
not found. 

The reason that prevents to explain these relationships is due to the wrong 
choice of the basic postulates of modern astrophysics. Despite of the fact that all 
modern astrophysics believes that the stars consist from a plasma, it historically 
turned out that the theory of stellar interiors does not take into account the 
electric polarization of the plasma, which must occur within stars under the 
influence of their gravitational field. Modern astrophysics believes that the 
gravity-induced electric polarization (GIEP) of stellar plasma is small and it 
should not be taken into account in the calculations, as this polarization was not 
taken into account in the calculations at an early stage of development of 
astrophysics, when a plasma structure of stars was not known. However, plasma 
is an electrically polarized substance, and an exclusion of the GIEP effect from the 
calculation is unwarranted. Moreover, without taking into account of the 
GIEP-effect, the equilibrium stellar matter can not be correctly founded and a 
theory would not be able to explain the astronomical measurements. Accounting 
GIEP gives the theoretical explanation for the all observed dependence. 

As shown below, the account of the gravity-induced electric polarization of 
the intra-stellar plasma gives possibility to develop a model of the star, in which 
all main parameters—the mass of the star, its temperature, radius and 
luminosity—are expressed by certain combinations of world constants and the 
individuality of stars is determined by only two parameters—the mass and 
charge number of nuclei, from which the plasma of these stars is composed. It 
gives the quantitatively and fairly accurate explanation of all dependencies, 
which were measured by astronomers. 

The important feature of this stellar theory, which is built with the GIEP 

 

 

1The modern astrophysics has a whole series of different branches. It is important to stress that all of 
them except the physics of hot stars beyond the scope of this consideration; we shall use the term 
“astrophysics” here and below in its initial meaning—as the physics of stars. 
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acconting, is the lack of a collapse in the final stage of the star development, as 
well as “black holes” that could be results from a such collapse. 

The main features of this concept were previously published in [1]-[6]. 

1.2. The Basic Postulate of Astrophysics 

We can assume that modern astrophysics emerged in the early twentieth century 
and milestone of this period was the work R. Emden 《Die Gaskugeln》. It has 
laid the basis for the description of stars as gas spheres. Gases can be 
characterized by different dependencies of their density from pressure, ie they 
can be described by different polytropes. According to Emden the equations of 
state of the gases producing the stars determine their characteristics—it can be 
either a dwarf, or a giant, or main sequence star, etc. The such approach to the 
description of stars determined the choice of postulates needed for the theory. 

Any theory based on its system of postulates. 
The first basic postulate of astrophysics—the Euler equation—was formulated in a 

mathematical form by L.Euler in a middle of 18th century for the “terrestrial” effects 
description. This equation determines the equilibrium condition of liquids or 
gases in a gravitational field: 

.Pγ = −∇g                            (1) 

According to it the action of a gravity forth γ g  ( γ  is density of substance, 
g  is the gravity acceleration) in equilibrium is balanced by a forth which is 

induced by the pressure gradient in the substance. 
All modern models of stellar interior are obtained on the base of the Euler 

equation. These models assume that pressure inside a star monotone increases 
depthward from the star surface. As a star interior substance can be considered 
as an ideal gas which pressure is proportional to its temperature and density, all 
astrophysical models predict more or less monotonous increasing of 
temperature and density of the star substance in the direction of the center of a 
star. 

While we are talking about materials with atomic structure, there are no 
doubt about the validity of this equation and its applicability. This postulate is 
surely established and experimentally checked be “terrestrial” physics. It is the 
base of an operating of series of technical devices—balloons, bathyscaphes and 
other. 

Another prominent astrophysicist first half of the twentieth century was A. 
Eddington. At this time I. Langmuir discovered the new state of matter—plasma. 
A. Eddington was first who realized the significance of this discovery for 
astrophysics. He showed that the stellar matter at the typical pressures and 
temperatures, should be in the plasma state. 

The polarizability of atomic matter is negligible.2 There was not necessary to 
take into account a polarization while there was a speech about the model, in 

 

 

2If you do not take account of ferroelectrics, piezoelectrics and other similar substances. Their con-
sideration is not acceptable here. 

https://doi.org/10.4236/jmp.2018.910120


B. V. Vasiliev 
 

 

DOI: 10.4236/jmp.2018.910120 1909 Journal of Modern Physics 
 

which the stars are composed of atomic gases. 
But plasma is an electrically polarized substance. 
It Is Necessary to Take into Account GIEP of Intra-Stellar Plasma 
Therefore, at consideration of a plasma equilibrium, the term describing its 

possible electrical polarization P  should be saved in the Euler equation: 

0,Pγ + ∇ +∇ =g P P                        (2) 

This leads to the possibility of the existence of a fundamentally new 
equilibrium state of stellar matter, at which it has a constant density and 
temperature: 

0P∇ =  

0,γ + ∇ =g P P                         (3) 

that radically distinguishes this equilibrium state from equilibrium, which is 
described by Equation (1). 

The technical progress of astronomical measurements in the last decade 
discovered that the physical parameters of the stars are related together. 

However, these new data do not fit to models of modern astrophysics. 

2. The Energy-Favorable State of Hot Dense Plasma 
2.1. The Properties of a Hot Dense Plasma 
2.1.1. A Hot Plasma and Boltzman’s Distribution 
Free electrons being fermions obey the Fermi-Dirac statistic at low temperatures. 
At high temperatures, quantum distinctions in behavior of electron gas 
disappear and it is possible to consider electron gas as the ideal gas which obeys 
the Boltzmann’s statistics. At high temperatures and high densities, all 
substances transform into electron-nuclear plasma. There are two tendencies in  

this case. At temperature much higher than the Fermi temperature F
FT

k
=
   

(where F  is Fermi energy), the role of quantum effects is small. But their role 
grows with increasing of the pressure and density of an electron gas. When 
quantum distinctions are small, it is possible to describe the plasma electron gas 
as a the ideal one. The criterium of Boltzman’s statistics applicability 

.FT
k



                            (4) 

hold true for a non-relativistic electron gas with density 1025 particles in cm3 at 
610 KT  . 

At this temperatures, a plasma has energy 

3
2

kTN=                          (5) 

and its EOS is the ideal gas EOS: 

NkTP
V

=                          (6) 
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But even at so high temperatures, an electron-nuclear plasma can be 
considered as ideal gas in the first approximation only. For more accurate 
description its properties, the specificity of the plasma particle interaction must 
be taken into account and two main corrections to ideal gas law must be 
introduced. 

The first correction takes into account the quantum character of electrons, 
which obey the Pauli principle, and cannot occupy levels of energetic distribution 
which are already occupied by other electrons. This correction must be positive 
because it leads to an increased gas incompressibility. 

Other correction takes into account the correlation of the screening action of 
charged particles inside dense plasma. It is the so-called correlational correction. 
Inside a dense plasma, the charged particles screen the fields of other charged 
particles. It leads to a decreasing of the pressure of charged particles. Accordingly, 
the correction for the correlation of charged particles must be negative, because 
it increases the compressibility of electron gas. 

2.1.2. The Hot Plasma Energy with Taking into Account the Correction 
for the Fermi-Statistic 

The energy of the electron gas in the Boltzmann’s case ( FkT   ) can be 
calculated using the expression of the full energy of a non-relativistic 
Fermi-particle system [7]: 

( )

1 2 3 2 3 2

2 3 0

2 d ,
π 1e

e
kT

Vm
e ε µ

ε ε∞

−
=

+∫


                  (7) 

expanding it in a series. ( em  is electron mass, ε  is the energy of electron and 

eµ  is its chemical potential). 
In the Boltzmann’s case, 0eµ <  and 

1e kTµ   and the integrand at 
1e kTeµ

  can be expanded into a series according to powers e kT kTeµ ε− . If  

we introduce the notation z
kT
ε

=  and conserve the two first terms of the series, 

we obtain 

( ) ( )
3 2 25 2 5 2 3 2

0 0

d d
1

ee

e

zz kTkT
z kT

z zI kT kT z e e z
e

µµ

µ

 −−  ∞ ∞  
−

 
 ≡ ≈ − +
 +  

∫ ∫        (8) 

or 

( )

2

5 2 5 2 5 2

3 1 3 3 π 11 1 1 .
2 2 42 2

e e
e ekT kTkT kTI e e e e

kT

µ µ
µ µ     ≈ Γ + − Γ + ≈ −     

     
  (9) 

Thus, the full energy of the hot electron gas is 

( )5 2 3 2
2

2 5 2

3 1 .
2 π 22

e ekT kTekT mV e eµ µ   ≈ −  
  

            (10) 

Using the definition of a chemical potential of ideal gas (of particles with spin 
= 1/2) [7] 
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3 222πlog
2

e
e

e

NkT
V m kT

µ
  
 =  
   

                     (11) 

we obtain the full energy of the hot electron gas 

3 223 23 π1 ,
2 4

B
e e e

a ekTN n
kT

  
 ≈ +  
   

                   (12) 

where 
2

2B
e

a
m e

=
  is the Bohr radius. 

2.1.3. The Correction for Correlation of Charged Particles in a Hot 
Plasma 

At high temperatures, the plasma particles are uniformly distributed in space. At 
this limit, the energy of ion-electron interaction tends to zero. Some correlation 
in space distribution of particles arises as the positively charged particle groups 
around itself preferably particles with negative charges and vice versa. It is 
accepted to estimate the energy of this correlation by the method developed by 
Debye-Hükkel for strong electrolytes [7]. The energy of a charged particle inside 
plasma is equal to eϕ , where e is the charge of a particle, and ϕ  is the electric 
potential induced by other particles on the considered particle. 

This potential inside plasma is determined by the Debye law [7]: 

( ) D

r
rer e

r
ϕ

−

=                          (13) 

where the Debye radius is 

1 22
24π  D a a

a

er n Z
kT

−
 

=  
 

∑                      (14) 

For small values of ratio 
D

r
r

, the potential can be expanded into a series 

( )
D

e er
r r

ϕ = − +                        (15) 

The following terms are converted into zero at 0r → . The first term of this 
series is the potential of the considered particle. The second term 

3 2
3 2π

a a
a

e N Z
kTV

 = −  
 
∑                     (16) 

is a potential induced by other particles of plasma on the charge under 
consideration. And so the correlation energy of plasma consisting of eN  
electrons and ( eN Z ) nuclei with charge Z in volume V is [7] 

3 3 2π e
corr e

ne Z N
kT

= −                     (17) 

https://doi.org/10.4236/jmp.2018.910120


B. V. Vasiliev 
 

 

DOI: 10.4236/jmp.2018.910120 1912 Journal of Modern Physics 
 

2.2. The Energy-Preferable State of a Hot Plasma 
2.2.1. The Energy-Preferable Density of a Hot Plasma 
Finally, under consideration of both main corrections taking into account the 
inter-particle interaction, the full energy of plasma is given by 

3 2 3 223 2 1 2
3 1 23 π 2π1

2 4 3
B

e e e
a e ZkTN n e n
kT kT

     ≈ + −       
         (18) 

The plasma into a star has a feature. A star generates the energy into its inner 
region and radiates it from the surface. At the steady state of a star, its substance 
must be in the equilibrium state with a minimum of its energy. The radiation is 
not in equilibrium of course and can be considered as a star environment. The 
equilibrium state of a body in an environment is related to the minimum of the 
function ([7] §20): 

,o oT S PV− +                         (19) 

where oT  and oP  are the temperature and the pressure of an environment. At 
taking in to account that the star radiation is going away into vacuum, the two 
last items can be neglected and one can obtain the equilibrium equation of a star 
substance as the minimum of its full energy: 

plasmad
0.

d en
=


                         (20) 

Now taking into account Equation (18), one obtains that an equilibrium 
condition corresponds to the equilibrium density of the electron gas of a hot 
plasma 

3
equilibrium 24 3 3

3

16 1.2 10 cm ,
9πe

B

Zn n Z
a

−≡ = ≈ ×              (21) 

It gives the electron density 25 33 10 cm−≈ ×  for the equilibrium state of the 
hot plasma of helium. 

2.2.2. The Estimation of Temperature of Energy-Preferable State of a 
Hot Stellar Plasma 

As the steady-state value of the density of a hot non-relativistic plasma is known, 
we can obtain an energy-preferable temperature of a hot non-relativistic plasma. 

The virial theorem [7] [8] claims that the full energy of particles E, if they 
form a stable system with the Coulomb law interaction, must be equal to their 
kinetic energy T with a negative sign. Neglecting small corrections at a high 
temperature, one can write the full energy of a hot dense plasma as 

plasma
3 3 .
2 2e eU kTN kTN= + = −                  (22) 

where 
2

0

GU ≈ −



 is the potential energy of the system, G is the gravitational 

constant,   and 0  are the mass and the radius of the star. 

As the plasma temperature is high enough, the energy of the black radiation 

https://doi.org/10.4236/jmp.2018.910120


B. V. Vasiliev 
 

 

DOI: 10.4236/jmp.2018.910120 1913 Journal of Modern Physics 
 

cannot be neglected. The full energy of the stellar plasma depending on the 
particle energy and the black radiation energy 

32

total
3 π
2 15e

kTkTN VkT
c

 = − +  
 

                   (23) 

at equilibrium state must be minimal, i.e. 

total

,

0.
N VT

∂  = ∂ 

                         (24) 

This condition at eN n
V

=   gives a possibility to estimate the temperature of 

the hot stellar plasma at the steady state: 

710 K.
B

cZ Z
ka

≈ ≈
                       (25) 

The last obtained estimation can raise doubts. At “terrestrial” conditions, the 
energy of any substance reduces to a minimum at 0T → . It is caused by a 
positivity of a heat capacity of all of substances. But the steady-state energy of 
star is negative and its absolute value increases with increasing of temperature 
(Equation (22)). It is the main property of a star as a thermodynamical object. 
This effect is a reflection of an influence of the gravitation on a stellar substance 
and is characterized by a negative effective heat capacity. The own heat capacity 
of a stellar substance (without gravitation) stays positive. With the increasing of 
the temperature, the role of the black radiation increases ( 4~br T ). When its 
role dominates, the star obtains a positive heat capacity. The energy minimum 
corresponds to a point between these two branches. 

3. The Gravity Induced Electric Polarization in a Dense Hot 
Plasma 

3.1. Plasma Cells 

The existence of plasma at energetically favorable state with the constant density 
n  and the constant temperature   puts a question about equilibrium of this 
plasma in a gravity field. The Euler equation in commonly accepted form 
Equation (1) disclaims a possibility to reach the equilibrium in a gravity field at a 
constant pressure in the substance: the gravity inevitably must induce a pressure 
gradient into gravitating matter. To solve this problem, it is necessary to 
consider the equilibrium of a dense plasma in an gravity field in detail. At zero 
approximation, at a very high temperature, plasma can be considered as a “jelly”, 
where electrons and nuclei are “smeared” over a volume. At a lower temperature 
and a high density, when an interpartical interaction cannot be neglected, it is 
accepted to consider a plasma dividing in cells [9]. Nuclei are placed at centers of 
these cells, the rest of their volume is filled by electron gas. Its density decreases 
from the center of a cell to its periphery. Of course, this dividing is not freezed. 
Under action of heat processes, nuclei move. But having a small mass, electrons 
have time to trace this moving and to form a permanent electron cloud around 

https://doi.org/10.4236/jmp.2018.910120


B. V. Vasiliev 
 

 

DOI: 10.4236/jmp.2018.910120 1914 Journal of Modern Physics 
 

nucleus, i.e. to form a cell. So plasma under action of a gravity must be 
characterized by two equilibrium conditions: 
- the condition of an equilibrium of the heavy nucleus inside a plasma cell; 
- the condition of an equilibrium of the electron gas, or equilibrium of cells. 

3.2. The Equilibrium of a Nucleus Inside Plasma Cell Filled by an 
Electron Gas 

At the absence of gravity, the negative charge of an electron cloud inside a cell 
exactly balances the positive charge of the nucleus at its center. Each cell is fully 
electroneutral. There is no direct interaction between nuclei. 

The gravity acts on electrons and nuclei at the same time. Since the mass of 
nuclei is large, the gravity force applied to them is much larger than the force 
applied to electrons. On the another hand, as nuclei have no direct interaction, 
the elastic properties of plasma are depending on the electron gas reaction. Thus 
er have a situation, when the force applied to nuclei must be balanced by the 
force of the electron subsystem. The cell obtains an electric dipole moment sd , 
and the plasma obtains polarization s sn d=P , where sn  is the density of the 
cell. 

It is known [10], that the polarization of neighboring cells induces in the 
considered cell the electric field intensity 

4π ,
3sE = P                           (26) 

and the cell obtains the energy 

.
2
s s

s
d E

=                           (27) 

The gravity force applied to the nucleus is proportional to its mass pAm  
(where A is a mass number of the nucleus, pm  is the proton mass). The cell 
consists of Z electrons, the gravity force applied to the cell electron gas is 
proportional to eZm  (where em  is the electron mass). The difference of these 
forces tends to pull apart centers of positive and negative charges and to increase 
the dipole moment. The electric field sE  resists it. The process obtains 
equilibrium at the balance of the arising electric force s∇  and the difference 
of gravity forces applied to the electron gas and the nucleus: 

( )
22π 0

3 p e
s

Am Zm
n

 
∇ + − = 
 

gP
                 (28) 

Taking into account, that ψ= −∇g , we obtain 

( )
22π .

3 p e
s

Am Zm
n

ψ= −
P                     (29) 

Hence, 

2 3 ,
2π

r
e p e

GM An m m
r Z

 = − 
 

P                    (30) 
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where ψ  is the potential of the gravitational field, e
s

nn
Z

=  is the density of  

cell (nuclei), en  is the density of the electron gas, rM  is the mass of a star 
containing inside a sphere with radius r. 

3.3. The Equilibrium in Plasma Electron Gas Subsystem 

Nonuniformly polarized matter can be represented by an electric charge 
distribution with density [10] 

.
4π 3

sdivE div
= =

P
                        (31) 

The full electric charge of cells placed inside the sphere with radius r 

2
0

4π d
r

rQ r r= ∫                          (32) 

determinants the electric field intensity applied to a cell placed on a distance r 
from center of a star 

2
rQ

r
=E                            (33) 

As a result, the action of a nonuniformly polarized environment can be 
described by the force E . This force must be taken into account in the 
formulating of equilibrium equation. It leads to the following form of the Euler 
equation:  

0Pγ + +∇ =g E                       (34) 

4. The Internal Structure of a Star 

It was shown above that the state with the constant density is energetically 
favorable for a plasma at a very high temperature. The plasma in the central 
region of a star can possess by this property. The calculation made below shows 
that the mass of central region of a star with the constant density—the star 
core—is equal to 1/2 of the full star mass. Its radius is approximately equal to 
1/10 of radius of a star, i.e. the core with high density take approximately 1/1000 
part of the full volume of a star. The other half of a stellar matter is distributed 
over the region placed above the core. It has a relatively small density and it 
could be called as a star atmosphere. 

4.1. The Plasma Equilibrium in the Star Core 

In this case, the equilibrium condition (Equation (28)) for the energetically 
favorable state of plasma with the steady density sn const=  is achieved at 

,G rγ=P                            (35) 

Here the mass density is p
A m n
Z

γ ≈  . The polarized state of the plasma can 

be described by a state with an electric charge at the density 
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1 ,
3

div Gρ γ= = P                       (36) 

and the electric field applied to a cell is 

.
G

=
gE                         (37) 

As a result, the electric force applied to the cell will fully balance the gravity 
action 

0γ + =g E                        (38) 

at the zero pressure gradient 

0.P∇ =                         (39) 

4.2. The Main Parameters of a Star Core (in Order of Values) 

At known density n  of plasma into a core and its equilibrium temperature 
 , it is possible to estimate the mass   of a star core and its radius  . In 
accordance with the virial theorem3, the kinetic energy of particles composing 
the steady system must be approximately equal to its potential energy with 
opposite sign: 

2

.G k≈
  



 



                      (40) 

where 34π
3

n=     is full number of particle into the star core. 

With using determinations derived above (21) and (25) derived before, we 
obtain 

( )2
Ch

A Z
≈

                       (41) 

where 
3 2

2Ch p
p

c m
Gm

 
=   
 

  is the Chandrasekhar mass. 

The radius of the core is approximately equal 

( )

1 2

2 .B

p

ac
Z A ZGm

 
≈   
 

                  (42) 

where A and Z are the mass and the charge number of atomic nuclei the plasma 
consisting of. 

4.3. The Equilibrium State of the Plasma Inside the Star 
Atmosphere 

The star core is characterized by the constant mass density, the charge density, 
the temperature and the pressure. At a temperature typical for a star core, the 
plasma can be considered as ideal gas, as interactions between its particles are 
small in comparison with k . In atmosphere, near surface of a star, the 

 

 

3Below we shell use this theorem in its more exact formulation. 
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temperature is approximately by 3 4÷  orders smaller. But the plasma density is 
lower. Accordingly, interparticle interaction is lower too and we can continue to 
consider this plasma as ideal gas. 

In the absence of the gravitation, the equilibrium state of ideal gas in some 
volume comes with the pressure equalization, i.e. with the equalization of its 
temperature T and its density n. This equilibrium state is characterized by the 
equalization of the chemical potential of the gas µ  (Equation (11)). 

4.4. The Radial Dependence of Density and Temperature of 
Substance Inside a Star Atmosphere 

For the equilibrium system, where different parts have different temperatures, 
the following relation of the chemical potential of particles to its temperature 
holds ([7], §25):  

const
kT
µ

=                          (43) 

As thermodynamic (statistical) part of chemical potential of monoatomic 
ideal gas is ([7], §45): 

3 222πln ,
2T
nkT

mkT
µ

  
 =  
   

                   (44) 

we can conclude that at the equilibrium 
3 2~ .n T                          (45) 

In external fields the chemical potential of a gas ([7] §25) is equal to 
potential

Tµ µ= +                       (46) 

where potential  is the potential energy of particles in the external field. Therefore 
in addition to fulfillment of condition Equation (45), in a field with Coulomb 
potential, the equilibrium needs a fulfillment of the condition 

2

2
r r

r r

GM const
rkT kT

γ
− + =

P                    (47) 

(where m is the particle mass, rM  is the mass of a star inside a sphere with 
radius r, rP  and rT  are the polarization and the temperature on its surface. 
As on the core surface, the left part of Equation (47) vanishes, in the atmosphere  

~ .r rM rkT                         (48) 

Supposing that a decreasing of temperature inside the atmosphere is a power 
fuction with the exponent x, its value on a radius r can be written as 

x

rT
r

 =  
 

 
                       (49) 

and in accordance with Equation (45), the density 
3 2

.
x

rn n
r

 =  
 


                       (50) 
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At assumption that the powers of r in the right and the left parts of condition 
Equation (48) are equal, we obtain 4x = . 

Thus, at using power dependencies for the description of radial dependencies 
of density and temperature, we obtain 

6

rn n
r

 =  
 


                        (51) 

and 
4

.rT
r

 =  
 

 
                        (52) 

4.5. The Mass of the Star Atmosphere and the Full Mass of a Star 

After integration of Equation (51), we can obtain the mass of the star atmosphere 

( ) ( )0

36
2 3

0

4π4π d 1
3A p pA Z m n r r A Z m n

r

     = = −         
∫




  


 
     (53) 

It is equal to its core mass 

(to 
3

3
3
0

10−≈


 ), where 0  is radius of a star. 

Thus, the full mass of a star 

2A= + ≈                        (54) 

4.6. The Energy of a Star 

The virial theorem ([7] [8]) is applicable to a system of particles if they have a 
finite moving into a volume V. If their interaction obeys to the Coulomb’s law, 
their potential energy potential , their kinetic energy kinetic  and pressure P are 
in the ratio: 

kinetic potential2 3 .PV+ =                    (55) 

On the star surface, the pressure is absent and for the particle system as a 
whole: 

kinetic potential2 = −                       (56) 

and the full energy of plasma particles into a star 

( ) kinetic potential kineticplasma .= + = −                 (57) 

Let us calculate the separate items composing the full energy of a star.  

4.7. The Kinetic Energy of Plasma 

The kinetic energy of plasma into a core: 

kinitic 3 .
2

k=                         (58) 

The kinetic energy of atmosphere: 
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0
10

kinetic 23 3 34π d
2 7 2a k n r r k

r
   = ≈   

  ∫




  



            (59) 

The total kinetic energy of plasma particles 

kinetic kinetic kinetic 15=
7a k= +                     (60) 

4.8. The Potential Energy of Star Plasma 

Inside a star core, the gravity force is balanced by the force of electric nature. 
Correspondingly, the energy of electric polarization can be considered as 
balanced by the gravitational energy of plasma. As a result, the potential energy 
of a core can be considered as equal to zero. 

In a star atmosphere, this balance is absent. 
The gravitational energy of an atmosphere 

0
3 614π 2 d

2
G
a p

AG m n r r
Z r r

    = − −    
     

∫




 


 
           (61) 

or 
2 23 1 1 15

2 7 2 28
G
a

G G = − = − 
 

 
 

 

 

                 (62) 

The electric energy of atmosphere is  

0 214π d ,
2

RE
a r rρϕ= − ∫                       (63) 

where 
2

2

1 d
d3

r
rr

=
P

                          (64) 

and 

4π .
3

rϕ = P                           (65) 

The electric energy: 
23 ,

28
E
a

G
= −








                        (66) 

and total potential energy of atmosphere: 
2

potential 9 .
14

G E
a a a

G
= + = −








                     (67) 

The equilibrium in a star depends both on plasma energy and energy of 
radiation. 

4.9. The Temperature of a Star Core 
4.9.1. The Energy of the Black Radiation 
The energy of black radiation inside a star core is 
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( )
32π .

15
br k

c
 =  
 

 
                       (68) 

The energy of black radiation inside a star atmosphere is 

( ) 0
3 16 32 2

2 3 π4π d .
15 13 15

R
a R

k kbr k r r k
c r c

π      = =     
     ∫
 

    


  
      (69) 

The total energy of black radiation inside a star is 

( ) ( ) ( )
3 32 216 π π1.23

13 15 15a
kT kTbr br br kT V kT V

c c
   = + = =   
    

 
         (70) 

4.9.2. The Full Energy of a Star 
In accordance with Equation (57), the full energy of a star 

( )star kinetic br= − +                        (71) 

i.e. 
32

star 15 16 π .
7 13 15

kk k
c

 = − +  
 

   
                (72) 

The steady state of a star is determined by a minimum of its full energy: 
star

,

d 0,
d const const= =

 
= 

  
                      (73) 

it corresponds to the condition: 
3215 64π 0.

7 13 15
k

c
 − + = ×  

 
                   (74) 

Together with Equation (21) it defines the equilibrium temperature of a star 
core: 

1 3
7

4

25 13 2.13 10 K
28π B

c Z Z
ka

 × = ≈ × ×  
   

              (75) 

4.10. Main Parameters 
4.10.1. The Star Mass 
The virial theorem connect kinetic energy of a system with its potential energy. 
In accordance with Equations (67) and (60) 

29 30 .
14 7

G k=
  



 



                      (76) 

Introducing the non-dimensional parameter  

,
p

AG m
Z

k
η =



 


 

                        (77) 

we obtain 
20 6.67,
3

η = =                          (78) 
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and at taking into account Equations.(21) and (75), the core mass is 
3 21 3

2 2

20 25 13 3 6.84
3 28 4 3.14

Ch Ch

A A
Z Z

 × = =   ×       
   
   

           (79) 

The obtained equation plays a very important role, because together with 
Equation (54), it gives a possibility to predict the total mass of a star: 

2 2

25.3413.68
2 .Ch

A A
Z Z

= = ≈
   
   
   



                   (80) 

The comparison of obtained prediction Equation (80) with measuring data 
gives a method to check our theory. Although there is no way to determine 
chemical composition of cores of far stars, some predictions can be made in this 
way. At first, there must be no stars which masses exceed the mass of the Sun by 
more than one and a half orders, because it accords to limiting mass of stars 
consisting from hydrogen with 1A Z = . Secondly, the action of a specific 
mechanism [6] can make neutron-excess nuclei stable, but it don’t give a base to 
suppose that stars with 10A Z >  (and with mass in hundred times less than 
hydrogen stars) can exist. Thus, the theory predicts that the whole mass 
spectrum must be placed in the interval from 0.25 up to approximately 25 solar 
masses. These predications are verified by measurements quite exactly. The mass 
distribution of binary stars4 is shown in Figure 1 [11]. 

It is important, that the mass spectrum of binary stars (Figure 1) consists of 
series of well-isolated lines which are representing the stars with integer values 
of ratios 3,4,5,A Z =  , corresponding hydrogen-3,4,5 ... or helium-6,8,10 ... 
(also line with the half-integer ratio 3 2A Z = , corresponding, probably, to 
helium-3, Be-6, C-9...). The existence of stable stars with ratios 3A Z ≥  raises 
questions. It is generally assumed that stars are composed of hydrogen-1, 
deuterium, helium-4 and other heavier elements with 2A Z ≈ . Nuclei with 

3A Z ≥  are the neutron-excess and so short-lived, that they can not build a 
long-lived stars. Neutron-excess nuclei can become stable under the action of 
mechanism of neutronization, which is acting inside the dwarfs. It is accepted to 
think that this mechanism must not work into the stars. The consideration of the 
effecting of the electron gas of a dense plasma on the nucleus is described in [6]. 
These calculations show that the electron gas of dense plasma should also lead to 
the neutronization mechanism and to the stabilization of the neutron-excess 
nuclei. This explains the existence of a stable of stars, where the plasma consists 
of nuclei with 3A Z ≥ . 

At considering of (Figure 1), the question is arising: why there are so few stars, 
which are composed by very stable nuclei of helium-4? At the same time, there 
are many stars with 4A Z = , i.e. consisting apparently of a hydrogen-4, as well  

 

 

4The use of these data is caused by the fact that only the measurement of parameters of binary star 
rotation gives a possibility to determine their masses with satisfactory accuracy. 
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Figure 1. The mass distribution of binary stars [11]. On abscissa, the 
logarithm of the star mass over the Sun mass is shown. Solid lines mark 
masses, which agree with selected values of A/Z from Equation (80). 

 
as stars with 3 2A Z = , which hypothetically could be composed by another 
isotope of helium - helium-3. This equation is discussed in [6]. 

It is important to note, that according to Equation (80) the Sun must consist 
from a substance with 5A Z = . This conclusion is in a good agreement with 
results of consideration of solar oscillations [5]. 

4.10.2. Radii of Stars 
Using Equation (21) and Equation (79), we can determine the star core radius: 

( ) ( )

1 2
10

2

9.79 101.42 cm.B

p

a c
Z A Z Z A ZGm

  ×
= ≈  

 

            (81) 

The temperature near the star surface is relatively small. It is approximately by 
3 orders smaller than it is inside the core. Because of it at calculation of surface 
parameters, we must take into consideration effects of this order, i.e. it is 
necessary to take into account the gravity action on the electron gas. At that it is 
convenient to consider the plasma cell as some neutral quasi-atom (like the 
Thomas-Fermi atom). Its electron shell is formed by a cloud of free electrons. 

Each such quasi-atom is retained on the star surface by its negative potential 
energy 

( )gravitational electric 0.+ <                      (82) 
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The electron cloud of the cell is placed in the volume 34π
3 sV rδ = , (where 

1 3

s
e

Zr
n

 
≈  
 

) under pressure eP . The evaporation of plasma cell releases energy 

PV e sPV= , and the balance equation takes the form: 

gravitational electric 0.PV+ + =                      (83) 

In cold plasma, the electron cloud of the cell has energy 2 1 3
PV ee n≈ . In very 

hot plasma at 
2 2

s

Z ekT
r

 , this energy is equal to 3
2PV ZkT= . On the star 

surface these energies are approximately equal: 
2

0 0
2 1 3

1 1.
e

k
e n α

 
≈ ≈ 

 

 


                      (84) 

One can show it easily, that in this case 

2 1 332 .
2PV eZ kT e n≈ ⋅                      (85) 

And if to take into account Equations (51)-(52), we obtain 
3

0

1.5 πPV Zk α
 

≈  
 





                     (86) 

The energy of interaction of a nucleus with its electron cloud does not change 
at evaporation of the cell and it can be neglected. Thus, for the surface 

( )
2

electric
0

22π .
3 p e

s

G Am Zm
n

= = −



P                (87) 

The gravitational energy of the cell on the surface 

( )gravitational
0

2 .p e
G Am Zm= − +



                (88) 

Thus, the balance condition Equation (83) on the star surface obtains the form 
3

0 0

4
1.5 π 0.eG Zm Zk α

 
− + = 

 

 
 
 

              (89) 

4.10.3. The 0   Ratio and 0  

With account of Equation (52) and Equations (78)-(77), we can write 
1 2

0 π 4.56
2

p

e

A m AZ
m Z

α
η

 
 

= ≈ 
  
 




                (90) 

As the star core radius is known Equation (81), we can obtain the star surface 
radius: 

( )

11

0 1 2

4.46 10 cm.
Z A Z

×
≈                      (91) 
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4.10.4. The Temperature of a Star Surface 
At known Equation (52) and Equation (75), we can calculate the temperature of 
external surface of a star 

( )

4
5

0 2
0

4.92 10 Z
A Z

 
= ≈ × 

 

 



                 (92) 

4.10.5. The Comparison with Measuring Data 
The mass spectrum (Figure 1) shows that the Sun consists basically from plasma 
with 5A Z = . The radius of the Sun and its surface temperature are functions 
of Z too. This values calculated at 5A Z =  and differen Z are shown in Table 
1. 

One can see that these calculated data have a satisfactory agreement the 
measured radius of the Sun 

106.96 10 cm= ×


                        (93) 

and the measured surface temperature 

5850 K=


                            (94) 

at 3Z = . 
The calculation shows that the mass of core of the Sun  

( ) 323, 5 9.68 10  gZ A Z= = ≈ ×                   (95) 

i.t. almost exactly equals to one half of full mass of the Sun 

( )3, 5
0.486

Z A Z= =
≈






                      (96) 

in full agreement with Equation (54). 
In addition to obtained determinations of the mass of a star Equation (80), its 

temperature Equation (92) and its radius Equation (91) give possibility to check 
the calculation, if we compare these results with measuring data. Really, 
dependencies measured by astronomers can be described by functions: 

( )
1
2 ,Const

A Z
=                           (97) 

( )
2

0 1 2 ,Const
Z A Z

=                         (98) 

 
Table 1. The calculated stellar parameters. 

Z 
,cm



   
(calculated (91)) 

,K


   
(calculated (92)) 

1 112.0 10×  1961 

2 111.0 10×  3923 

3 106.65 10×  5885 

4 105.0 10×  7845 
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( )
3

0 2 .
Const Z

A Z
=                          (99) 

If to combine they in the way, to exclude unknown parameter Z, one can 
obtain relation: 

5 4
0 0 Const=                           (100) 

Its accuracy can by checked. For this checking, let us use the measuring data 
of parameters of masses, temperatures and radii of close binary stars [12] (see 
[6]). The results of these measurements are shown in Figure 2, where the 
dependence according to Equation (100). It is not difficult to see that these data 
are well described by the calculated dependence. It speaks about successfulness 
of our consideration. 

5. The Thermodynamic Relations of Intra-Stellar Plasma 
5.1. The Thermodynamic Relation of Star Atmosphere 

Parameters 

Hot stars steadily generate energy and radiate it from their surfaces. This is 
non-equilibrium radiation in relation to a star. But it may be a stationary 
radiation for a star in steady state. Under this condition, the star substance can be 
considered as an equilibrium. This condition can be considered as quasi-adiabatic, 
because the interchange of energy between both subsystems—radiation and 
substance—is stationary and it does not result in a change of entropy of 
substance. Therefore, at consideration of state of a star atmosphere, one can base 
it on equilibrium conditions of hot plasma and the ideal gas law for adiabatic 
condition can be used for it in the first approximation. 

It is known, that thermodynamics can help to establish correlation between 
steady-state parameters of a system. Usually, the thermodynamics considers 
systems at an equilibrium state with constant temperature, constant particle 
density and constant pressure over all system. The characteristic feature of the 
considered system is the existence of equilibrium at the absence of a constant 
temperature and particle density over atmosphere of a star. To solve this 
problem, one can introduce averaged pressure 

2

4
0

ˆ ,GP ≈



                         (101) 

averaged temperature 

0
0

dˆ ~
T V

T
V

 
=  

 

∫ 


                    (102) 

and averaged particle density 

3
0

ˆ An ≈ 


                           (103) 

After it by means of thermodynamical methods, one can find relation between 
parameters of a star. 
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Figure 2. The relation between main parameters of stars (Equation (100)) and 
corresponding data of astronomical measurements for close binary stars are shown. 
These astronomical data were collected for the first time by K.F. Khaliullinin in his 
dissertation [12] (in Russian) and with his permission is republished in [6]. 

5.1.1. The cP/cV Ratio 
At a movement of particles according to the theorem of the equidistribution, the 
energy 2kT  falls at each degree of freedom. It gives the heat capacity 

3 2vc k= . 
According to the virial theorem [7] [8], the full energy of a star should be 

equal to its kinetic energy (with opposite sign), so as full energy related to one 
particle 

3
2

kT= −                          (104) 

In this case the heat capacity at constant volume (per particle over Boltzman’s 
constant k) by definition is 

d 3
d 2V

V

Ec
T

 = = − 
 

                      (105) 

The negative heat capacity of stellar substance is not surprising. It is a known 
fact and it is discussed in Landau-Lifshitz course [7]. The own heat capacity of 
each particle of star substance is positive. One obtains the negative heat capacity 
at taking into account the gravitational interaction between particles. 

By definition the heat capacity of an ideal gas particle at permanent pressure 
[7] is 

d ,
dP

P

Wc
T

 =  
 

                       (106) 

where W is enthalpy of a gas. 
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As for the ideal gas [7] 

,W NkT− =                        (107) 

and the difference between Pc  and Vc  

1.P Vc c− =                         (108) 

Thus in the case considered, we have 

1 .
2Pc = −                          (109) 

Supposing that conditions are close to adiabatic ones, we can use the equation 
of the Poisson’s adiabat. 

5.1.2. The Poisson’s Adiabat 
The thermodynamical potential of a system consisting of N molecules of ideal 
gas at temperature T and pressure P can be written as [7]: 

ln ln .Pconst N NT P Nc T TΦ = ⋅ + −              (110) 

The entropy of this system 

ln ln .PS const N N P Nc T= ⋅ − +                (111) 

As at adiabatic process, the entropy remains constant 

ln ln ,PNT P Nc T T const− + =                 (112) 

we can write the equation for relation of averaged pressure in a system with its 
volume (The Poisson’s adiabat) [7]: 

ˆ ,PV constγ =                        (113) 

where P

V

c
c

γ =  is the exponent of adiabatic constant. In considered case taking 

into account of Equations.(106) and (105), we obtain 

1 .
3

P

V

c
c

γ = =                         (114) 

As 1 3
0~V  , we have for equilibrium condition 

0
ˆ .P const=                        (115) 

5.2. The Mass-Radius Ratio 

Using Equation (101) from Equation (115), we use the equation for dependence 
of masses of stars on their radii: 

2

3
0

const=


                        (116) 

This equation shows the existence of internal constraint of chemical 
parameters of equilibrium state of a star. Indeed, the substitution of obtained 
determinations Equation (91) and (92)) into Equation (116) gives: 

( )5 6~Z A Z                       (117) 

Simultaneously, the observational data of masses, of radii and their temperatures 
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was obtained by astronomers for close binary stars [12]. The dependence of radii 
of these stars over these masses is shown in Figure 3 on double logarithmic scale. 
The solid line shows the result of fitting of measurement data 0.68

0 ~  . It is 
close to theoretical dependence 2 3

0 ~   (Equation (116)) which is shown by 
dotted line. 

If parameters of the star are expressed through corresponding solar values 

0ρ ≡





 and µ ≡





, that Equation (116) can be rewritten as 

2 3 1.ρ
µ

=                         (118) 

Numerical values of relations 2 3

ρ
µ

 for close binary stars are obtained from 

Table [12] (see [6]). 

5.3. The Mass-Temperature and Mass-Luminosity Relations 

Taking into account Equations (52), (25) and (42) one can obtain the relation 
between surface temperature and the radius of a star 

7 8
0 0~ ,                           (119) 

or accounting for Equation (116) 
7 12

0 ~                           (120) 
 

 
Figure 3. The dependence of radii of stars over the star mass. Here the radius of stars is 
normalized to the sunny radius, the stars masses are normalized to the mass of the Sum. 
The data are shown on double logarithmic scale. The solid line shows the result of fitting 
of measurement data 0.68

0 ~  . The theoretical dependence 2 3
0 ~   (Equation 

(116)) is shown by the dotted line. These astronomical data were collected for the first 
time by K.F. Khaliullinin in his dissertation [12] (in Russian) and with his permission is 
republished in [6]. 
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The dependence of the temperature on the star surface over the star mass of 
close binary stars [6] [12] is shown in Figure 4. Here the temperatures of stars 
are normalized to the sunny surface temperature (5875 C), the stars masses are 
normalized to the mass of the Sum. The data are shown on double logarithmic 
scale. The solid line shows the result of fitting of measurement data ( 0.59

0 ~  ). 
The theoretical dependence 7 12

0 ~   (Equation (120)) is shown by dotted 
line. 

If parameters of the star are expressed through corresponding solar values 

0τ ≡





 and µ ≡





, that Equation (120) can be rewritten as 

7 12 1.τ
µ

=                        (121) 

Numerical values of relations 7 12

τ
µ

 for close binary stars are shown in the 

last table of [6]. 
The analysis of these data leads to few conclusions. The averaging over all 

tabulated stars gives 

7 12 1.007 0.07.τ
µ

= ±                  (122) 

 

 
Figure 4. The dependence of the temperature on the star surface over the star 
mass of close binary stars. Here the temperatures of stars are normalized to 
surface temperature of the Sun (5875 C), the stars masses are normalized to 
the mass of Sum. The data are shown on double logarithmic scale. The solid 
line shows the result of fitting of measurement data ( 0.59

0 ~  ). The 

theoretical dependence 7 12
0 ~   (Equation (120)) is shown by dotted line. 

These astronomical data were collected for the first time by K.F. Khaliullinin 
in his dissertation [12] (in Russian) and with his permission is republished in 
[6]. 

https://doi.org/10.4236/jmp.2018.910120


B. V. Vasiliev 
 

 

DOI: 10.4236/jmp.2018.910120 1930 Journal of Modern Physics 
 

and we can conclude that the variability of measured data of surface temperatures 
and stellar masses has statistical character. Secondly, Equation (121) is valid for 
all hot stars (exactly for all close binary stars). 

The problem with the averaging of 2 3

ρ
µ

 looks different. There are a few of 

giants and super-giants in this Table. The values of ratio 2 3

ρ
µ

 are more than 2  

for them. It seems that, if to exclude these stars from consideration, the 
averaging over stars of the main sequence gives value close to 1. Evidently, it 
needs in more detail consideration. 

The luminosity of a star 

2 4
0 0 0~ .                          (123) 

at taking into account (Equation (116)) and (Equation (120)) can be expressed as 

11 3 3.67
0 ~ ~                        (124) 

This dependence is shown in Figure 5. 
It can be seen that all calculated interdependencies ( )  , ( )   and 
( )L   show a good qualitative agreement with the measuring data. At that it is 

important, that the quantitative explanation of mass-luminosity dependence 
discovered at the beginning of 20th century is obtained. 

The Compilation of the Results of Calculations 
Let us put together the results of calculations. It is energetically favorable for the 
star to be divided into two volumes: the core is located in the central area of the 
star and the atmosphere is surrounding it from the outside (Figure 6). 

The core has the radius: 

( ) ( )

1 2
11

2

1.41 102.08 cm.B

p

a c
Z A Z Z A ZGm

  ×
= ≈  

 

             (125) 

It is roughly equal to 1/10 of the stellar radius. 
At that the mass of the core is equal to 

26.84 .Ch

A
Z

=
 
 
 

                        (126) 

It is almost exactly equal to one half of the full mass of the star. 
The plasma inside the core has the constant density 

3
24 3 3

3

16 1.2 10 cm
9π B

Zn Z
a

−= ≈ ×                  (127) 

and constant temperature 
1 3

7
4

25 13 2.13 10 K.
28π B

c Z Z
ka

 × = ≈ × ×  
   

              (128) 
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Figure 5. The dependence of star luminosity on the star mass of close binary stars. The 
luminosities are normalized to the luminosity of the Sun, the stars masses are normalized 
to the mass of the Sum. The data are shown on double logarithmic scale. The solid line 
shows the result of fitting of measurement data 3.74~  . The theoretical dependence 

11 3~   (Equation (124)) is shown by dotted line. These astronomical data were 
collected for the first time by K.F. Khaliullinin in his dissertation [12] (in Russian) and 
with his permission is republished in [6]. 

 

 
Figure 6. The schematic of the star interior. 

 
The plasma density and its temperature are decreasing at an approaching to 

the stellar surface: 

( )
6

en r n
r

 =  
 


                      (129) 

and 
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4

.rT
r

 =  
 

 
                       (130) 

The external radius of the star is determined as 

( )

1 2

11

0 1 2

π 6.44 10 cm
2

p

e

A m
Z
m Z A Z

α
η

 
  ×

= ≈ 
  
 

             (131) 

and the temperature on the stellar surface is equal to 

( )

4
5

0 2
0

4.92 10 Z
A Z

 
= ≈ × 

 

 



               (132) 

5.4. About 《Black Holes》 

It seems that the idea about the 《black holes》existence is organic related to the 
suggestion about an inevitable collapse of large cosmic bodies on the last stage of 
their evolutions. However, the models of collapsing masses were appearing as a 
consequence of the rejection from attention of the gravity induced electric 
polarization of the intra-stellar plasma. At a thermal energy lowering, the 
gravitational contraction of cooling star is balanced by a counteraction of 
electrically polarized plasma. If to take into account this mechanism, the 
possibility of collapse must be excludes. 

It allows newly to take a look on the 《black hole》 problem. 
In accordance with the standard approach, the Schwarzshield radius of 《black 

hole》 with mass bhM  is 

2

2 bh
bh

GMr
c

=                        (133) 

and accordingly the average density of 《black holes》: 
6

2 3

3 .
32πbh

bh

c
M G

γ =                      (134) 

The estimations are showing that all large inwardly-galactic objects of all 
classes—stars, dwarves, pulsars, giants—possess the mass of the order ChM  (or 
10 ChM ). As the density of these objects are small relatively to the limit Equation 
(134). As result, a searching of 《black hole》 inside stellar objects of our Galaxy 
seems as hopeless. 

On the other hand, stellar objects, consisting of hot relativistic plasma—a 
quasars, in accordance with their mass and density, may stay 《black holes》. The 
process of collapse is not needed for their creation. As the quasar mass 

qu ChM M , all other stellar objects must organize their moving around it and 
one can suppose that a 《black hole》 can exist at the center of our Galaxy. 

6. Conclusions 

Evidently, the main conclusion from the above consideration consists in 
statement of the fact that now there are quite enough measuring data to place 
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the theoretical astrophysics on a reliable foundation. All above measuring data 
are known for a relatively long time. The traditional system of view based on the 
Euler equation in the form Equation (1) could not give a possibility to explain 
and even to consider with due proper attention to these data. Taking into 
account the gravity induced electric polarization of plasma and a change starting 
postulate gives a possibility to obtain results for explanation of measuring data 
considered above. 

Basically these results are the following. 
Using the standard method of plasma description leads to the conclusion that 

at conditions characteristic for the central stellar region, the plasma has the 
minimum energy at constant density n  and at the constant temperature  . 

This plasma forms the core of a star, where the pressure is constant and 
gravity action is balanced by the force of the gravity induced by the electric 
polarization. The virial theorem gives a possibility to calculate the stellar core 
mass   and its radius  . At that the stellar core volume is approximately 
equal to 1/1000 part of full volume of a star. 

The remaining mass of a star located over the core has a density approximately 
thousand times smaller and it is convenient to name it a star atmosphere. At 
using thermodynamical arguments, it is possible to obtain the radial dependence 
of plasma density inside the atmosphere 6

an r−≈  and the radial dependence of 
its temperature 4

a r−≈ . 
It gives a possibility to conclude that the mass of the stellar atmosphere a  

is almost exactly equal to the stellar core mass.Thus, the full stellar mass can be 
calculated. It depends on the ratio of the mass and the charge of nuclei 
composing the plasma. This claim is in a good agreement with the measuring 
data of the mass distribution of binary stars (and close binary stars too).5 At that 
it is important that the upper limit of masses of both binary stars and close 
binary stars is in accordance with the calculated value of the mass of the 
hydrogen star. The obtained formula explains the origin of sharp peaks of stellar 
mass distribution. They evidence that the substance of these stars has a certain 
value of the ratio A Z . In particular, the solar plasma consists of nuclei with 

5A Z = . 
Knowing temperature and substance density on the core and knowing their 

radial dependencies, it is possible to estimate the surface temperature 0  and 
the radius of a star 0 . It turns out that these measured parameters must be 
related to the star mass with the ratio 5 4

0 0 ~   . It is in a good agreement 
with measuring data. 

Using another thermodynamical relation—the Poisson’s adiabat—gives a way 
to determine the relation between radii of stars and their masses 3 2

0 ~  , and 
between their surface temperatures and masses 5 7

0 ~  . It gives the 
quantitative explanation of the mass-luminosity dependence. 

The model described above gives a quite satisfactory quantitative explanation 

 

 

5The measurement of parameters of these stars has a satisfactory accuracy only. 
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to other astronomical data, such as seismic oscillations of the solar surface, 
magnetic fields of stars, etc. [5]. 

The concept of star evolution, including their collapse and “black hole” 
formation, is flawed. 
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