

Geodesic Lightlike Submanifolds of Indefinite Sasakian Manifolds^{*}

Junhong Dong¹, Ximin Liu²

¹Department of Mathematics, South China University of Technology, Guangzhou, China ²School of Mathematical Sciences, Dalian University of Technology, Dalian, China E-mail: dongjunhong-run@163.com, ximinliu@dlut.edu.cn Received July 23, 2011; revised August 15, 2011; accepted August 25, 2011

Abstract

In this paper, we study geodesic contact CR-lightlike submanifolds and geodesic screen CR-lightlike (SCR) submanifolds of indefinite Sasakian manifolds. Some necessary and sufficient conditions for totally geodesic, mixed geodesic, \overline{D} -geodesic and D'-geodesic contact CR-lightlike submanifolds and SCR submanifolds are obtained.

Keywords: CR-Lightlike Submanifolds, Sasakian Manifolds, Totally Geodesic Submanifolds

1. Introduction

A submanifold M of a semi-Riemannian manifold \overline{M} is called lightlike submanifold if the induced metric on M is degenerate. The general theory of a lightlike submanifold has been developed by Kupeli [1] and Bejancu-Duggal [2].

The geometry of CR-lightlike submanifolds of indefinite Kaehler manifolds was studied by Guggal and Bejancu [2]. The geodesic CR-lightlike submanifolds in indefinite Kaehler manifolds were studied by Sahin and Günes [3,4].

Lightlike submanifold of indefinite Sasakian manifolds can be defined according to the behavior of the almost contact structure, and contact CR-lightlike submanifolds and screen CR-lightlike (SCR) submanifolds of indefinite Sasakian manifolds were studied by Duggal and Sahin in [5]. The study of the geometry of submanifolds of indefinite Sasakian manifolds has been developed by [6] and others.

In this paper, geodesic contact CR-lightlike submanifolds and geodesic screen CR-lightlike (SCR) submanifolds of indefinite Sasakian manifolds are considered. Some necessary and sufficient conditions for totally geodesic, mixed geodesic, \overline{D} -geodesic and D'-geodesic contact CR-lightlike submanifolds and SCR submanifolds are obtained.

2. Preliminaries

A submanifold M^m immersed in a semi-Riemannian manifold $(\overline{M}^{m+n}, \overline{g})$ is called a lightlike submanifold if it admits a degenerate metric g induced from \overline{g} whose radical distribution *RadTM* is of rank r where $1 \le r \le m$, *RadTM* = $TM \cap TM^{\perp}$, where

$$TM^{\perp} = \bigcup_{x \in M} \left\{ u \in T_x \overline{M} \mid \overline{g}(u, v) = 0, \forall v \in T_x \overline{M} \right\}.$$

Let S(TM) be a screen distribution which is semi-Riemannian complementary distribution of *RadTM* in *TM*, *i.e.* $TM = RadTM \perp S(TM \cdot As S(TM))$ is a nondegenerate vector subbundle of $TM|_M$, we put $T\overline{M}|_M = S(TM) \perp S(TM)^{\perp}$.

We consider a nondegenerate vector subbundle of S(TM), which is a complementary vector bundle of *RadTM* in TM^{\perp} . Since, for any local basis $\{\xi_i\}$ of *RadTM*, there exists a local frame $\{N_i\}$ of sections with value in the orthogonal complement of $S(TM^{\perp})$ such that $\overline{g}(\xi_i, N_i) = \delta_{ij}$ and $\overline{g}(N_i, N_j) = 0$, there exists a lightlike, transversal vector bundle ltr(TM) locally spanned by $\{N_i\}$. Let tr(TM) be the complementary (but not orthogonal) vector bundle to TM in $T\overline{M}|_M$.

Then

$$tr(TM) = ltr(TM) \perp S(TM^{\perp}),$$
$$T\overline{M} = S(TM) \perp [RadTM \oplus ltr(TM)] \perp S(TM^{\perp}).$$

^{*}This work is supported by NSFC (10931005).

Now, let $\overline{\nabla}$ be the levi-Civita connection on \overline{M} , we have

$$X\left(\overline{g}\left(Y,Z\right)\right) = \overline{g}\left(\overline{\nabla}_{X}Y,Z\right) + \overline{g}\left(Y,\overline{\nabla}_{X}Z\right),$$

$$\forall X, Y, Z \in \Gamma\left(TM\right),$$
(2.1)

$$\overline{\nabla}_{X}Y = \nabla_{X}Y + h(X,Y), \ \forall X,Y \in \Gamma(TM),$$
(2.2)

$$\overline{\nabla}_{X}V = -A_{V}X + \nabla_{X}^{t}V, \forall X \in \Gamma(TM),$$

$$V \in \Gamma(tr(TM)),$$
(2.3)

where $\{\nabla_X Y, A_V X\}$ and $\{h(X, Y), \nabla_X^t V\}$ belong to $\Gamma(TM)$ and $\Gamma(tr(TM))$,

respectively. Using the projectors

 $l:tr(TM) \rightarrow S(TM)$ and $s:tr(TM) \rightarrow ltr(TM^{\perp})$, from [1], we have

$$\overline{\nabla}_{X}Y = \nabla_{X}Y + h^{l}(X,Y) + h^{s}(X,Y), \forall X,Y \in \Gamma(TM),$$
(2.4)

$$\overline{\nabla}_{X}N = -A_{N}X + \nabla_{X}^{l}N + D^{s}(X,N), \forall N \in \Gamma(ltr(TM)),$$
(2.5)

$$\overline{\nabla}_{X}W = -A_{W}X + \nabla_{X}^{s}W + D^{l}(X,W), \forall W \in \Gamma(S(TM^{\perp})).$$
(2.6)

Denote the projection of TM to S(TM) by P, we have the decomposition

$$\nabla_{X} PY = \nabla_{X}^{*} PY + h^{*} (X, PY), \qquad (2.7)$$

$$\nabla_X \xi = -A_{\xi}^* X + \nabla_X^{*t} \xi, \qquad (2.8)$$

for any $X, Y \in \Gamma(TM), \xi \in \Gamma(RadTM), N \in \Gamma(ltr(TM))$. From the above equations we have

$$\overline{g}\left(h^{l}\left(X,Y\right),\xi\right) = g\left(A_{\xi}^{*}X,Y\right),$$
(2.9)

$$\overline{g}\left(h^{*}(X, PY), N\right) = g\left(A_{N}X, PY\right), \qquad (2.10)$$

$$\overline{g}\left(h^{l}\left(X,\xi\right),\xi\right) = 0, A_{\xi}^{*}\xi = 0.$$
(2.11)

Definition 2.1 A (2n + 1)-dimensional Semi-Riemannian manifold $(\overline{M}, \overline{g})$ is called a contact metric manifold if there is a (1,1) tensor field ϕ , a vector field V, called the characteristic vector field, and its dual 1-form η such that

$$\overline{g}(\phi X, \phi Y) = \overline{g}(X, Y) - \varepsilon \eta(X) \eta(Y), \overline{g}(V, V) = \varepsilon,$$
(2.12)

$$\phi^{2}(X) = -X + \eta(X)V, \overline{g}(X,V) = \varepsilon \eta(X), \quad (2.13)$$

$$d\eta(X,Y) = \overline{g}(X,\phi Y), \forall X,Y \in \Gamma(TM), \qquad (2.14)$$

where $\varepsilon = \pm 1$.

From the above definiton, it follows that

Copyright © 2011 SciRes.

$$\phi V = 0, \eta \circ \phi = 0, \eta (V) = 1. \tag{2.15}$$

379

The $(\phi, V, \eta, \overline{g})$ is called a contact metric structure of \overline{M} . If $N_{\phi} + d\eta \otimes V = 0$, we say that \overline{M} has a normal contact structure, where N_{ϕ} is the Nijenhuis tensor field of ϕ . A normal contact metric manifold is called a Sasakian manifold for which we have

$$\overline{\nabla}_X V = -\phi X. \tag{2.16}$$

$$\left(\overline{\nabla}_{X}\phi\right)Y = \overline{g}\left(X,Y\right)V - \varepsilon\eta\left(Y\right)X.$$
(2.17)

Let $(M, g, S(TM), S(TM^{\perp}))$ be a lightlike

submanifold of $(\overline{M}, \overline{g})$. For any vector field X tangent to M, we put

$$\phi X = PX + QX, \qquad (2.18)$$

where PX and QX are the tangential and the transversal parts of ϕX , respectively.

Let's suppose V is a spacelike vector field so that $\varepsilon = 1$, it's similar when V is a timelike vector field.

3. Geodesic Invariant Lightlike Submanifolds

Definition 3.1 Let $(M, g, S(TM), S(TM^{\perp}))$ be a lightlike submanifold, tangent to the structure vector field $V, V \in S(TM)$, immersed in an indefinite Sasakian manifold (\overline{M}, g) , we say that M is an invariant submanifolds of \overline{M} if the following conditions are satisfied

$$\phi(RadTM) = RadTM, \phi(S(TM)) = S(TM). \quad (3.1)$$

From (2.16), (2.17), (2.18) and (2.4) we have

$$h^{l}(X,V) = h^{s}(X,V) = 0, \overline{\nabla}_{X}V = \nabla_{X}V = -PX, \quad (3.2)$$

$$h^{l}(X,\phi Y) = \phi h(X,Y) = h(\phi X,Y), \,\forall X,Y \in \Gamma(TM).$$
(3.3)

From (3.1) and (2.12) we have

$$\phi ltr(TM) = ltr(TM), \phi(S(TM^{\perp})) = S(TM^{\perp}). \quad (3.4)$$

Theorem 3.1 Let $(M, g, S(TM), S(TM^{\perp}))$ be an invariant lightlike submanifold of an indefinite Sasakian manifold \overline{M} , then M is totally geodesic if and only if h^{l} and h^{s} of M are parallel.

Proof. Suppose h^l is parallel, for any $X, Y, Z \in \Gamma(TM)$, we have

$$\left(\overline{\nabla}_{X}h^{l}\right)(Y,V) = \overline{\nabla}_{X}h^{l}(Y,V) - h^{l}\left(\overline{\nabla}_{X}Y,V\right)$$
$$-h^{l}\left(Y,\overline{\nabla}_{X}V\right) = 0.$$

By (3.2), we have

$$h^{l}(Y,V) = h^{l}(\overline{\nabla}_{X}Y,V) = 0,$$

so $h^{l}(Y, \overline{\nabla}_{X}Y) = 0$. That is to say $h^{l}(Y, PX) = 0$.

In a similar way, we can get $h^{s}(Y, PX) = 0$. Thus, *M* is totally geodesic.

Conversely, if $h^{l}(X,Y) = h^{s}(X,Y) = 0$, since

. \

$$\left(\overline{\nabla}_{X}h^{l}\right)(Y,Z) = \overline{\nabla}_{X}h^{l}(Y,Z) - h^{l}\left(\overline{\nabla}_{X}Y,Z\right)$$
$$-h^{l}\left(Y,\overline{\nabla}_{X}Z\right) = 0,$$
$$\left(\overline{\nabla}_{X}h^{s}\right)(Y,Z) = \overline{\nabla}_{X}h^{s}(Y,Z) - h^{s}\left(\overline{\nabla}_{X}Y,Z\right)$$
$$-h^{s}\left(Y,\overline{\nabla}_{X}Z\right) = 0,$$

so h^l and h^s are parallel, which completes the proof.

4. Geodesic Contact CR-Lightlike **Submanifolds**

Definition 4.1 Let $(M, g, S(TM), S(TM^{\perp}))$ be a lightlike submanifold, tangent to the structure vector field V, immersed in an indefinite Sasakian manifold $(\overline{M}, \overline{g})$. We say that M is a contact CR-lightlike submanifold of M if the following conditions are satisfied [(A)] RadTM is a distribution on M such that $RadTM \cap \phi(RadTM) = \{0\}$. [(B)] There exist vector bundles D_{\circ} and D' over M such that

$$S(TM) = \{\phi(RadTM) \oplus D'\} \perp D_0 \perp V,$$

$$\phi D_0 = D_0, \phi D' = L_1 \perp L_2,$$

where D_0 is non-degenerate and $L_1 = ltr(TM)$, L_2 is a vector subbundle of $S(TM^{\perp})$. So we have the decomposition

 $TM = \{D \perp \oplus D'\} \perp V, D = RadTM \perp \phi(RadTM) \perp D_0.$

If we denote $\hat{D} = D \perp V$, then we have

 $TM = \hat{D} \oplus D', \phi \hat{D} = \hat{D}.$

Definition 4.2 A contact CR-lightlike submanifold of an indefinite Sasakian manifold is called \hat{D} -geodesic contact CR-lightlike submanifold if its second fundamental form h satisfied h(X,Y) = 0, for any $X, Y \in \Gamma(\hat{D}).$

Definition 4.3 A contact CR-lightlike submanifold of an indefinite Sasakian manifold is called mixed geodesic contact CR-lightlike submanifold if its second fundamental form h satisfied h(X,Z) = 0, for any $X \in \Gamma(\hat{D})$ and $Z \in \Gamma(D')$.

Definition 4.4 A contact CR-lightlike submanifold of an indefinite Sasakian manifold is called D'-geodesic contact CR-lightlike submanifold if its second fundamental form h satisfied h(Z,U) = 0, for any $Z, U \in \Gamma(D').$

Theorem 4.1 Let M be a contact CR-lightlike submanifold of an indefinite Sasakian manifold M.

Copyright © 2011 SciRes.

Then *M* is totally geodesic if and only if

 $\overline{g}(Y, A_{w}X) = \overline{g}(Y, D^{l}(X, W)), \ \nabla_{X}\phi Y \ has \ no \ compo$ nents in ϕL_1 , $Y \in \Gamma(TM - span\{V\})$ or X has no components in ϕL_1 .

Proof. We know that M is totally geodesic if and only if h(X,Y) = 0, for any $X,Y \in \Gamma(TM)$. By the definition of the second fundamental form, h(X,Y) = 0is equivalent to $\overline{g}(h(X,Y),\xi) = 0, \overline{g}(h(X,Y),W) = 0$, for any $\xi \in \Gamma(RadTM), W \in \Gamma(S(TM^{\perp}))$.

From (2.4) and (2.7) we have

$$\overline{g}(h(X,Y),\xi) = \overline{g}(\nabla_X Y,\xi)$$

$$= \overline{g}(\phi\overline{\nabla}_X Y,\phi\xi) + \eta(\overline{\nabla}_X Y)\eta(\xi)$$

$$= \overline{g}(\phi\overline{\nabla}_X Y,\phi\xi)$$

$$= \overline{g}(\overline{\nabla}_X \phi Y,\phi\xi) + \overline{g}(\overline{g}(X,Y)V + \eta(Y)X,\phi\xi)$$

$$= \overline{g}(\nabla_X \phi Y,\phi\xi) + \eta(Y)\overline{g}(X,\phi\xi)$$
(4.1)

and

$$\overline{g}\left(h^{s}\left(X,Y\right),W\right) = \overline{g}\left(\overline{\nabla}_{X}Y,W\right)$$

$$= X\left(\overline{g}\left(Y,W\right)\right) - \overline{g}\left(Y,\overline{\nabla}_{X}W\right)$$

$$= -\overline{g}\left(Y,\overline{\nabla}_{X}W\right) \qquad (4.2)$$

$$= -\overline{g}\left(Y,-A_{W}X + \nabla_{X}^{s}W + D^{l}\left(X,W\right)\right)$$

$$= \overline{g}\left(Y,A_{W}X\right) - \overline{g}\left(Y,D^{l}\left(X,W\right)\right).$$

Thus, from (4.1) and (4.2), the proof is completed.

Theorem 4.2 Let *M* be a contact CR-lightlike submanifold of an indefinite Sasakian manifold \overline{M} . Then M is mixed geodesic if and only if $A_{\alpha Y}X$ has no components in $\phi RadTM \perp L_2$.

Proof. By the definition, *M* is mixed geodesic if and only if

$$\overline{g}(h(X,Y),\xi) = 0, \ \overline{g}(h(X,Y),W) = 0.$$
$$\forall \ x \in \Gamma(\hat{D}), \ Y \in \Gamma(D').$$

Then we have

$$\begin{split} \overline{g}\left(h\left(X,Y\right),\xi\right) &= \overline{g}\left(\overline{\nabla}_{X}Y,\xi\right) \\ &= \overline{g}\left(\phi\overline{\nabla}_{X}Y,\phi\xi\right) + \eta\left(\overline{\nabla}_{X}Y\right)\eta\left(\xi\right) \\ &= \overline{g}\left(\phi\overline{\nabla}_{X}Y,\phi\xi\right) \\ &= \overline{g}\left(\overline{\nabla}_{X}\phi Y,\phi\xi\right) + \overline{g}\left(\overline{g}\left(X,Y\right)V + \eta\left(Y\right)X,\phi\xi\right) \\ &= \overline{g}\left(\overline{\nabla}_{X}\phi Y,\phi\xi\right) + \eta\left(Y\right)\overline{g}\left(X,\phi\xi\right) \\ &= -\overline{g}\left(A_{\phi Y}X,\phi\xi\right) + \eta\left(Y\right)\overline{g}\left(X,\phi\xi\right) \\ &= -\overline{g}\left(A_{\phi Y}X,\phi\xi\right) + \eta\left(Y\right)\overline{g}\left(X,\phi\xi\right) \\ &= -\overline{g}\left(A_{\phi Y}X,\phi\xi\right) \end{split}$$

and

$$\begin{split} \overline{g}\left(h(X,Y),W\right) &= \overline{g}\left(\overline{\nabla}_{X}Y,W\right) \\ &= \overline{g}\left(\phi\overline{\nabla}_{X}Y,\phi W\right) + \eta\left(\overline{\nabla}_{X}Y\right)\eta\left(W\right) \\ &= \overline{g}\left(\phi\overline{\nabla}_{X}Y,\phi W\right) \\ &= \overline{g}\left(\overline{\nabla}_{X}\phi Y,\phi W\right) + \overline{g}\left(\overline{g}\left(X,Y\right)V + \eta\left(Y\right)X,\phi W\right) \\ &= \overline{g}\left(\overline{\nabla}_{X}\phi Y,\phi W\right) \\ &= -\overline{g}\left(A_{\phi Y}X,\phi W\right). \end{split}$$

Thus, the proof of the theorem is complete.

Theorem 4.3 Let M be a contact CR-lightlike submanifold of an indefinite Sasakian manifold \overline{M} . Then M is \hat{D} -geodesic if and only if

 $\nabla_X^* \phi \xi \in \Gamma(\phi RadTM \perp \phi L_2), \ \nabla_X Y \ has no \ components$ in $\phi L_2, \forall X, Y \in \Gamma(\hat{D}).$

Proof. *M* is
$$\hat{D}$$
-geodesic if and only if
 $\overline{g}(h^{\prime}(X,Y),\xi) = 0$, $\overline{g}(h^{s}(X,Y),W) = 0$, for any
 $X,Y \in \Gamma(\hat{D}), \xi \in \Gamma(RadTM)$ and $W \in \Gamma(S(TM^{\perp}))$.

Then we have

$$\begin{split} \overline{g}\left(h(X,Y),\xi\right) &= \overline{g}\left(\overline{\nabla}_{X}Y,\xi\right) \\ &= \overline{g}\left(\phi\overline{\nabla}_{X}Y,\phi\xi\right) + \eta\left(\overline{\nabla}_{X}Y\right)\eta\left(\xi\right) \\ &= \overline{g}\left(\phi\overline{\nabla}_{X}Y,\phi\xi\right) \\ &= \overline{g}\left(\overline{\nabla}_{X}\phi Y,\phi\xi\right) + \overline{g}\left(\overline{g}\left(X,Y\right)V + \eta\left(Y\right)X,\phi\xi\right) \\ &= \overline{g}\left(\overline{\nabla}_{X}\phi Y,\phi\xi\right) \\ &= -\overline{g}\left(\phi Y,\overline{\nabla}_{X}\phi\xi\right) \\ &= -\overline{g}\left(\phi Y,\overline{\nabla}_{X}\phi\xi\right) \\ &= -\overline{g}\left(\phi Y,\nabla_{X}^{*}\phi\xi\right) \end{split}$$

and

$$\begin{split} \overline{g}\left(h^{s}\left(X,Y\right),W\right) &= \overline{g}\left(\overline{\nabla}_{X}Y,W\right) \\ &= \overline{g}\left(\phi\overline{\nabla}_{X}Y,\phi W\right) + \eta\left(\overline{\nabla}_{X}Y\right)\eta\left(W\right) \\ &= \overline{g}\left(\phi\overline{\nabla}_{X}Y,\phi W\right) \\ &= \overline{g}\left(\overline{\nabla}_{X}\phi Y,\phi W\right) + \overline{g}\left(\overline{g}\left(X,Y\right)V + \eta\left(Y\right)X,\phi W\right) \\ &= \overline{g}\left(\overline{\nabla}_{X}\phi Y,\phi W\right) \\ &= \overline{g}\left(\overline{\nabla}_{X}Y,\phi W\right) \\ &= \overline{g}\left(\nabla_{X}Y,\phi W\right). \end{split}$$

Thus the assertions of the theorem follows.

Theorem 4.4 Let M be a contact CR-lightlike submanifold of an indefinite Sasakian manifold \overline{M} . Then M is D'-geodesic if and only if $A_W X$, $A_{\xi}^* X$ have no components in $\phi L_2 \perp \phi(RadTM) \quad \forall X, Y \in \Gamma(D')$.

Proof. M is D'-geodesic if and, only if

$$\overline{g}\left(h^{l}(X,Y),\xi\right) = 0, \,\overline{g}\left(h^{s}(X,Y),W\right) = 0, \,\text{for any}$$
$$X,Y \in \Gamma(D'), \xi \in \Gamma(RadTM) \text{ and } W \in \Gamma\left(S\left(TM^{\perp}\right)\right)$$
So we have

$$\overline{g}(h(X,Y),\xi) = \overline{g}(\overline{\nabla}_X Y,\xi) = -\overline{g}(Y,\overline{\nabla}_X \xi)$$
$$= \overline{g}(A_{\xi}^*X,Y)$$

and

$$\overline{g}(h(X,Y),W) = \overline{g}(\overline{\nabla}_X Y,W) = -\overline{g}(Y,\overline{\nabla}_X W)$$
$$= \overline{g}(A_W X,Y).$$

Thus the assertions of the theorem follows.

5. Geodesic Contact SCR-Lightlike Submanifolds

Definition 5.1 Let $(M, g, S(TM), S(TM^{\perp}))$ be a lightlike submanifold, tangent to the structure vector field V, immersed in an indefinite Sasakian manifold $(\overline{M}, \overline{g})$. We say that M is a contact SCR-lightlike submanifold of \overline{M} if the following conditions are satisfied [(A)] There exist real non-null distributions D and D^{\perp} , such that

$$S(TM) = D \perp D^{\perp} \perp V, \phi(D^{\perp}) \subset S(TM^{\perp}),$$
$$D \cap D^{\perp} = \{0\},$$

where D^{\perp} is the orthogonal complementary to $D \perp V$ in S(TM). [(B)]

 $\phi D = D$, $\phi RadTM = RadTM$, $\phi ltr(TM) = ltr(TM)$. Hence we have the decomposition

 $TM = \overline{D} \perp D^{\perp} \perp V_{\lambda}, \ \overline{D} = D \perp RadTM.$

Let us denote $\overline{D} = \overline{D} \perp V$.

Definition 5.2 A contact SCR-lightlike submanifold of an indefinite Sasakian manifold is called mixed geodesic contact SCR-lightlike submanifold if its second fundamental form h satisfied h(X,Y) = 0, for any $X \in \Gamma(\overline{D})$ and $Y \in \Gamma(D^{\perp})$.

Theorem 5.1 Let M be a contact SCR-lightlike submanifold of an indefinite Sasakian manifold \overline{M} . Then M is totally geodesic if and only if

$$(L_{\xi}\overline{g})(X,Y) = (L_{W}\overline{g})(X,Y) = 0, \ \forall \ X,Y \in \Gamma(TM),$$

$$\xi \in \Gamma(RadTM), \ W \in \Gamma(S(TM^{\perp})).$$

Proof. We know M is totally geodesic if and only if

$$\overline{g}(h(X,Y),\xi) = 0, \ \overline{g}(h(X,Y),W) = 0.$$
$$\forall \ X \in \Gamma(\hat{D}), \ Y \in \Gamma(D').$$

From (2.1) and Lie derivative we obtain

$$\begin{split} \overline{g}\left(h(X,Y),\xi\right) &= \overline{g}\left(\overline{\nabla}_{X}Y,\xi\right) \\ &= X\left(\overline{g}\left(Y,\xi\right)\right) - \overline{g}\left(Y,\overline{\nabla}\right)X\xi \\ &= \overline{g}\left(Y,[\xi,X]\right) - \overline{g}\left(Y,\overline{\nabla}_{\xi}X\right) \\ &= \overline{g}\left(Y,[\xi,X]\right) - \xi\left(\overline{g}\left(X,Y\right)\right) + \overline{g}\left(X,\overline{\nabla}_{\xi}Y\right) \\ &= \overline{g}\left(Y,[\xi,X]\right) - \xi\left(\overline{g}\left(X,Y\right)\right) + \overline{g}\left(X,[\xi,Y]\right) + \overline{g}\left(\overline{\nabla}_{Y}\xi,X\right) \\ &= -(L_{\xi}\overline{g})(X,Y) - \overline{g}\left(\xi,\overline{\nabla}_{Y}X\right) \\ &= -(L_{\xi}\overline{g})(X,Y) - \overline{g}\left(h(X,Y),\xi\right). \end{split}$$

Hence we have $2\overline{g}(h(X,Y),\xi) = -(L_{\xi}\overline{g})(X,Y)$. In a similar way, we can get

$$2\overline{g}(h(X,Y),W) = -(L_W\overline{g})(X,Y),$$

thus the proof is completed.

Theorem 5.2 Let M be a contact SCR-lightlike submanifold of an indefinite Sasakian manifold \overline{M} . Then M is mixed geodesic if and only if

$$\nabla_X^s \phi Y \in \Gamma\left(D^{\perp}\right), \ A_{\phi Y} X \in \Gamma\left(\widehat{D}\right), \ for \ any$$
$$X \in \Gamma\left(\widehat{D}\right), \ Y \in \Gamma\left(D^{\perp}\right).$$
Proof For any

Proof. For any

$$X \in \Gamma\left(\widehat{D}\right), \ Y \in \Gamma\left(D^{\perp}\right),$$
$$\xi \in \Gamma\left(RadTM\right), \ W \in \Gamma\left(S\left(TM^{\perp}\right)\right)$$

denote by

$$\phi X = P'X + Q'X, \ \phi W = B'W + C'W,$$

where $P'X \in \Gamma(\overline{D}), Q'X \in \Gamma(\phi D^{\perp}), B'W \in \Gamma(D^{\perp})$ and $C'W \in \Gamma(S(TM^{\perp}) - \phi D^{\perp}).$

If M is mixed geodesic, then

 $h(X,Y) = \nabla_X Y - \nabla_X Y = 0$. From the definition, there exists $W \in \Gamma(S(TM^{\perp}))$ such that $\phi W = Y$. Thus we have

$$\begin{split} 0 &= \nabla_X \phi W - \nabla_X Y = \phi \nabla_X W - \nabla_X Y \\ &= \phi \Big(-A_W X + \nabla_X^t W \Big) - \nabla_X Y \\ &= -P'A_W X - Q'A_W X + B' \nabla_X^t W + C' \nabla_X^t W - \nabla_X Y. \end{split}$$

From the definition of the Q' and C', we know that $Q'A_W X = C'\nabla_X^t W = 0$. So we have

$$abla'_X W \in \Gamma(\phi D^{\perp}), \ A_W X \in \Gamma(\hat{\overline{D}}). \ \text{From} \ \phi W = Y \ \text{and}$$

(2.13), we have $W = -\phi Y$, thus the proof is completed. **Theorem 5.3** Let *M* be a contact SCR-lightlike submanifold of an indefinite Sasakian manifold \overline{M} . Then D^{\perp} defines a totally geodesic foliation if and only if $h^{s}(X,\phi Z)$ and $h^{s}(X,\phi N)$ has no components in $\Gamma(\phi(D^{\perp})), \forall X \in \Gamma(D^{\perp}), Z \in \Gamma(\overline{D}).$

Proof. From the definition, we have that D^{\perp} is a totally geodesic foliation if and only if $\nabla_X Y \in \Gamma(D^{\perp})$, for any $X, Y \in \Gamma(D^{\perp})$, which is equivalent to

$$g\left(\nabla_{X}Y,Z\right) = g\left(\nabla_{X}Y,N\right) = 0,$$

$$\forall Z \in \Gamma(\overline{D}), N \in \Gamma(ltr(TM)).$$

Then we have

$$g(\nabla_{X}Y,Z) = \overline{g}(\overline{\nabla}_{X}Y,Z) = -\overline{g}(Y,\overline{\nabla}_{X}Z)$$
$$= -\overline{g}(\phi Y,\phi\overline{\nabla}_{X}Z) - \eta(Y)\eta(\overline{\nabla}_{X}Z)$$
$$= -\overline{g}(\phi Y,\phi\overline{\nabla}_{X}Z)$$
$$= -\overline{g}(\phi Y,\overline{\nabla}_{X}\phi Z + g(X,Z)V + \eta(Z)X)$$
$$= -\overline{g}(\phi Y,\overline{\nabla}_{X}\phi Z)$$
$$= -\overline{g}(\phi Y,h^{s}(X,\phi Z))$$

and

$$g(\nabla_{X}Y,N) = \overline{g}(\overline{\nabla}_{X}Y,N)$$
$$= \overline{g}(\phi\overline{\nabla}_{X}Y,\phi N) + \eta(\overline{\nabla}_{X}Y)\eta(N)$$
$$= \overline{g}(\phi\overline{\nabla}_{X}Y,\phi N)$$
$$= \overline{g}(\overline{\nabla}_{X}\phi Y + g(X,Y)V + \eta(Y)X,\phi N)$$
$$= \overline{g}(\overline{\nabla}_{X}\phi Y,\phi N)$$
$$= -\overline{g}(\phi Y,\overline{\nabla}_{X}\phi N)$$
$$= -\overline{g}(\phi Y,h^{s}(X,\phi N)).$$

Thus the assertion is proved.

6. References

- D. N. Kupeli, "Singular Semi-Riemannian Geometry," Kluwer, Dordrecht, 1996.
- [2] K. L. Duggal and A. Bejancu, "Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications," Kluwer Academic, Dordrecht, 1996.
- [3] B. Sahin, "Transversal Lightlike Submanifolds of Indefinite Kaehler Manifolds," *Analele Universitaii de Vest*, *Timisoara Seria Matematica—Informatica*, Vol. 44, No. 1, 2006, pp. 119-145.
- [4] B. Sahin and R. Günes, "Geodesic CR-Lightlike Submanifolds," *Contributions to Algebra and Geometry*, Vol. 42, No. 2, 2001, pp. 583-594.

- [5] K. L. Duggal and B. Sahin, "Lightlike Submanifolds of Indefinite Sasakian Manifolds," *International Journal of Mathematics and Mathematical Sciences*, Article ID 57585, 2007, 21 Pages.
- [6] K. L. Duggal and B. Sahin, "Generalized Cauchy-Rieman Lightlike Submanifolds of Indefinite Sasakian Manifolds," *Acta Mathematica Hungarica*, Vol. 122, No. 1-2, 2009, pp. 45-58. <u>doi:10.1007/s10474-008-7221-8</u>