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Abstract 
The diagrammatic approach to the collision problems in Newtonian me-
chanics is useful. We show in this article that the same technique can be ap-
plied to the case of the special relativity. The two circles play an important 
role in Newtonian mechanics, while in the special relativity, we need one cir-
cle and one ellipse. The circle shows the collision in the center-of-mass sys-
tem. And the ellipse shows the collision in the laboratory system. These two 
figures give all information on two dimensional elastic collisions in the spe-
cial relativity. 
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1. Introduction 

Collisions of the interacting particles have fundamental importance in physics. 
We often use the accelerated particles to investigate the substances. Cosmic ray 
which is often accelerated up to almost the speed of light collides with other 
particles in the air. For those particles which have high energy, special relativity 
has to be considered to investigate the collisions. 

Diagrammatic technique gives the powerful tool to investigate the collision in 
Newtonian mechanics [1] [2] [3]. In this article, we apply it to the relativistic 
collision problems [4] [5]. The two circles played an important role in 
Newtonian mechanics, while in the special relativity one circle and one ellipse 
play a crucial role. When the speed of the projectile tends to small compared to 
the speed of light, the ellipse becomes a circle and the Newtonian case recover in 
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this limit [5]. 
This paper is organized in the following way. In Section 2, we recall two dimensional 

elastic collisions with equations. In Section 3, we show the diagrammatic approach for 
two dimensional elastic collision in order. First, we draw a circle for the 
center-of-mass system. Then we add to draw an ellipse to obtain the momentum 
after the collision in the laboratory system. In Section 4, we investigate the 
special case in which the two particles are identical. We also compare the cases 
that the projectile has different speed and we find that the low speed limit 
recovers the Newtonian case [3] [5]. Section 5 is devoted to a conclusion. 

2. Elastic Collision between Two Particles in Two Dimensions 

Let us take a look the two dimensional elastic collision for later use. Figure 1 
shows the collisions from the point of view in the laboratory and center-of-mass 
system and also show the notation which we use in this article. The projectile A 
has mass Am  and the velocity Av  and the target B has mass Bm  and the 
velocity Bv  before the collision. These quantities are known parameters or 
initial conditions in the laboratory system. The velocities after the collision are 
distinguished by the primes. And the asterisk is attached to the parameter in the 
center-of-mass system. In this article, we restrict ourselves that the target particle 
is at rest B =v 0  in the laboratory system before the collision. 

The relation between the laboratory and center-of-mass systems is governed 
by the Lorentz transformation [6]. Let V cβ =  be the relative velocity between 
two systems and is given by 

,A

A B

p
E c m c

β =
+                        

(1) 

where c is the speed of light. The momentum Ap  is defined by its velocity Av  

as ( )21A A A Ap m v v c= −  and the energy is given by ( )22
A A AE c p m c= + . 

The γ-factor is obtained by 

( ) ( )2 2 2

1 .
1 2

A B

A B A B

E c m c

m c m c E m
γ

β

+
= =

− + +              

(2) 

 

 
Figure 1. Left: Collisions in the laboratory system. Right: Collisions in the center-of-mass system. 
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From the Lorentz transformation, the momentum of the incident particles in 
the center-of-mass system is given by 

( ) ( )2 2
,

2
A B

A B

A B A B

p m cp p p
m c m c E m

∗ ∗ ∗= = =
+ +             

(3) 

where note that the momenta in the center-of-mass system are the same in 
magnitude after the collision: A Bp p p∗ ∗ ∗′ ′= = . 

In the same way as the Newtonian mechanics [3], let ( )cos ,sinθ θ∗ ∗ ∗=n  be 
the scattering angle of the projectile after the collision in the center-of-mass 
system. Since the angle θ ∗  is not determined by the conservations of energy and 
momentum, we fix it according to the collision problems. Let ( ),A Ax Ayp p′ ′ ′=p  be 
the ,x y -components of the momentum of the projectile in the laboratory 
system after the collision. The Lorentz transformation gives the relation between 
the laboratory system and center-of-mass system as follows: 

cos ,Ax Ap E c pβγ γ θ∗ ∗ ∗′ = +                    (4) 

sin ,Ayp p θ∗ ∗′ =                         (5) 

where ( ) ( )
2 2

A A AE c p m c E c∗ ∗ ∗′= + = . From these equations and the relation 
2 2cos sin 1θ θ∗ ∗+ = , we obtain 

2 2

1.AyAx A pp E c
p p
βγ
γ

∗

∗ ∗

′ ′  −
+ =   
                     

(6) 

This equation indicates the ellipse [4] whose parameters 

minor semiaxis 
( ) ( )2 2

,
2

A B

A B A B

p m cp
m c m c E m

∗ =
+ +           

(7) 

major semiaxis 
( ){ }

( ) ( )

2

2 2 ,
2

A B A B

B
A B A B

p m c E m
p E c

m c m c E m
γ βγ∗ ∗

+
= =

+ +       
(8) 

eccentricity 
( ) ( )

2

2 2 ,
2

A B

A B A B

p m cp
m c m c E m

βγ ∗ =
+ +            

(9) 

midpoint of foci 
( ){ }

( ) ( )

2

2 2 ,
2

A A A B

A
A B A B

p m c E m
E c

m c m c E m
βγ ∗

+
=

+ +        
(10) 

are uniquely determined by the initial conditions of the collision. The energy of the 

target in the center-of-mass system is defined by ( ) ( )
2 2

B B BE c p m c E c∗ ∗ ∗′= + = , 

which is the same in magnitude before and after the collision. 

3. Diagrammatic Technique 

In this section, we deduce all relations, which we recalled in the former section, 
from the diagrammatic technique. 

Firstly, we draw a dashed circle whose radius is A Bp p p∗ ∗ ∗= =  in Equation 
(3), as depicted in Figure 2. The dashed circle shows the collision in the  
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Figure 2. Collision in the center-of-mass system. The figure shows that the masses 

4Am c =  and 6Bm c =  and the velocity 0.9Av c=  denote 3.892p∗ = . The vectors 
 
A
∗=OA p  and  

B
∗=OB p  are the momenta of incident particles before the collision. The 

vectors A
∗′=OC p  and B

∗′=OD p  are the momenta of outgoing particles after the 
collision. The angle COA θ ∗∠ =  is not determined by the conservation laws only. We 
fix it according to the given collision problems. 

 
center-of-mass system. Now, we draw arrows of momenta into the circle. The 
momenta before the collision are supposed to be along the x-axis 

   , .A B A
∗ ∗ ∗= = = −OA p OB p p                   (11) 

After the collision, the momenta stay the same in magnitude, but change the 
direction 

, .A B A
∗ ∗ ∗′ ′ ′= = = −OC p OD p p                   (12) 

Since the scattering angle COAθ ∗ = ∠  cannot be determined by the 
conservations of momentum and energy, the point C lies anywhere on the circle 
and the point D is opposite side against the point C. It is determined according 
to what we are asked in the collision problems. 

Next, as shown in Figure 3, we draw an ellipse according to Equation (6) with 
the parameters from Equations (7) to (10). The point E is the midpoint of the 
foci E’ and E”. This ellipse signifies AOE E cβγ ∗=  and BEG E cβγ ∗= , and we 
find from Equations (8) and (10) that 

A A BOG p E c E c OE EGβγ βγ∗ ∗= = + = +              (13) 

is the momentum of the projectile in the laboratory system before the collision. 
Next, as depicted in Figure 4, we draw a broken line from the point C in 

parallel to the px-axis until the broken line intersects with the ellipse. We call this 
point of intersection as F. Then, the vector A′=OF p  becomes the momentum 
of the projectile A after the collision. The angle FOG θ∠ =  is the scattered 
angle of the particle A in the laboratory system. We note that the angel θ ∗  in 
Figure 2 and the angle θ  in Figure 4 are related each other. Once the θ ∗  is 
fixed by the given collision problems, the θ  is determined according to the 
prescription stated above. And the converse is also true. If the collision problem  
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Figure 3. The ellipse Equation (6) can be drawn according as the parameters from 
Equations (7) to (10). The solid circle E’ and E” on the px-axis are the foci of this ellipse. 
The point E is the midpoint of the foci. 

 

 
Figure 4. The ellipse implies the collision in the laboratory system in case of the incident 
velocity 0.9Av c= . The initial condition is as the same with Figure 2. The solid circles 

on the px-axis denote the foci of the ellipse whose coordinates are 6.144xp =  and 1.096. 

And the eccentricity is 2.524. The vectors A′=OF p  and B′= =OH FG p  show the 
momenta of the projectile and the target after the collision. 

 
gives the angle θ  in the laboratory system, we first draw the vector A′=OF p  
in the ellipse. Then, we trace from F to C along the broken line. The vector 

A
∗′=OC p  shows the momentum of the projectile A in the center-of-mass 

system. And the angle COA θ ∗∠ =  is the scattered angle of this system. 
Next, the vector B′= =FG OH p  shows the momentum of the target B in the 

laboratory system after the collision. The angle FGO GOH φ∠ = ∠ =  is the 
scattered angle of the target B. The vector = + = +OG OE EG OF OH  shows 
the momentum conservation law A A B′ ′= +p p p  of the collision. 

The ellipse has or has not intersections with py-axis, according as A Bm m<  
or A Bm m> . It is found from the magnitude of pγ ∗  and AE cβγ ∗  in 
Equations (8) and (10). The corresponding diagrams are shown in Figure 4 and 
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Figure 5. As we see from Figure 4 that if A Bm m< , the projectile A can have 
any direction after the collision. However, in case of A Bm m>  in Figure 5, the 
projectile A can be deflected only through an angle not exceeding maxθ  from its 
original direction. This case is shown in Figure 6. The maximum value of maxθ  
is determined by the position F at which OF is a tangent to the ellipse. 

4. Identical Particles and Newtonian Limit 

The case A Bm m m= =  becomes quite simple as shown in Figure 7. The 
parameters of the ellipse are as follows: 

minor semiaxis 
( )

,
2

A

A

mcpp
mc E c mc

∗ =
+              

(14) 

 

 
Figure 5. If A Bm m> , the ellipse does not have intersections with the py-axis. The figure 

shows that the masses 4Am c =  and 3Bm c =  and the velocity 0.9Av c=  denote 

2.769p∗ = . The solid circles on the px-axis denote the foci of the ellipse whose 
coordinates are 7.047xp =  and 1.935. And the eccentricity is 2.556. 

 

 
Figure 6. The initial condition is as the same with Figure 5. If A Bm m> , the projectile A 

can be deflected only through an angle not exceeding max FOGθ = ∠  from its original 
direction. The line segment OF is a tangent of the ellipse. 
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Figure 7. The incident particles have the same mass 4A Bm c m c mc= = = . The py-axis is 

a tangent of the ellipse. The projectile with velocity 0.9Av c=  collides with the target 
which is at rest. The solid circles on the px-axis denote the foci of the ellipse whose 
coordinates are 1.541xp =  and 6.718. And the eccentricity is 2.588. 

 

major semiaxis ,
2

A
B

pp E cγ βγ∗ ∗= =
              

(15) 

eccentricity ,
2

AE c mcpβγ ∗ −
=

                
(16) 

midpoint of foci .
2

A
A

pE cβγ ∗ =
                

(17) 

In this case, since Ap E cγ βγ∗ ∗= , the py-axis becomes a tangent to the ellipse 
and the tip of the vector B′=OH p  is also on the ellipse. 

The cases of which the initial speed of the projectile A has 0.6Av c=  and 
0.1Av c=  are shown in Figure 8 and Figure 9. Here, we note that as we see 

from Equations (14)-(17), the different speed of the incident particle gives the 
different ellipse in magnitude. As the speed of the incident particle decreases, the 
eccentricity of the ellipse decreases and the ellipse begins to resemble a circle [3] 
[5]. It is found that if we take the limit with c →∞ , the parameters in 
Equations (7)-(10) become 

minor semiaxis ,B
A

A B

mp p
m m

∗ →
+                

(18) 

major semiaxis ,B
B A

A B

mp E c p
m m

γ βγ∗ ∗= →
+            

(19) 

eccentricity 0,pβγ ∗ →                     (20) 

midpoint of foci .A
A A

A B

mE c p
m m

βγ ∗ →
+              

(21) 
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Figure 8. The incident particles have the same mass 4A Bm c m c= = . The projectile A has 

the velocity 0.6Av c=  and the target is at rest. The solid circles on the px-axis denote the 

foci of the ellipse whose coordinates are 1xp =  and 2. And the eccentricity is 0.5. 
 

 
Figure 9. The incident particles have the same mass 4A Bm c m c= = . The projectile A has 

the velocity 0.1Av c=  and the target is at rest. The solid circles on the px-axis denote the 
foci of the ellipse whose coordinates are 0.191xp =  and 0.211. And the eccentricity is 
0.010. 

 
The semiaxes become the same length and the eccentricity tends to zero. The 

case of the Newtonian collision problems [3] [5] is recovered in this limit. 

5. Conclusion 

We derive the diagrammatic presentation of the two dimensional elastic collision 
problem in the special relativity. We draw the circle for the center-of-mass 

https://doi.org/10.4236/wjm.2018.89026


A. Ogura 
 

 

DOI: 10.4236/wjm.2018.89026 361 World Journal of Mechanics 
 

system and the ellipse for the laboratory system. Those circle and ellipse show 
the whole story of the two dimensional elastic collisions. When we use the graph 
paper for drawing those figures, we are able to measure the length of momentum 
vectors and the scattered angle by using the ruler and the protractor. This 
diagrammatic technique can help us understand collision problems qualitatively 
and quantitatively. 
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