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Abstract 
I show how many connections of Γ  are presently existing from   to β  
as they are being inputted simultaneously through tensor products. I plan to 
address the Quantum state of this tensor connection step by step throughout 
the application presented. Also, I will show you how to prove that the con-
nection is true for this tensor connection through its output method using a 
small bit of tensor calculus and mostly number theory. 
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1. Introduction 

Partial Quantum Tensors in summary, are network connections within the 
Quantum networks. These connections can be well understood using tensor 
calculus and even number theory. Tensor Calculus for one example, can be used 
to analyze the flow of electrons and to verify the movement within the electrons 
directions. Well, the reason why this application is called, “Partial Quantum 
Tensors” is because we only need to use partial methods within tensor calculus 
to analyze and verify the flow of Quantum input and output connections. The 
reason being is that Tensor Calculus can only verify the flow of particles or 
electrons that are perceptible through Euclidean space as this was first thought 
of by Neugebauer (1969) [1]. But in Quantum Networking, particles or electrons 
could be in two places at once. So how does that work? Well with Quantum 
connections we can’t just use only tensor calculus to prove my application; we 
will have to use a reliable mathematical method that works well with Quantum 
mechanics, which will be number theory in this case. Number Theory combined 
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with Tensor Calculus should give off effective results with this application 
because the many methods of Number Theory are extremely useful in relation to 
Quantum Mechanics such as the Riemann Zeta functions expressed within the 
Quantum Circuits. I will first start off this application by introducing several 
definitions to make this application come alive in the Quantum Networks. 

2. The Formulation of Quantum Networks 

1.0 Definition: The tensor connection ( )2 βΓ   holds a double input 
connection with 2Γ  clearly in conjunction with of course   and β . 

1.0 Theorem: Now, we can only locate the connections through tensor 
processing of all individual connections  . Only then will we be able to send 
input signals Σ , to   and β . 

1.1 Definition: Let ⊗  equals stable input connection and ⊕  equals 
unstable but working input connection. These are the main mechanisms for the 
tensor input connections. 

1.2 Definition: Out of an arbitrary instance, γ  will indicate the best signal 
Σ  possible. 

1.0 Proposition: Assume that ε  and ξ  are the Quantum Network areas 
that allow for a constant simultaneous connection for the tensor input methods. 

1.3 Definition: We have to now assume that once our connection is in 
working order, we have to verify  ’s simultaneous tensor connections of   
and β  for Σ ’s latency. 

1.4 Definition: Let † and ‡  equal ∇  and ∆  if input connection results 
are precise. 

1.5 Definition: Let n substitute for Γ  if first connection is effective. 

3. Verifying the Flow of the Quantum Connections 
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As we can see from above in Expression (1), we used the tensor methods to find 
the stable connection between   and β . To make things more coherent, we  
used 



⋅  to carry out our mixed functional input connection and used ∇  to  

balance both   and β  into the stable first wave of connections as presented 
above. 

4. Pinpointing the Network Groups 

We will be using tensor group theory to verify the result of the first wave of  

connections 
( )

2nξ

γ
β+ †

 over   for ( )2 βΓ  . Lo-keng Hua, Luogeng Hua,  

Yuan Wang, Springer-Verlag, (1981), made great contributions to understanding 
this mathematical method by using Number Theory to pinpoint the operator 
groups of numerical analysis’s which we use today in Quantum Mechanics and 

https://doi.org/10.4236/apm.2018.88046


A. Dente 
 

 

DOI: 10.4236/apm.2018.88046 766 Advances in Pure Mathematics 
 

such as this application [2]. M. Hassani (2004) helped us draw a path in 
understanding the connection made on network graphs by unique ways of using 
Number theory and Integer sequences combined [3]. Bombieri, Enrico (1990), 
helped form min/max of bounded finite and infinite sets for Mordell revised 
conjecture which created new mathematics for understanding the limits and 
bounds of Quantum group sets and operators [4]. 
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5. Acquiring Network Efficiency 

1.1 Theorem: As seen in Expression (2) and (3), first wave of connections for 
the tensor product inputs yielded effective but not the best of tensor connections 
  due to there not being † but instead ∇ . First wave connection results:  

( )β

γ

⊕Σ ⋅Σ
=

+ Σ



  will have to overlap with the second wave connection results β   

to gain a more precise input connection to verify that   of ( )2Γ   will indeed 
benefit from the convergence of the second wave input connections β . Halmos, 
Paul (1974) first sought out an overview of this with his findings in vector 
calculus based off of finite dimensions [5]. We can see this working out precisely 
in Expression (4). 
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6. Input Connections Start to Conjoin Simultaneously 

1.2 Theorem: As the transition is taking place in Expression (4) and (5),   will 
be redundant because all futile input connections have just been eradicated from 
the input source of the Quantum Network areas and will only be left with 
solving for the exact product of β  which in return will help with solving the 
exact connection of   or ( )2Γ  . Faltings, Gerd (1994), found that in algebraic 
geometry, algebra and geometry gave input to simultaneous expressions to 
explain elliptic systems that conjoined together [6]. Aguiar, M., Mahajan, S. 
(2010) used Monoidal Functors to understand The Schubert Statistic which in 
return helped us understand the inverse function of such connections that were 
made in his mathematical experiment and this also helped us form our input 
connection for the Quantum Networks [7]. 
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Due to there being ‡  for both   and β  in Expression (5), means we 
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have found a precise input connection for both first wave connections and 
second wave connections. Also, γ  over Σ  in our tensor input product 
verifies that both of these connections are indeed truly accurate. 
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7. Both Connections Verified 

1.0 Lemma: Expression (6) is unraveling to us how   benefited from β  and 
while Expression (7) is showing us how the effectiveness of the connections n 
has remained constant throughout both first and second wave connections. Also, 
it’s showing us that the first and second wave connection of   and β  do 
indeed have a precise verifiable simultaneous connection with the double input 
tensor connection ( )2 βΓ   that we have evaluated within the Quantum 
networks. 

8. Proving That the Verified Networks Are True 

To prove that the input connection is correct even further, we will trace it from  

the source of its output connection through: [ ] ( )
2

n
β

Σ 
Γ +  

 
 with respect to n  

and Γ  over Σ  for the output tensor method of integration for ( )2 βΓ  . These 
results based on Quantum Mechanics can be scrutinized thoroughly in a similar 
manner using, (2007) Grillet Pierre’s methods of abstract algebra where he helps 
us understand his advanced workings of group theory which then shaped the 
way we apply tensor calculus and number theory [8]. 
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1.1 Lemma: So far, the imbalance and balance between 2

n


 of Expression (8)  

has yielded a semi stable number of connections for n with respect to Γ  over 
Σ . Though β  second wave of output connections seem to be providing the 
most fluent output signals γ  with respect to the integration of Σ  while   is 
showing signs of balance ∆  for its first wave of output connections but it does 
not have the best response signal for its output connection γ  as precisely 
shown in Expression (9). However, it’s still showing signs as an effective output 
source in relation to its input connection described in Expression (7) due to n 
being constant overall with   and which can be seen here unraveling in 
Expression (10). 
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9. Verifying the Output Source of the Input Connections 

1.3 Theorem: We can clearly see that n is conjoining with β  to increase the  

output sources speed and fluency of   to indeed prove that: [ ] ( )
2

n
β

Σ 
Γ +  

 
 

input source measures the effectiveness of it’s stable output source: 
2n


 and  

to prove its original network connection ( )2 βΓ  . This can be seen in Expression 
(10) and Expression (11). 
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Now that we have the integration of our output connections reaching fluent 
and efficient stability for  , we can see that our first output source has a 
precise reading ‡  with the help of the accurate output readings from β’s second 
output source. Koshlyakov (1964), made this methodology possible by giving a 
clear and thorough understanding of second order partial differential equations 
and now we can formulate a better understanding of how the Quantum states 
work [9]. 
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10. Stable Output Source of the Input Connections Has Been 
Achieved 

We can now clearly see that after much stability balancing between both output 
connections ∆  with much respect to n, Γ  has found the best stable output 
connection readings for   and with β’s output source connections for:  

[ ] ( )
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 with respect to ( )2 βΓ   as seen in Expression (12). 
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1.4 Theorem: Since n has shown the effectiveness of both   and β , we 
can clearly see the accuracy between our input and output sources that are 
feeding off of the connections simultaneously and with the fluency of both 
output readings that lead back to our main tensor connection ( )2 βΓ   without 
any latency as seen above in Expression (13). This is our final answer. 

11. Conclusions 

It was Gregorio Ricci who first invented tensor calculus and Pierre de Fermat 
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who invented number theory. But it became very interesting when Quantum 
Mechanics grabbed a chair to sit next to his friends, “Tensor Calculus and 
Number Theory”. Now we came up with new mathematical expressions and 
notations. It’s the very same reason why I was inspired to do this paper and 
especially the mathematical Expressions of (1)-(13) in which I used some tensor 
product applications but mostly number theory to prove the connections of both 
input and output scenarios. I made sure my methods of explanations are as clear 
and concise as possible for the reader. I would also like to mention on a side note 
that I’m hoping this manuscript will be possibly used in applied mathematics 
and applied physics in the near future. To back up my hopefulness, the reason 
being is because you can yield results with my formula using applied mathematics. 
Not just for finding the input and output sources of a Quantum network. Here’s 
a great example of what I’m talking about. My equation formula: ( )2 βΓ   used 
as an applied mathematical formula would look like this: 

( ) ( ) ( )2 3 67 4 7 4 117649 4 470596= = = . This is our answer. 
It can also be written as: ( )( )2 37 4 470596⋅ =  to make the process quicker but 

still yielding the same answer as the first formula that I presented. I firmly 
believe my formula could be used for several other mathematical applications. I 
take pleasure in the creation of this paper. Thank you for reading. 
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