The Localization of Commutative Bounded BCK-Algebras

Dana Piciu, Dan Dorin Tascau
Faculty of Mathematics and Computer Science, University of Craiova, Craiova, Romania
E-mail: danap@central.ucv.ro,dorintascau@yahoo.com

Received August 11, 2011; revised October 20, 2011; accepted October 30, 2011

Abstract

In this paper we develop a theory of localization for bounded commutative BCK-algebras. We try to extend some results from the case of commutative Hilbert algebras (see [1]) to the case of commutative BCK-algebras.

Keywords: BCK-Algebra, Commutative BCK-Algebra, Algebra of Fractions, Maximal Algebra of Quotients, \vee-Closed System, Topology, Localization Algebra

1. Introduction

In 1966, Y. Imai and K. Iséki introduced a new notion called a BCK-algebra (see [2]). This notion is originated from two different ways. One of the motivations is based on the set theory (where the set difference operation play the main role) and another motivation is from classical and non-classical propositional calculi (see [2]). There are some systems which contain the only implication functor among the logical functors. These examples are the systems of positive implicational calculus, weak positive implicational calculus by A. Church, and BCI , BCK-systems by C. A. Meredith (see [3]).
In this paper we develop a theory of localization for commutative (bounded) BCK-algebras, and then we deal with generalizations of results which are obtained in the paper [1] for case of Hilbert algebras. For some informal explanations of the theory of localization for others categories of algebras see $[4,5]$.

The paper is organized as follows: in Section 2 we recall the basic definitions and put in evidence many rules of calculus in (commutative) BCK-algebras which we need in the rest of paper. In Section 3 we introduce the commutative BCK-algebra of fractions relative to a V-closed system. In Section 4 we develop a theory for multipliers on a commutative (bounded) BCK-algebra. In Section 5 we define the notions of BCK-algebras of fractions and maximal BCK-algebra of quotients for a commutative (bounded) BCK-algebra. In the last part of this section is proved the existence of the maximal BCKalgebra of quotients (Theorem 29). In Section 6 we develop a theory of localization for commutative (bounded) BCK-algebras. So, for commutative (bounded) BCK-
algebra A we define the notion of localization BCK-algebra relative to a topology F on A. In Section 7 we describe the localization BCK-algebra A_{F} in some special instances.

2. Preliminaries

In this paper the symbols \Rightarrow and \Leftrightarrow are used for logical implication, respectively logical equivalence.

Definition 1 ([6]) A BCK-algebra is an algebra $(A, \rightarrow, 1)$ of type $(2,0)$ such that the following axioms are fulfilled for every $x, y, z \in A$:
$\left(\mathrm{a}_{1}\right) x \rightarrow x=1$;
(a_{2}) If $x \rightarrow y=y \rightarrow x=1$, then $x=y$;
(B) $(x \rightarrow y) \rightarrow((y \rightarrow z) \rightarrow(x \rightarrow z))=1$;
(C) $x \rightarrow(y \rightarrow z)=y \rightarrow(x \rightarrow z)$;
(K) $x \rightarrow(y \rightarrow x)=1$.

In [7] it is proved that the system of axioms $\left\{a_{1}, a_{2}, \mathbf{B}\right.$, $\mathbf{C}, \mathbf{K}\}$ is equivalent with the system $\left\{a_{2}, a_{3}, a_{4}, \mathbf{B}\right\}$, where:
(a3) $x \rightarrow 1=1$;
$\left(\mathrm{a}_{4}\right) 1 \rightarrow x=x$.
For examples of BCK-algebras see [6-8]. If A is a BCK-algebra, then the relation \leq defined by $x \leq y$ iff $x \rightarrow y=1$ is a partial order on A (which will be called the natural order on A; with respect to this order 1 is the largest element of A. A will be called bounded if A has a smallest element 0 ; in this case for $x \in A$ we denote $x^{*}=x \rightarrow 0$. If $(x \rightarrow y) \rightarrow y=(y \rightarrow x) \rightarrow x$ for every $x, y \in A$, then A is called commutative (see $[5,9,10]$).

We have the following rules of calculus in a BCK-algebra A (see [6,7]):
($\left.\mathrm{c}_{1}\right) x \leq y \rightarrow x$;
($\left.\mathrm{c}_{2}\right) \quad x \leq(x \rightarrow y) \rightarrow y$;
$\left(\mathrm{c}_{3}\right) \quad((x \rightarrow y) \rightarrow y) \rightarrow y=x \rightarrow y$;
(c4) $x \rightarrow y \leq(z \rightarrow x) \rightarrow(z \rightarrow y) \leq z \rightarrow(x \rightarrow y)$;
(c_{5}) If $x \leq y$, then for every $z \in A, \quad z \rightarrow x \leq z \rightarrow y$ and $y \rightarrow z \leq x \rightarrow z$.

Proposition 1 ([9], p. 5) If A is a commutative BCKalgebra, then relative to the natural ordering, A is a joinsemilattice, where for $x, y \in A$:

$$
x \vee y=(x \rightarrow y) \rightarrow y=(y \rightarrow x) \rightarrow x
$$

Lemma 2 Let A be a commutative BCK-algebra. For every $x, y, z \in A$ there exists $(x \rightarrow z) \wedge(y \rightarrow z)$ and
($\left.\mathrm{c}_{6}\right)(x \vee y) \rightarrow z=(x \rightarrow z) \wedge(y \rightarrow z)$.
Proof. Since $x, y \leq x \vee y$ by (c_{5}) we deduce that $(x \vee y) \rightarrow z \leq x \rightarrow z, y \rightarrow z$. Let now $t \in A$ such that $t \leq x \rightarrow z, y \rightarrow z$. Then $x, y \leq t \rightarrow z \Rightarrow x \vee y \leq t \rightarrow z$ $\Rightarrow t \leq(x \vee y) \rightarrow z$, that is,
$(x \vee y) \rightarrow z=(x \rightarrow z) \wedge(y \rightarrow z)$.
In [9] (Theorem 8) and [8] (Remark 2.1.32) it is proved the following result:

Theorem 3 If A is a BCK-algebra, then the following assertions are equivalent:

1) For every $x, y, z \in A$,

$$
x \rightarrow(y \rightarrow z)=(x \rightarrow y) \rightarrow(x \rightarrow z)
$$

2) For every $x, y \in A, \quad x \rightarrow(x \rightarrow y)=x \rightarrow y$;
3) For every $x, y \in A$,

$$
\begin{aligned}
& (x \rightarrow y) \rightarrow((y \rightarrow x) \rightarrow x)=(y \rightarrow x) \\
& \rightarrow((x \rightarrow y) \rightarrow y) .
\end{aligned}
$$

A BCK-algebra which verify one of the above equivalent conditions is called Hilbert algebra (or positive implicative BCK-algebra).

If A is a bounded BCK-algebra, we have the following rules of calculus in A (see [6]):
(c_{7}) If $x \leq y$, then $y^{*} \leq x^{*}$;
(c) $\mathrm{c}_{8} x^{*}=x^{* * *}, x \leq x^{* *}$;
$\left(\mathrm{c}_{9}\right) x \rightarrow y^{*}=y \rightarrow x^{*},\left(x \rightarrow y^{* *}\right)^{* *}=x \rightarrow y^{* *}$.
Remark 1 If A is a bounded commutative BCK-algebra, then for every $x \in A$,

$$
(x \rightarrow 0) \rightarrow 0=(0 \rightarrow x) \rightarrow x \Leftrightarrow x^{* *}=x
$$

that is, A is an involutive BCK-algebra (see [6], p. 115 and [9], p. 10).

For $x_{1}, \cdots, x_{n}, x \in A \quad(n \geq 1)$ we will define

$$
\left(x_{1}, \cdots, x_{n} ; x\right)=x_{1} \rightarrow\left(x_{2} \rightarrow \cdots\left(x_{n} \rightarrow x\right) \cdots\right)
$$

For two elements $x, y \in A$ and a natural number $n \geq 1$ we denote $x \rightarrow_{n} y=(x, x, \cdots, x ; y)$ where n indicates the number of occurrences of x. Clearly, if A is a Hilbert algebra, then $x \rightarrow_{n} y=x \rightarrow y$, for every $n \geq 1$.

Let A be a BCK-algebra. A deductive system (or i-filter) of A is a nonempty subset D of A such that $1 \in D$ and for every $x, y \in A$, if $x, x \rightarrow y \in D$, then $y \in D$. It is clear that if D is a deductive system, $x \leq y$ and $x \in D$, then $y \in D$. We denote by $\operatorname{Ds}(A)$ the set of all deductive systems of A. For a nonempty subset $X \subseteq A$, we denote by $\langle X\rangle=\cap\{D \in D s(A): X \subseteq D\} \quad(\langle X\rangle$ is called the deductive system generated by X). It is known that
$\langle X\rangle=\left\{x \in A:\left(x_{1}, \cdots, x_{n} ; x\right)=1\right.$, for some $\left.x_{1}, \cdots, x_{n} \in X\right\}$.
In particular for $a \in A$, we denote by $\langle a\rangle$ the deductive system generated by $\{a\} \quad(\langle a\rangle$ is called principal and $\langle a\rangle=\left\{x \in A: a \rightarrow_{n} x=1\right.$, for some $\left.n \geq 1\right\}$).

Lemma 4 Let A be a bounded BCK-algebra and $x, y \in A$ such that there exists $x \vee y$ in A. Then there exists $x^{*} \wedge y^{*}$ and $x^{*} \wedge y^{*}=(x \vee y)^{*}$.

Proof. Clearly, $(x \vee y)^{*} \leq x^{*}, y^{*}$. Let $t \in A$ such that $t \leq x^{*}, y^{*}$. Then
$x, y \leq t^{*} \Rightarrow x \vee y \leq t^{*} \Rightarrow t^{* *} \leq(x \vee y)^{*}$. From (c_{8}) we deduce that $t \leq t^{* *} \leq(x \vee y)^{*} \Rightarrow t \leq(x \vee y)^{*}$, that is,
$(x \vee y)^{*}=x^{*} \wedge y^{*}$.
Definition 2 ([7], p. 944) Let A be a bounded BCKalgebra. An element $x \in A$ is called boolean if $\langle x\rangle \cap\left\langle x^{*}\right\rangle=\{1\}$ (clearly, $\langle x\rangle \cup\left\langle x^{*}\right\rangle=A$).

We denote by $B(A)$ the set of all boolean elements of A; clearly, $\quad 0,1 \in B(A)$.

Lemma 5 ([7]) Let A be a BCK-algebra. Then for every $x, y \in A, x \vee y=1 \Leftrightarrow\langle x\rangle \cap\langle y\rangle=\{1\}$.

Corollary 6 For a bounded BCK-algebra $x \in B(A)$ iff $x \vee x^{*}=1$.

Remark 2 If $x \in B(A)$, that is, $x \vee x^{*}=1$, then from Lemma 4 we deduce that
$x^{*} \wedge x^{* *}=\left(x \vee x^{*}\right)^{*}=1^{*}=0$, hence
$x \wedge x^{*} \leq x^{* *} \wedge x^{*}=0 \Rightarrow x \wedge x^{*}=0$, that is, x^{*} is the complement of x in A.

Boolean elements also satisfy several interesting properties which can be proved using above corollary and some arithmetical calculus:

Proposition 7 ([7]) Let A be a bounded BCK-algebra. Then for every $a \in B(A)$ and $x, y \in A$ we have:
$\left(\mathrm{c}_{10}\right) a^{*} \in B(A)$;
($\left.\mathrm{c}_{11}\right) a \rightarrow(a \rightarrow x)=a \rightarrow x ;$
$\left(\mathrm{c}_{12}\right) a \rightarrow\left(\underset{*}{x} \rightarrow y_{*}\right)=(a \rightarrow x) \rightarrow(a \rightarrow y)$;
($\left.\mathrm{c}_{13}\right) a \rightarrow a^{*}=a^{*}, a^{*} \rightarrow a=a$;
($\left.\mathrm{c}_{14}\right) a^{* *}=a$;
($\left.\mathrm{c}_{15}\right)(a \rightarrow x) \rightarrow a=a$;
$\left(\mathrm{c}_{16}\right)(a \rightarrow x) \rightarrow x \leq(x \rightarrow a) \rightarrow a$;
($\left.\mathrm{c}_{17}\right)\left((a \rightarrow x) \rightarrow a^{*}\right) \rightarrow a^{*}=a \rightarrow x^{* *}$;
$\left(\mathrm{c}_{18}\right)$ If $b \in B(A)$, then $(a \rightarrow b) \rightarrow b=(b \rightarrow a) \rightarrow a$;
$\left(\mathrm{c}_{19}\right) a^{*} \rightarrow x=a \vee x=(a \rightarrow x) \rightarrow x$;
(c_{20}) $\left(a \rightarrow x^{*}\right)^{*}=a \wedge x^{* *}$.
Corollary 8 ([7]) Let A be a bounded BCK-algebra. Then

1) If $a \in B(A)$, then $\langle a\rangle=[a)=\{x \in A: a \leq x\}$;
2) For $a, b \in B(A), \quad a \rightarrow b \in B(A)$;
3) $(B(A), \rightarrow, 0,1)$ is a Boolean algebra (where for $a, b \in B(A), a \vee b=a^{*} \rightarrow b$ and $a \wedge b=\left(a \rightarrow b^{*}\right)$.

Corollary 9 Let A be a commutative BCK-algebra. For every $a \in B(A)$ and $y, z \in A$ we have: $\left(c_{21}\right) a \vee(y \rightarrow z)=(a \vee y) \rightarrow(a \vee z)$.
Proof. By (c_{6}) we have

$$
\begin{aligned}
& (a \vee y) \rightarrow(a \vee z)=(a \rightarrow(a \vee z)) \wedge(y \rightarrow(a \vee z)) \\
& =1 \wedge(y \rightarrow(a \vee z))=y \rightarrow(a \vee z)=y \rightarrow((a \rightarrow z) \rightarrow z)
\end{aligned}
$$

so $\left(\mathrm{c}_{21}\right)$ is equivalent with $\left(^{*}\right) a \vee(y \rightarrow z)=y \rightarrow(a \vee z)$. Clearly, $a \leq a \vee z \leq y \rightarrow(a \vee z)$ and from $z \leq a \vee z \Rightarrow y \rightarrow z \leq y \rightarrow(a \vee z)$. So to prove (*) let $t \in A$ such that $a \leq t$ and $y \rightarrow z \leq t$. We have the intention to prove that

$$
\begin{aligned}
& y \rightarrow(a \vee z) \leq t \Leftrightarrow y \rightarrow((a \rightarrow z) \rightarrow z) \leq t \\
& \Leftrightarrow(* *)(a \rightarrow z) \rightarrow(y \rightarrow z) \leq t
\end{aligned}
$$

Indeed, from

$$
\begin{aligned}
& y \rightarrow z \leq t \Rightarrow(a \rightarrow z) \rightarrow(y \rightarrow z) \\
& \leq(a \rightarrow z) \rightarrow t \leq(t \rightarrow a) \rightarrow[(a \rightarrow z) \rightarrow a] \\
& \stackrel{\left(c_{15}\right)}{=}(t \rightarrow a) \rightarrow a=(a \rightarrow t) \rightarrow t=1 \rightarrow t=t
\end{aligned}
$$

Proposition 10 Let A be a commutative BCK-algebra. Then for every $a, b \in B(A)$ and $x \in A$ we have:
$\left(\mathrm{c}_{22}\right)(a \vee x) \rightarrow(b \vee x)=(a \rightarrow b) \vee x$.
Proof. By (c_{6}) we have

$$
\begin{aligned}
& (a \vee x) \rightarrow(b \vee x) \\
& =[a \rightarrow(b \vee x)] \wedge[x \rightarrow(b \vee x)] \\
& =[a \rightarrow(b \vee x)] \wedge 1=a \rightarrow((x \rightarrow b) \rightarrow b)
\end{aligned}
$$

Also

$$
\begin{gathered}
(a \rightarrow b) \vee x=(x \rightarrow(a \rightarrow b)) \rightarrow(a \rightarrow b) \\
\quad \stackrel{(c)}{=}(a \rightarrow(x \rightarrow b)) \rightarrow(a \rightarrow b) \\
\quad\left(c_{12}\right) \\
\quad=a \rightarrow((x \rightarrow b) \rightarrow b) .
\end{gathered}
$$

Definition 3 If A_{1}, A_{2} are BCK-algebras, then $f: A_{1} \rightarrow A_{2}$ is called morphism of BCK-algebras if $f(x \rightarrow y)=f(x) \rightarrow f(y), \quad$ for every $\quad x, y \in A_{1} \quad$ (if A_{1}, A_{2} are bounded BCK-algebras, then we add the condition $f(0)=0)$.

3. Commutative BCK-Algebra of Fractions Relative to a \vee-Closed System

In this section by A we denote a commutative bounded

BCK-algebra.
Definition $4 A$ nonempty subset S of A will be called \vee-closed system of A if $0 \in S$ and $x \vee y \in S$ for every $x, y \in S$.

For a \vee-closed system $S \subseteq A$ we define the binary relation θ_{S} on A by $(x, y) \in \theta_{S}$ iff there is $s \in S \cap B(A)$ such that $s \vee x=s \vee y$.

Proposition 11 The relation θ_{S} is a congruence on A.

Proof. Clearly θ_{S} is an equivalence relation on A. To prove the compatibility of θ_{S} with the operation \rightarrow, let $x, y, z \in A$ such that $(x, y) \in \theta_{S} \quad$ (hence there is $s \in S \cap B(A)$ such that $s \vee x=s \vee y)$. By (c_{21}) we deduce

$$
\begin{aligned}
& s \vee(z \rightarrow x)=(s \vee z) \rightarrow(s \vee x) \\
& =(s \vee z) \rightarrow(s \vee y)=s \vee(z \rightarrow y),
\end{aligned}
$$

and similarly, $s \vee(x \rightarrow z)=s \vee(y \rightarrow z)$, that is,
$(z \rightarrow x, z \rightarrow y) \in \theta_{S}$ and $(x \rightarrow z, y \rightarrow z) \in \theta_{S}$.
We denote $A[S]=A / \theta_{S}$; the commutative BCK- algebra $A[S]$ will be called BCK-algebra of fractions of A relative to S. For $x \in A$ we denote by $[x]_{\theta_{S}}$ the equivalence class of x relative to θ_{S}. Clearly, in $A[S], \mathbf{1}=[1]_{\theta_{S}}=\left\{x \in A:(x, 1) \in \theta_{S}\right\}=\{x \in A$: there is $s \in S \cap B(A)$ such that $s \vee x=1\}$,
$\mathbf{0}=[0]_{\theta_{S}}=\left\{x \in A:(x, 0) \in \theta_{S}\right\}=\{x \in A$: there is $s \in S \cap B(A)$ such that $s \vee x=s\}=\{x \in A$: there is $s \in S \cap B(A)$ such that $x \leq s\}$ and for every $x, y \in A$, $[x]_{\theta_{S}} \rightarrow[y]_{\theta_{S}}=[x \rightarrow y]_{\theta_{S}}$.

Proposition $12 A[S]$ is a bounded commutative BCKalgebra, when $\mathbf{0}=[s]_{\theta_{S}}$ with $s \in S \cap B(A)$.

Proof. Clearly, if $s, t \in S \cap B(A)$, since
$r=s \vee t \in S \cap B(A)$ and $r \vee s=r \vee t \Rightarrow[s]_{\theta_{S}}=[t]_{\theta_{S}}$. To prove that, for $s \in S \cap B(A),[s]_{\theta_{S}}=\mathbf{0}$, let $x \in A$. We have

$$
[s]_{\theta_{S}} \leq[x]_{\theta_{S}} \Leftrightarrow[s]_{\theta_{S}} \vee[x]_{\theta_{S}}=[x]_{\theta_{S}} \Leftrightarrow[s \vee x]_{\theta_{S}}=[x]_{\theta_{S}}
$$

which is true since $s \vee(s \vee x)=s \vee x$.
We denote by $p_{S}: A \rightarrow A[S]$ the canonical surjective morphism of BCK-algebras (defined by $p_{S}(x)=[x]_{\theta_{\mathrm{s}}}$, for every $x \in A$).

Remark 3 Since for every $s \in S \cap B(A)$,\} $s \vee s=s \vee 0$ we deduce that $p_{s}(S \cap B(A))=\{0\}$.

Proposition 13 If $x \in A$, then $[x]_{\theta_{S}} \in B(A[S])$ iff there exists $s \in S \cap B(A)$ such that $x \vee x^{*} \vee s=1$. So, if $x \in B(A)$, then $[x]_{\theta_{S}} \in B(A[S])$.

Proof. For $x \in A$, we have

$$
\begin{aligned}
& {[x]_{\theta_{S}} \in B(A[S]) \Leftrightarrow[x]_{\theta_{S}} \vee\left([x]_{\theta_{S}}\right)^{*}} \\
& =1 \Leftrightarrow\left[x \vee x^{*}\right]_{\theta_{S}}=1 \Leftrightarrow
\end{aligned}
$$

there exists $s \in S \cap B(A)$ such that $x \vee x^{*} \vee s=1 \vee s=1$. If $x \in B(A)$, since
$x \vee x^{*} \vee 0=1$ and $0 \in S \cap B(A)$, we deduce that $[x]_{\theta_{S}} \in B(A[S])$.
$A[S]$ verify the following property of universality:
Theorem 14 For every bounded commutative BCKalgebra B and every morphism of bounded BCK-algebras $f: A \rightarrow B$ such that $f(S \cap B(A))=\{0\}$, there exists a unique morphism of bounded BCK-algebras $f^{\prime}: A[S] \rightarrow B$ such that $f^{\prime} \circ p_{s}=f$.
Proof. Let $x, y \in A$ such that $[x]_{\theta_{S}}=[y]_{\theta_{S}}$. Then there is $s \in S \cap B(A)$ such that

$$
\begin{aligned}
& s \vee x=s \vee y \Rightarrow f(s \vee x)=f(s \vee y) \\
& \Rightarrow f(s) \vee f(x)=f(s) \vee f(y) \\
& \Rightarrow 0 \vee f(x)=0 \vee f(y) \Rightarrow f(x)=f(y) .
\end{aligned}
$$

So, $f^{\prime}: A[S] \rightarrow B$ defined for $x \in A$ by $f^{\prime}\left([x]_{\theta_{S}}\right)=f(x)$ is correct defined. Clearly, f^{\prime} is morphism of bounded BCK-algebras and $f^{\prime} \circ p_{S}=f$. The unicity of f^{\prime} follows from the fact that p_{S} is onto.
Example 1 If A is a bounded commutative BCK-algebra and $S=\{0\}$ or S is such that $0 \in S$ and $S \cap(B(A) \backslash\{0\})=\varnothing$, then for $x, y \in A,(x, y) \in \theta_{S}$ $\Leftrightarrow x \vee 0=y \vee 0 \Leftrightarrow x=y$, hence $A[S]=A$.

Example 2 If A is a bounded commutative BCK-algebra and S is an \vee-closed system system such that $1 \in S$ (for example $S=A$ or $S=B(A)$), then for every $x, y \in A, \quad(x, y) \in \theta_{S} \quad$ (since $x \vee 1=y \vee 1$ and $1 \in S \cap B(A)$, hence in this case $A[S]=\{1\}$.
Definition $5 A[S]$ is called the BCK-algebra of fractions of A relative to S .

4. Multipliers on a Commutative Bounded BCK-Algebra

The concept of maximal lattice of quotients for a distributive lattice was defined by J. Schmid in $[11,12]$ (taking as a guide-line the construction of complete ring of quotients by partial morphisms introduced by G. Findlay and J. Lambek (see [13], p. 36). The central role in the construction of the maximal lattice of quotients for a distributive lattice due to J. Schmidt in [11] and [12] is played by the concept of multiplier for a distributive lattice defined by W. H. Cornish in [14].

In this section we develop a theory for multipliers on a commutative bounded BCK-algebra A.

Definition 6 A subset $T \subseteq A$ is called \vee-subset of A if for every $a \in A$ and $x \in T$ we have $a \vee x \in T$.

We denote by $T(A)$ the set of all \vee-subsets of A. Clearly $D s(A) \subseteq T(A)$ (and more generally, if denote by $I(A)$ the set of all increasing subsets of A, then $I(A) \subseteq T(A))$.
Remark 4 Clearly, if $D_{1}, D_{2} \in T(A)$, then
$D_{1} \cap D_{2} \in T(A)$.
Lemma 15 If $D \in T(A)$, then

1) $1 \in D$;
2) If $x \leq y$ and $x \in D$, then $y \in D$.

Proof. (i). If $x \in D$, since $1 \in A$, then $1=1 \vee x \in D$.
3) We have $y=y \vee x$.

Definition 7 By partial strong multiplier on A we mean a map $f: D \rightarrow A$, where $D \in T(A)$, such that:
$\left(\mathrm{sm}_{1}\right)$ For every $x \in D$ and $e \in B(A)$,

$$
f(e \vee x)=e \vee f(x)
$$

$\left(\mathrm{sm}_{2}\right)$ For every $x \in D, x \leq f(x)$;
$\left(\mathrm{sm}_{3}\right)$ If $e \in D \cap B(A)$, then $f(e) \in B(A)$;
$\left(\mathrm{sm}_{4}\right)$ For every $x \in D$ and $e \in D \cap B(A)$,

$$
f(e) \vee x=e \vee f(x)
$$

By $\operatorname{dom}(f) \in T(A)$ we denote the domain of f; if $\operatorname{dom}(f)=A$, we called f total.
To simplify the language, we will use strong multiplier instead partial strong multiplier using total to indicate that the domain of a certain multiplier is A.

Examples

1) The maps $\mathbf{0 , 1}: A \rightarrow A$ defined by $\mathbf{0}(x)=x$ and respectively $\mathbf{1}(x)=1$, for every $x \in A$ are total strong multipliers on A .
2) For $a \in B(A)$ and $D \in T(A)$, the map
$f_{a}: D \rightarrow A$ defined by $f_{a}(x)=a \vee x$, for every $x \in D$ is a strong multiplier on A (called principal).

If $\operatorname{dom}\left(f_{a}\right)=A$, we denote f_{a} by f_{a}.
Remark 5 If $f: D \rightarrow A$ is a strong multiplier on A (with $D \in T(A)$), then $f(1)=1$. Indeed, if in $\left(\mathrm{sm}_{1}\right)$ we put $e=1$, we obtain that for every $x \in D$,
$f(1 \vee x)=1 \vee f(x) \Leftrightarrow f(1)=1$.
For $D \in T(A)$, we denote
$M(D, A)=\{f: D \rightarrow A: f$ is a strong multiplier on $A\}$
and $M(A)=\underset{D \in T(A)}{\cup} M(D, A)$.
For $D_{1}, D_{2} \in T(A)$ and $f_{i} \in M\left(D_{i}, A\right), i=1,2$, we define $f_{1} \rightarrow f_{2}: D_{1} \cap D_{2} \rightarrow A$ by
$\left(f_{1} \rightarrow f_{2}\right)(x)=f_{1}(x) \rightarrow f_{2}(x)$, for every $x \in D_{1} \cap D_{2}$.
Lemma $16 f_{1} \rightarrow f_{2} \in M\left(D_{1} \cap D_{2}, A\right)$.
Proof. If $x \in D_{1} \cap D_{2}$ and $e \in B(A)$, then

$$
\begin{aligned}
& \left(f_{1} \rightarrow f_{2}\right)(e \vee x)=f_{1}(e \vee x) \rightarrow f_{2}(e \vee x) \\
& =\left(e \vee f_{1}(x)\right) \rightarrow\left(e \vee f_{2}(x) \stackrel{\left(c_{21}\right)}{=} e \vee\left(f_{1}(x) \rightarrow f_{2}(x)\right)\right. \\
& =e \vee\left(f_{1} \rightarrow f_{2}\right)(x), \\
& \left(f_{1} \rightarrow f_{2}\right)(x)=f_{1}(x) \rightarrow f_{2}(x) \geq f_{2}(x) \stackrel{\left(s m_{2}\right)}{\geq} x, \\
& \left(f_{1} \rightarrow f_{2}\right)(e)=f_{1}(e) \rightarrow f_{2}(e) \in B(A)
\end{aligned}
$$

by Corollary 8 (since $f_{1}(e), f_{2}(e) \in B(A)$ and if

$$
\begin{aligned}
& e \in D_{1} \cap D_{2} \cap B(A), \\
& e \vee\left(f_{1} \rightarrow f_{2}\right)(x)=e \vee\left(f_{1}(x) \rightarrow f_{2}(x)\right) \\
& \stackrel{\left(c_{21}\right)}{=}\left(e \vee f_{1}(x)\right) \rightarrow\left(e \vee f_{2}(x)\right) \\
& \stackrel{\left(s m_{4}\right)}{=}\left(x \vee f_{1}(e)\right) \rightarrow\left(x \vee f_{2}(e)\right) \\
& \stackrel{\left(c_{22}\right)}{=} x \vee\left(f_{1}(e) \rightarrow f_{2}(e)\right)=x \vee\left(f_{1} \rightarrow f_{2}\right)(e),
\end{aligned}
$$

that is, $f_{1} \rightarrow f_{2} \in M\left(D_{1} \cap D_{2}, A\right)$.
Corollary $17(M(A), \rightarrow, 0,1)$ is a bounded commutative BCK-algebra.

Proof. The fact that $M(A)$ is a commutative BCKalgebra follows from Lemma 16. If $D \in T(A)$,
$f \in M(D, A)$ and $x \in D$, then $0(x) \leq x \leq f(x) \leq 1 \leq 1(x)$ and since the relation of order on $M(A)$ is given by $f_{1} \leq f_{2}$ iff $f_{1}(x) \leq f_{2}(x)$ for every $x \in \operatorname{dom}\left(f_{1}\right) \cap \operatorname{dom}\left(f_{2}\right)$, we deduce that $0 \leq f \leq 1$, that is, $M(A)$ is bounded.

Lemma 18 The map $v_{A}: B(A) \rightarrow M(A)$ defined by $v_{A}(a)=\overline{f_{a}}$ for every $a \in B(A)$ is a morphism of bounded BCK-algebras.

Proof. If $a, b \in B(A)$ and $x \in A$, then

$$
\begin{aligned}
& \left(\overline{f_{a}} \rightarrow \overline{f_{b}}\right)(x)=\overline{f_{a}}(x) \rightarrow \overline{f_{b}}(x) \\
& =(a \vee x) \rightarrow(b \vee x) \stackrel{\left(c_{22}\right)}{=}(a \vee b) \rightarrow x=\overline{f_{a \rightarrow b}}(x),
\end{aligned}
$$

so, $v_{A}(a) \rightarrow v_{A}(b)=v_{A}(a \rightarrow b)$
and $v_{A}(0)=\overline{f_{0}}=0$.
Definition $8 D \subseteq A$ is called regular if for every $x, y \in A$ such that $e \vee x=e \vee y$ for every $e \in D \cap B(A)$, then $x=y$.
For example, a bounded BCK-algebra A is regular
since if $x, y \in A$ such that $e \vee x=e \vee y$ for every $e \in A \cap B(A)=B(A)$, then in particular, for $e=0$ we obtain $x \vee 0=y \vee 0 \Rightarrow x=y$.

If A is bounded, $D \in T(A)$ and $0 \in D$, then D is regular. We denote

$$
R(A)=\{D \subseteq A: D \text { is a regular subset of } A\}
$$

Lemma 19 If $D_{1}, D_{2} \in T(A) \cap R(A)$, then $D_{1} \cap D_{2} \in T(A) \cap R(A)$.
Proof. By Remark 4, $D_{1} \cap D_{2} \in T(A)$. Let $x, y \in A$ such that $e \vee x=e \vee y$ for every $e \in D_{1} \cap D_{2} \cap B(A)$.

For every $e_{i} \in D_{i} \cap B(A), i=1,2$, since $e_{1} \vee e_{2} \in D_{1} \cap D_{2} \cap B(A)$ we have

$$
\begin{aligned}
& \left(e_{1} \vee e_{2}\right) \vee x=\left(e_{1} \vee e_{2}\right) \vee y \Rightarrow e_{1} \vee\left(e_{2} \vee x\right) \\
& =e_{1} \vee\left(e_{2} \vee y\right) \Rightarrow e_{2} \vee x=e_{2} \vee y \Rightarrow x=y,
\end{aligned}
$$

so $D_{1} \cap D_{2} \in R(A)$.
We denote

$$
M_{r}(A)=\{f \in M(A): \operatorname{dom}(f) \in T(A) \cap R(A)\} .
$$

Corollary $20 M_{r}(A)$ is a BCK-subalgebra of $M(A)$.
Proposition $21 M_{r}(A)$ is a Boolean subalgebra of $M(A)$.

Proof. Let $f: D \rightarrow A$ be a strong multiplier on A with $D \in T(A) \cap R(A)$. Then $f^{*}: D \rightarrow A$, $f^{*}(x)=(f \rightarrow 0)(x)=f(x) \rightarrow x$, for $x \in D$.
We have

$$
\begin{aligned}
\left(f \vee f^{*}\right)(x) & =f(x) \vee(f(x) \rightarrow x) \\
& =[(f(x) \rightarrow x) \rightarrow f(x)] \rightarrow f(x)
\end{aligned}
$$

Then for $e \in D \cap B(A)$ and $x \in D$ we have

$$
\begin{aligned}
e \vee\left[f \vee f^{*}\right](x) & =e \vee[[(f(x) \rightarrow x) \rightarrow f(x)] \rightarrow f(x)] \\
& \stackrel{\left(c_{21}\right)}{=}[[((e \vee f(x)) \rightarrow(e \vee x)) \rightarrow(e \vee f(x))] \rightarrow(e \vee f(x))] \\
& \stackrel{\left(s m_{4}\right)}{=}[[((x \vee f(e)) \rightarrow(e \vee x)) \rightarrow(x \vee f(e))] \rightarrow(x \vee f(e))] \\
& \stackrel{\left(c_{22}\right)}{=} x \vee[[(f(e) \rightarrow e) \rightarrow f(e)] \rightarrow f(e)]=x \vee[(f(e) \rightarrow e) \vee f(e)] \\
& =x \vee\left[(f(e))^{*} \vee e \vee f(e)\right]=x \vee 1=1=e \vee 1=e \vee 1(x) .
\end{aligned}
$$

Since $D \in R(A)$ we deduce that $\left(f \vee f^{*}\right)(x)=1(x)$, hence $f \vee f^{*}=1$, that is, $M_{r}(A)$ is a Boolean algebra (by Corollary 6).
Remark 6 The axioms $\mathrm{sm}_{3}, \mathrm{sm}_{4}$ were necessary in the proof of Proposition 21.

Definition 9 Given two strong multipliers f_{1}, f_{2} on A,
we say that f_{1} extends f_{2} if $\operatorname{dom}\left(f_{2}\right) \subseteq \operatorname{dom}\left(f_{1}\right)$ and $f_{1}(x)=f_{2}(x)$, for all $x \in \operatorname{dom}\left(f_{2}\right)$; we write $f_{2} \leq f_{1}$ if f_{1} extends f_{2}. A strong multiplier f is called maximal if f can not be extended to a strictly larger domain.

Lemma 22 1) If $f_{1}, f_{2} \in M(A), f \in M_{r}(A)$ and
$f \leq f_{1}, \quad f \leq f_{2}$, then f_{1} and f_{2} coincide on the $\operatorname{dom}\left(f_{1}\right) \cap \operatorname{dom}\left(f_{2}\right) ;$
2) Every strong multiplier $f \in M_{r}(A)$ can be extended to a maximal strong multiplier. More precisely, each principal strong multiplier f_{a} with $a \in B(A)$ and $\operatorname{dom}\left(f_{a}\right) \in T(A) \cap R(A)$ can be uniquely extended to the total strong multiplier $\overline{f_{a}}$ and each non-principal strong multiplier can be extended to a maximal nonprincipal one.

Proof. 1) If by contrary, there exists $t \in \operatorname{dom}\left(f_{1}\right) \cap \operatorname{dom}\left(f_{2}\right)$ such that $f_{1}(t) \neq f_{2}(t)$, since $\operatorname{dom}(f) \in R(A)$, then there exists $t^{\prime} \in \operatorname{dom}(f) \cap B(A)$ such that $t^{\prime} \vee f_{1}(t) \neq t^{\prime} \vee f_{2}(t) \Leftrightarrow f_{1}\left(t^{\prime} \vee t\right) \neq f_{2}\left(t^{\prime} \vee t\right)$ which is contradictory, since $t^{\prime} \vee t \in \operatorname{dom}(f)$.
2) We first prove that f_{a} with $a \in B(A)$ can not be extended to a non-principal strong multiplier. Let $D=\operatorname{dom}\left(f_{a}\right) \in T(A) \cap R(A), f_{a}: D \rightarrow A$ and suppose by contrary that there exists $D^{\prime} \in T(A), D \subseteq D^{\prime}$, (hence $\left.D^{\prime} \in T(A) \cap R(A)\right)$ and a non-principal strong multiplier $f \in M\left(D^{\prime}, A\right)$ which extends f_{a}. Since f is nonprincipal, there exists $x_{0} \in D^{\prime}, x_{0} \notin D$ such that $f\left(x_{0}\right) \neq a \vee x_{0}$. Since $D \in R(A)$, then there exists $t \in D \cap B(A)$ such that

$$
t \vee f\left(x_{0}\right) \neq t \vee\left(a \vee x_{0}\right) \Leftrightarrow f\left(t \vee x_{0}\right) \neq a \vee\left(t \vee x_{0}\right),
$$

which is contradictory since $f_{a} \leq f$. Hence f_{a} is uniquely extended by \bar{f}_{a}.
Now, let $f \in M_{r}(A)$ be non-principal and
$M_{f}=\{(D, g): D \in T(A), g \in M(D, A), \operatorname{dom}(f) \subseteq D$
and $\left.g_{\text {doom }(f)}=f\right\}$ (clearly, if $(D, g) \in M_{f}$, then $D \in T(A) \cap R(A))$.
The set M_{f} is ordered by $\left(D_{1}, g_{1}\right) \leq\left(D_{2}, g_{2}\right)$ iff $D_{1} \subseteq D_{2}$ and $g_{2 \mid D_{1}}=g_{1}$. Let $\left\{\left(D_{k}, g_{k}\right): k \in K\right\}$ be a chain in M_{f}. Then $D^{\prime}=\underset{k \in K}{\cup} D_{k} \in T(A)$ and $\operatorname{dom}(f) \subseteq D^{\prime}$. So, $g^{\prime}: D^{k \in K} A$ defined by $g^{\prime}(x)=g_{k}(x)$ if $x \in D_{k}$ is correctly defined (since if $x \in D_{k} \cap D_{t}$ with $k, t \in K$, then by 1), $\left.g_{k}(x)=g_{t}(x)\right)$.
Clearly, $g^{\prime} \in M\left(D^{\prime}, A\right)$ and $g_{\text {domp(f) }}^{\prime}=f$ (since if $x \in \operatorname{dom}(f) \subseteq D^{\prime}$, then $x \in D^{\prime}$ and so there exists $k \in K$, such that $x \in D_{k}$, hence $\left.g^{\prime}(x)=g_{k}(x)=f(x)\right)$.
So, $\left(D^{\prime}, g^{\prime}\right)$ is an upper bound for the family
$\left\{\left(D_{k}, g_{k}\right): k \in K\right\}$, hence by Zorn's lemma, M_{f} contains at least one maximal strong multiplier h which extends f. Since f. is non-principal and h extends f, h is also non-principal.
On the Boolean algebra $M_{r}(A)$ we consider the relation ρ_{A} defined by $\left(f_{1}, f_{2}\right) \in \rho_{A}$ iff f_{1} and f_{2} coincide on the intersection of their domains.
Lemma $23 \rho_{A}$ is a congruence on $M_{r}(A)$.
Proof. The reflexivity and the symmetry of ρ_{A} are immediately; to prove the transitivity of ρ_{A} let
$\left(f_{1}, f_{2}\right),\left(f_{2}, f_{3}\right) \in \rho_{A}$. Therefore f_{1}, f_{2}, and respectively f_{2}, f_{3} coincide on the intersection of their domains. If by contrary, there exists $x_{0} \in \operatorname{dom}\left(f_{1}\right) \cap \operatorname{dom}\left(f_{3}\right)$ such that $f_{1}\left(x_{0}\right) \neq f_{3}\left(x_{0}\right)$, since $\operatorname{dom}\left(f_{2}\right) \in R(A)$, there exists $t \in \operatorname{dom}\left(f_{2}\right) \cap B(A)$ such that
$t \vee f_{1}\left(x_{0}\right) \neq t \vee f_{3}\left(x_{0}\right) \Leftrightarrow f_{1}\left(t \vee x_{0}\right) \neq f_{3}\left(t \vee x_{0}\right)$
which is contradictory, since
$t \vee x_{0} \in \operatorname{dom}\left(f_{1}\right) \cap \operatorname{dom}\left(f_{2}\right) \cap \operatorname{dom}\left(f_{3}\right)$. The compatibility of ρ_{A} with \rightarrow on $M_{r}(A)$ is immediately.
For $f \in M_{r}(A)$ we denote by $[f]$ the congruence class of f modulo ρ_{A} and $A^{\prime \prime}=M_{r}(A) / \rho_{A}$.

Remark 7 From Proposition 21 we deduce that $A^{\prime \prime}$ is a Boolean algebra.

Lemma 24 The map $\bar{v}_{A}: B(A) \rightarrow A^{\prime \prime}$ defined by $\bar{v}_{A}(a)=\left[\overline{f_{a}}\right]$ is an injective morphism of Boolean algebras and $\bar{v}_{A}(B(A)) \in R\left(A^{\prime \prime}\right)$.
Proof. The fact that \bar{v}_{A} is a morphism of Boolean algebras follows from Lemma 18. To prove the injectivity of \bar{v}_{A} let $a, b \in B(A)$ such that $\bar{v}_{A}(a)=\bar{v}_{A}(b)$. Then $\left[\overline{f_{a}}\right]=\left[\overline{f_{b}}\right] \Leftrightarrow\left(\overline{f_{a}}, \overline{f_{b}}\right) \in \rho_{A} \Leftrightarrow \overline{f_{a}}(x)=\overline{f_{b}}(x)$, or every $x \in A \Leftrightarrow x \vee a=x \vee b$, for every $x \in A$, hence for $x=0$ we obtain that $0 \vee a=0 \vee b \Rightarrow a=b$. To prove $\bar{v}_{A}(B(A)) \in R\left(A^{\prime \prime}\right)$, if by contrary there exist
$f_{1}, f_{2} \in M_{r}(A)$ such that $\left[f_{1}\right] \neq\left[f_{2}\right]$ (that is there exists $x_{0} \in \operatorname{dom}\left(f_{1}\right) \cap \operatorname{dom}\left(f_{2}\right)$ such that $\left.f_{1}\left(x_{0}\right) \neq f_{2}\left(x_{0}\right)\right)$ and

$$
\left[f_{1}\right] \vee\left[\overline{f_{a}}\right]=\left[f_{2}\right] \vee\left[\overline{f_{a}}\right] \Leftrightarrow\left[f_{1} \vee \overline{f_{a}}\right]=\left[f_{2} \vee \overline{f_{a}}\right]
$$

for every $a \in B(A) \Leftrightarrow f_{1}(x) \vee a \vee x=f_{2}(x) \vee a \vee x$, for every $a \in B(A)$ and every $x \in \operatorname{dom}\left(f_{1}\right) \cap \operatorname{dom}\left(f_{2}\right)$. For $a=0$ and $x=x_{0}$ we obtain that
$f_{1}\left(x_{0}\right) \vee x_{0}=f_{2}\left(x_{0}\right) \vee x_{0} \Leftrightarrow f_{1}\left(x_{0}\right)=f_{2}\left(x_{0}\right)$ which is contradictory.

Remark 8 Since for every $a \in B(A), \overline{f_{a}}$ is the unique maximal strong multiplier on $\left[\overline{f_{a}}\right]$ (by Lemma 22) we can identify $\left[\overline{f_{a}}\right]$ with $\overline{f_{a}}$. So, since \bar{v}_{A} is injective morphism of Boolean algebras, the elements of $B(A)$ can be identified with the elements of the set $\left\{\overline{f_{a}}: a \in B(A)\right\}$.
Lemma 25 In view of the identifications made above, if $[f] \in A^{\prime \prime}$ (with $f \in M_{r}(A)$ and $D=\operatorname{dom}(f) \in T(A) \cap R(A))$, then

$$
D \cap B(A) \subseteq\left\{a \in B(A): \overline{f_{a}} \vee[f] \in B(A)\right\} .
$$

Proof. Let $a \in D \cap B(A)$. If by contrary, $\overline{f_{a}} \vee[f] \notin B(A)$ then $\overline{f_{a}} \vee f$ is a non-principal strong multiplier. Then by Lemma 22, (2), $\overline{f_{a}} \vee f$ can be extended to a non-principal maximal strong multiplier
$\bar{f}: \bar{D} \rightarrow A$ with $\bar{D} \in T(A)$. Thus, $D \subseteq \bar{D}$ and for every $x \in D$,

$$
\bar{f}(x)=\left(\overline{f_{a}} \vee f\right)(x)=a \vee x \vee f(x)=a \vee f(x)
$$

Since $a \in D \cap B(A)$, then
$\bar{f}(x)=f(a \vee x) \stackrel{\left(s m_{4}\right)}{=} x \vee f(a)$, that is, $\bar{f}_{\mid D}$ is principal which is contradictory with the assumption that \bar{f} is non-principal.

5. Maximal Commutative BCK-Algebra of Quotients

The goal of this section is to define (taking as a guideline the case of distributive lattices) the notions of BCKalgebra of fractions and maximal BCK-algebra of quotients for a commutative bounded BCK-algebra. For some informal explanations of notions of fraction see [13] and [5].

Definition 10 A bounded commutative BCK-algebra A^{\prime} is called $B C K$-algebra of fractions of A if:
$\left(f_{1}\right) B(A)$ is a BCK-subalgebra of A^{\prime};
$\left(\mathrm{f}_{2}\right)$ For every $a^{\prime}, b^{\prime}, c^{\prime} \in A^{\prime}, a^{\prime} \neq b^{\prime}$, there exists $a \in B(A)$ such that $a \vee a^{\prime} \neq a \vee b^{\prime}$ and $a \vee c^{\prime} \in B(A)$.

As a notational convenience, we write $A \prec A^{\prime}$ to indicate that A^{\prime} is a BCK-algebra of fractions of A. So, $B(A) \prec B(A)$ (since for $a^{\prime}, b^{\prime}, c^{\prime} \in B(A)$ with $a^{\prime} \neq b^{\prime}$, if consider $0 \in B(A)$, then $a^{\prime}=a^{\prime} \vee 0 \neq b^{\prime} \vee 0=b^{\prime}$ and $\left.c^{\prime}=c^{\prime} \vee 0 \in B(A)\right)$.

Definition $11 Q(A)$ is the maximal (commutative) BCK-algebra of quotients of A if $A \prec Q(A)$ and for every commutative and bounded BCK-algebra A^{\prime} with $A \prec A^{\prime}$, there exists a monomorphism of BCK-algebras $i: A^{\prime} \rightarrow Q(A)$.

Proposition 26 Let A be a commutative and bounded BCK-algebra such that $A \prec A^{\prime}$. Then A^{\prime} is a Boolean algebra.

Proof. If by contrary, A^{\prime} is not a Boolean algebra, then by Corollary 6, there exists $x \in A^{\prime}$ such that $x \vee x^{*} \neq 1$. Since $A \prec A^{\prime}$, then there exists $e \in B(A)$, such that $e \vee x \in B(A)$ and $e \vee\left(x \vee x^{*}\right) \neq e \vee 1=1$. Then, by Lemma 4,

$$
\begin{aligned}
& (e \vee x) \vee(e \vee x)^{*}=1 \Rightarrow(e \vee x) \vee\left(e^{*} \wedge x^{*}\right)=1 \\
& \Rightarrow 1 \leq\left(e \vee x \vee e^{*}\right) \wedge\left(e \vee x \vee x^{*}\right) \\
& \Rightarrow 1 \leq 1 \wedge\left(e \vee x \vee x^{*}\right) \Rightarrow e \vee x \vee x^{*}=1
\end{aligned}
$$

a contradiction!
Remark 9 If A is a Boolean algebra, then $B(A)=A$. By Proposition 26, $Q(A)$ is a Boolean algebra and the axioms $\mathrm{sm}_{1}-\mathrm{sm}_{4}$ are equivalent with sm_{1}, hence $Q(A)$ is in this case just the classical Dedekind-MacNeille com-
pletion of A (see [12], p. 687). In contrast to the general situation, the Dedekind-MacNeille completion of a Boolean algebra is again distributive and, in fact, is a Boolean algebra (see [15], p. 239).

Lemma 27 Let $A \prec A^{\prime}$; then for every $a^{\prime}, b^{\prime} \in A^{\prime}$, $a^{\prime} \neq b^{\prime}$, and any finite sequence $c_{1}^{\prime}, \cdots, c_{n}^{\prime} \in A^{\prime}$, there exists $a \in B(A)$ such that $a \vee a^{\prime} \neq a \vee b^{\prime}$ and $a \vee c_{i}^{\prime} \in B(A)$ for $i=1,2, \cdots, n \quad(n \geq 2)$.

Proof. Assume lemma holds true for $n-1$. So we may find $b \in B(A)$ such that $b \vee a^{\prime} \neq b \vee b^{\prime}$ and $b \vee c_{i}^{\prime} \in B(A)$ for $i=1,2, \cdots, n-1$. Since $A \prec A^{\prime}$, we find $c \in B(A)$ such that $c \vee\left(b \vee a^{\prime}\right) \neq c \vee\left(b \vee b^{\prime}\right)$ and $c \vee c_{n}^{\prime} \in B(A)$. The element $a=b \vee c \in B(A)$ has the required properties.

Lemma 28 Let $A \prec A^{\prime}$ and $a^{\prime} \in A^{\prime}$. Then
$D_{a^{\prime}}=\left\{a \in B(A): a \vee a^{\prime} \in B(A)\right\} \in T(B(A)) \cap R(A)$.
Proof. If $a \in B(A)$ and $x \in D_{a^{\prime}}$, then $x \vee a^{\prime} \in B(A)$ and since $(a \vee x) \vee a^{\prime}=a \vee\left(x \vee a^{\prime}\right) \in B(A)$ it follows $a \vee x \in D_{a^{\prime}}$, hence $D_{a^{\prime}} \in T(B(A))$. To prove $D_{a^{\prime}} \in R(A)$ consider $x, y \in A$ such that $e \vee x=e \vee y$, for every $e \in D_{a^{\prime}} \cap B(A)$. If by contrary, $x \neq y$, since $A \prec A^{\prime}$, there exists $a_{0} \in B(A)$ such that
$a_{0} \vee a^{\prime} \in B(A)$ (that is, $a_{0} \in D_{a^{\prime}}$) and $a_{0} \vee x \neq a_{0} \vee y$, which is contradictory.

Theorem $29 A^{\prime \prime}$ (defined in Section 4) is the maximal (commutative) BCK-algebra of quotients $Q(A)$ of A.

Proof. The fact that $B(A)$ is a BCK-subalgebra (Boolean subalgebra) of $Q(A)$ follows from Lemma 24 and Remark 8. To prove $A \prec Q(A)$, let
$[f],[g],[h] \in Q(A)$ with $f, g, h \in M_{r}(A)$ such that $[g] \neq[h]$ (that is, there exists $x_{0} \in \operatorname{dom}(g) \cap \operatorname{dom}(h)$ such that $g\left(x_{0}\right) \neq h\left(x_{0}\right)$).

Put $D=\operatorname{dom}(f) \in T(A) \cap R(A)$ and $D_{[f]}=\left\{a \in B(A): \overline{f_{a}} \vee[f] \in B(A)\right\}$.
Then by Lemma $25, D \cap B(A) \subseteq D_{[f]^{-}}$If suppose that for every $a \in D \cap B(A), \overline{f_{a}} \vee[g]=\overline{f_{a}} \vee[h]$, then $\left[\overline{f_{a}} \vee g\right]=\left[\overline{f_{a}} \vee h\right]$, hence for every
$x \in \operatorname{dom}(g) \cap \operatorname{dom}(h)$ we have
$\left(\overline{f_{a}} \vee g\right)(x)=\left(\overline{f_{a}} \vee h\right)(x) \Leftrightarrow$ (analogously than as in the proof of Lemma 24)

$$
\Leftrightarrow a \vee x \vee g(x)=a \vee x \vee h(x) \Leftrightarrow a \vee g(x)=a \vee h(x)
$$

Since $D \in R(A)$ we deduce that $g(x)=h(x)$ for every $x \in \operatorname{dom}(g) \cap \operatorname{dom}(h)$ so $[g]=[h]$, which is contradictory. Hence, if $[g] \neq[h]$, then there exists $a \in D \cap B(A)$, such that $\overline{f_{a}} \vee[g] \neq \overline{f_{a}} \vee[h]$. But for this $a \in D \cap B(A)$ we have $\overline{f_{a}} \vee[f] \in B(A)$ (since $\left.D \cap B(A) \subseteq D_{[f]}\right)$ hence $A \prec Q(A)$.

To prove the maximality of $Q(A)$, let A^{\prime} be a
bounded commutative BCK-algebra such that $A \prec A^{\prime}$, thus $B(A) \subseteq B\left(A^{\prime}\right)$; Then A^{\prime} is embedded in $Q(A)$ by $i: A^{\prime} \rightarrow Q(A)$ defined by $i\left(a^{\prime}\right)=\left[f_{a^{\prime}}\right]$, for every $a^{\prime} \in A^{\prime}$, where $\operatorname{dom}\left(f_{a^{\prime}}\right) \in D_{a^{\prime}}$ (see Lemma 28).
Clearly, $f_{a^{\prime}} \in M_{r}(A)$ (by Lemma 28) and i is a morphism of BCK-algebras (see Lemma 18). To prove the injectivity of i, let $a^{\prime}, b^{\prime} \in A^{\prime}$, such that
$\left[f_{a^{\prime}}\right]=\left[f_{b^{\prime}}\right] \Leftrightarrow f_{a^{\prime}}(x)=f_{b^{\prime}}(x)$ for every $x \in D_{a^{\prime}} \cap D_{b^{\prime}}$.
If $a^{\prime} \neq b^{\prime}$, by Lemma 27 (since $A \prec A^{\prime}$), there exists
$a \in B(A)$ such that $a \vee a^{\prime}, a \vee b^{\prime} \in B(A)$ and
$a \vee a^{\prime} \neq a \vee b^{\prime}$ which is contradictory (since
$a \vee a^{\prime}, a \vee b^{\prime} \in B(A)$ implies $\left.a \in D_{a^{\prime}} \cap D_{b^{\prime}}\right)$.
Remark 10 1. If A is a BCK-algebra with
$B(A)=\{0,1\}=L_{2}$ and $A \prec A^{\prime}$ then $A^{\prime}=\{0,1\}$, hence $Q(A) \approx L_{2}$. Indeed, if $a, b, c \in A^{\prime}$, with $a \neq b$, then there exists $e \in B(A)$ such that $e \vee a \neq e \vee b$, (hence $e \neq 1$) and $e \vee c \in B(A)$. Clearly, $e=0$, hence $c \in B(A)$, that is $A^{\prime}=B(A)$. As examples of BCKalgebras with this property we have local BCK-algebras and BCK-chains.
2. More general, if A is a BCK-algebra such that $B(A)$ is finite, if $A \prec A^{\prime}$ then $A^{\prime}=B(A)$, hence

$Q(A)=B(A)$

Indeed, $B(A) \subseteq A^{\prime}$ and consider $a \in A^{\prime} . \quad B(A)$ being finite, there exists a smallest element $e_{a} \in B(A)$ such $e_{a} \vee a \in B(A)$. Suppose $e_{a} \vee a \neq a$, then there would exists $e \in B(A)$ such that $e \vee\left(e_{a} \vee a\right) \neq e \vee a$ and $e \vee a \in B(A)$. But $e \vee a \in B(A)$ implies $e_{a} \leq e$, and thus we obtain $e \vee\left(e_{a} \vee a\right) \neq e \vee a \Leftrightarrow e \vee a \neq e \vee a$, a contradiction. Hence $a=e_{a} \vee a \in B(A)$, that is, $A^{\prime} \subseteq B(A)$. Then $A^{\prime}=B(A)$, hence $Q(A)=B(A)$.

6. Localization of Commutative Bounded BCK-ALgebras

In [4], G. Georgescu exhibited the localization lattice L_{F} of a distributive lattice L with respect to a topology F on L in a similar way as for rings (see [16]) or monoids (see [17]). The aim of this section is to define the notion of localization BCK-algebra A_{F} of a commutative bounded BCK-algebra A with respect to a topology F on A. In the last part of this section is proved that the maximal commutative BCK-algebra of quotients (defined in Section 5) and the commutative BCK-algebra of fractions relative to a \vee-closed system (defined in Section 3) are BCK-algebras of localization.
In this section A will be a bounded commutative BCK-algebra and F a topological system on A.

Definition 12 A non-empty family F of elements on $T(A)$ will be called a topological system on A if the following properties hold:
$\left(\mathrm{t}_{1}\right)$ If $D_{1} \in F, D_{2} \in T(A) \quad$ and $\quad D_{1} \subseteq D_{2}$, then $D_{2} \in F$ (hence $A \in F$);
$\left(\mathrm{t}_{2}\right)$ If $D_{1}, D_{2} \in F$, then $D_{1} \cap D_{2} \in F$.
Example 3 If $D \in T(A)$, then the set
$F_{D}=\left\{D^{\prime} \in T(A): D \subseteq D^{\prime}\right\}$ is a topological system on A.
Example 4 We recall that by $R(A)$ we denote the set of all regular subsets of A (see Definition 8). Then $F=T(A) \cap R(A)$ is a topological system on A (see Lemma 19).

Example 5 Let $S \subseteq A$ a \vee-closed subset of A (see Definition 4). If we denote by
$F_{S}=\{D \in T(A): D \cap S \cap B(A) \neq \varnothing\}$, then F_{S} is a topological system on A.

If F is a topological system on A, let us consider the relation θ_{F} of A defined by: $(x, y) \in \theta_{F} \Leftrightarrow$ there exists $D \in F$ such that $t \vee x=t \vee y$ for any $t \in D \cap B(A)$. As in the case of θ_{S} (see Proposition 11), we deduce that θ_{F} is a congruence on A.
We shall denote by x / θ_{F} the congruence class of an element $x \in A$ and by $p_{F}: A \rightarrow A / \theta_{F}$ the canonical morphism of BCK-algebras.

Remark 11 Clearly, if $a \in B(A) \Rightarrow a / \theta_{F} \in B\left(A / \theta_{F}\right)$.
Definition 13 A F-multiplier on A is a mapping
$f: D \rightarrow A / \theta_{F}$ where $D \in F$ such that for every $a \in B(A)$ and $x \in D$,
$\left(\mathrm{m}_{1}\right) f(a \vee x)=a / \theta_{F} \vee f(x)$;
$\left(\mathrm{m}_{2}\right) x / \theta_{F} \leq f(x)$.
If $F=\{A\}$, then a F-multiplier is a function
$f: A \rightarrow A$ which verify only the conditions sm_{1} and sm_{2} from Definition 7. The maps 0,1: $A \rightarrow A / \theta_{F}$, defined by $0(x)=x / \theta_{F} \quad$ and $\mathbf{1}(x)=1 / \theta_{F} \quad$ for every $x \in A$ are F-multipliers. Also, for $a \in B(A), f_{a}: D \rightarrow A / \theta_{F}$ defined by $f_{a}(x)=a / \theta_{F} \vee x / \theta_{F}$ for every $x \in D$, is a F-multiplier (where $D \in F$).

For $D \in F$, we shall denote by $M\left(D, A / \theta_{F}\right)$ the set of all the F-multipliers having the domain D. If
$D_{1}, D_{2} \in F, \quad D_{1} \subseteq D_{2}$ we have a canonical mapping $\phi_{D_{1}, D_{2}}: M\left(D_{2}, A / \theta_{F}\right) \rightarrow M\left(D_{1}, A / \theta_{F}\right)$ defined by
$\phi_{D_{1}, D_{2}}(f)=f_{\mid D_{1}}$ for $f \in M\left(D_{2}, A / \theta_{F}\right)$. Let us consider the directed system of sets $<\left\{M\left(D, A / \theta_{F}\right)\right\}_{D \in F}$,
$\left\{\phi_{D_{1}, D_{2}}\right\}_{D_{1}, D_{2} \in F, D_{1} \subseteq D_{2}}>$ and denote by A_{F} the inductive limit (in the category of sets): $A_{F}=\underset{D \in F}{\lim } M\left(D, A / \theta_{F}\right)$. For any F-multiplier $f: D \rightarrow A / \theta_{F}$ we shall denote by (D, f) the equivalence class of f in A_{F}.
Remark 12 We recall that if $f_{i}: D_{i} \rightarrow A / \theta_{F}, i=1,2$ are F-multipliers, then $\overline{\left(D_{1}, f_{1}\right)}=\overline{\left(D_{2}, f_{2}\right)}$ (in A_{F}) iff there exists $D \in F, D \subseteq D_{1} \cap D_{2}$ such that $f_{1 \mid D}=f_{2 \mid D}$.

Let $f_{i}: D_{i} \rightarrow A / \theta_{F}$, (with $D_{i} \in F, i=1,2$), F-multipliers. Let us consider the mapping
$f_{1} \rightarrow f_{2}: D_{1} \cap D_{2} \rightarrow A / \theta_{F}$, defined by
$\left(f_{1} \rightarrow f_{2}\right)(x)=f_{1}(x) \rightarrow f_{2}(x)$, for any $x \in D_{1} \cap D_{2}$, and let

$$
\overline{\left(D_{1}, f_{1}\right)} \rightarrow \overline{\left(D_{2}, f_{2}\right)}=\overline{\left(D_{1} \cap D_{2}, f_{1} \rightarrow f_{2}\right)} .
$$

This definition is correct. Indeed, let $f_{i}^{\prime}: D_{i}^{\prime} \rightarrow A / \theta_{F}$, with $D_{i}^{\prime} \in F, i=1,2$ such that $\overline{\left(D_{i}, f_{i}\right)}=\overline{\left(D_{i}^{\prime}, f_{i}^{\prime}\right)}$, $i=1,2$. Then there exist $D_{1}^{\prime \prime}, D_{2}^{\prime \prime} \in F$ such that $D_{1}^{\prime \prime} \subseteq D_{1} \cap D_{1}^{\prime}, D_{2}^{\prime \prime} \subseteq D_{2} \cap D_{2}^{\prime}$ and $f_{1 \mid D^{n 1} 1}=f_{1 \mid D^{\prime \prime} 1}^{\prime}$, $f_{2 \mid D^{\prime 2} 2}=f_{2 \mid D^{\prime \prime} 2}^{\prime}$. If we set $D^{\prime \prime}=D_{1}^{\prime \prime} \cap D_{2}^{\prime \prime} \subseteq D_{1} \cap D_{2} \cap D_{1}^{\prime} \cap D_{2}^{\prime}$, then $D^{\prime \prime} \in F$ and clearly $\left(f_{1} \rightarrow f_{2}\right)_{\mid D^{\prime \prime}}=\left(f_{1}^{\prime} \rightarrow f_{2}^{\prime}\right)_{\mid D^{\prime \prime}}$,
hence $\overline{\left(D_{1} \cap D_{2}, f_{1} \rightarrow f_{2}\right)}=\overline{\left(D_{1}^{\prime} \cap D_{2}^{\prime}, f_{1}^{\prime} \rightarrow f^{\prime} 2\right)}$.
Lemma $30 f_{1} \rightarrow f_{2} \in M\left(D_{1} \cap D_{2}, A / \theta_{F}\right)$.
Proof. If $x \in D_{1} \cap D_{2}$ and $a \in B(A)$, then

$$
\begin{aligned}
& \left(f_{1} \rightarrow f_{2}\right)(a \vee x)=f_{1}(a \vee x) \rightarrow f_{2}(a \vee x) \\
& =\left(a / \theta_{F} / \vee f_{1}(x)\right) \rightarrow\left(a / \theta_{F} \vee f_{2}(x)\right) \\
& \stackrel{\left(c_{21}\right)}{=} a / \theta_{F} \vee\left(f_{1} \rightarrow f_{2}\right)(x)
\end{aligned}
$$

and $\left(f_{1} \rightarrow f_{2}\right)(x)=f_{1}(x) \rightarrow f_{2}(x) \geq f_{2}(x) \stackrel{\left(m_{2}\right)}{\geq} x / \theta_{F}$.
Corollary $31\left(A_{F}, \rightarrow, \overline{0}, \overline{1}\right)$ is a bounded commutative BCK-algebra (where $\overline{0}=\overline{(A, 0)}$ and $1=\overline{(A, 1)}$) (see Corollary 17).

Definition $14 A_{F}$ will be called the localization BCKalgebra of A with respect to the topology F.

Lemma 32 The mapping $v_{F}: B(A) \rightarrow A_{F}$ defined by $v_{F}(a)=\overline{\left(A, \overline{f_{a}}\right)}$ for every $a \in B(A)$ is a morphism of BCK-algebras and $v_{F}(B(A))$ is a regular subset of A_{F}.

Proof. If $a, b \in B(A)$ then

$$
\begin{aligned}
& v_{F}(a) \rightarrow v_{F}(b)=\overline{\left(A, \overline{f_{a}}\right)} \rightarrow \overline{\left(A, \overline{f_{b}}\right)} \\
& =\overline{\left(A, \overline{f_{a}} \rightarrow \overline{f_{b}}\right)}=\overline{\left(A, \overline{f_{a \rightarrow b}}\right)}=v_{F}(a \rightarrow b) .
\end{aligned}
$$

To prove that $v_{F}(A)$ is a regular subset of A_{F}, let $\overline{\left(D_{i}, f_{i}\right)} \in A_{F}, D_{i} \in F, i=1,2$, such that
$\overline{\left(A, \overline{f_{a}}\right)} \vee \overline{\left(D_{1}, f_{1}\right)}=\overline{\left(A, \overline{f_{a}}\right)} \vee \overline{\left(D_{2}, f_{2}\right)}$ for every $a \in B(A)$.

Then $\overline{\left(D_{1}, f_{a} \vee f_{1}\right)}=\overline{\left(D_{2}, f_{a} \vee f_{2}\right)} \Leftrightarrow$ there exists $D \in F, D \subseteq D_{1} \cap D_{2}$ such that

$$
\begin{aligned}
& \left(f_{a} \vee f_{1}\right)_{\mid D}=\left(f_{a} \vee f_{2}\right)_{\mid D} \\
& \Leftrightarrow(a \vee x) / \theta_{F} \vee f_{1}(x)=(a \vee x) / \theta_{F} \vee f_{2}(x),
\end{aligned}
$$

for every $x \in D$ and $a \in B(A)$. If in this last equivalence we choose $a=0 \in B(A)$, then we obtain that

$$
\begin{aligned}
& x / \theta_{F} \vee f_{1}(x)=x / \theta_{F} \vee f_{2}(x) \\
& \Leftrightarrow f_{1}(x)=f_{2}(x) \Leftrightarrow \overline{\left(D_{1}, f_{1}\right)}=\overline{\left(D_{2}, f_{2}\right)},
\end{aligned}
$$

hence $v_{F}(B(A))$ is a regular subset of A_{F}

7. Applications

In that follows we describe the localization BCK-algebra A_{F} in some special instances.

1) If $D \in T(A)$ and F is the topological system $F_{D}=\left\{D^{\prime} \in T(A): D \subseteq D^{\prime}\right\}$ (see Example 3), then $A_{F} \subseteq M\left(D, A / \theta_{F}\right)$ and $v_{F}: B(A) \rightarrow A_{F}$ is defined by $v_{F}(a)=\overline{\left(D, f_{a \mid D}\right)}$ for any $a \in B(A)$. For $x, y \in B(A)$ we have $(x, y) \in \theta_{F} \Leftrightarrow$ for every
$t \in D, t \vee x=t \vee y \Leftrightarrow f_{x \mid D}=f_{y \mid D} \Leftrightarrow v_{F}(x)=v_{F}(y)$ then there exists an injective morphism of BCK-algebras $\varphi: A / \theta_{F} \rightarrow A_{F}, \varphi\left(x / \theta_{F}\right)=v_{F}(x)$ such that $\varphi \circ V_{F}=p_{F}$.
2) To obtain the maximal BCK-algebra of quotients $Q(A)$ as a localization relative to a topological system F we will develop another theory of F-multipliers (meaning we add new axioms for F-multipliers).

Definition 15 Let F be a topological system on A. A strong-F-multiplier is a mapping $f: D \rightarrow A / \theta_{F}$ (where $D \in F$) which verifies the axioms m_{1} and m_{2} and
$\left(\mathrm{m}_{3}\right)$ If $e \in D \cap B(A)$, then $f(e) \in B\left(A / \theta_{F}\right)$;
$\left(\mathrm{m}_{4}\right)\left(x / \theta_{F}\right) \vee f(a)=\left(a / \theta_{F}\right) \vee f(x)$, for every $a \in D \cap B(A)$ and $x \in D$.
If $F=\{A\}$, then θ_{F} is the identity congruence of A so a strong F-multiplier is a strong total multiplier (in sense of Definition 7).

Remark 13 If A is a BCK-algebra, the maps $\mathbf{0 , 1}$: $A \rightarrow A / \theta_{F}$ defined by $\mathbf{0}(x)=x / \theta_{F}$ and $\mathbf{1}(x)=1 / \theta_{F}$ for every $x \in A$ are strong F-multipliers. If $f_{i}: D_{i} \rightarrow A / \theta_{F}$, (with $D_{i} \in F, i=1,2$) are strong F-multipliers, the mapping $f_{1} \rightarrow f_{2}: D_{1} \cap D_{2} \rightarrow A / \theta_{F}$ defined by $\left(f_{1} \rightarrow f_{2}\right)(x)=f_{1}(x) \rightarrow f_{2}(x)$, for any
$x \in D_{1} \cap D_{2}$ is also a strong- F-multiplier.
Remark 14 Analogous as in the case of F-multipliers if we work with strong- F-multipliers we obtain a BCKsubalgebra of A_{F} denoted by $s-A_{F}$ which will be called the strong localization BCK-algebra of A with respect to the topological system F.

If $F=T(A) \cap R(A)$, then θ_{F} is the identity congruence of A and we obtain the definition for strong multipliers on A, so $A_{F}=\underset{D \in F}{\lim } M(D, A)$. In this situation it is easy to see that v_{F} is injective, so we have:

Proposition 33 In the case $F=I(A) \cap R(A)$,
$s-A_{F}$ is exactly the maximal commutative BCK-algebra of quotients $Q(A)$ of A (see Section 5, Theorem 29).
3. Let S be a \vee-closed system of A. We recall (see Proposition 11) that on A we have the congruence θ_{S} defined by: $(x, y) \in \theta_{S}$ iff there is $s \in S \cap B(A)$ such that $s \vee x=s \vee y$ and $A[S]=A / \theta_{S} \quad$ is called the
(commutative) BCK-algebra of fractions of A relative to the \vee-closed system S (see Remark 5 from Section 3). In this case we have the topological system F_{S} associated with $S, \quad F_{S}=\{D \in T(A): D \cap S \cap B(A) \neq \varnothing\}$.
Lemma $34 \theta_{F_{S}}=\theta_{S}$.
Proof. For $x, y \in A$, if $(x, y) \in \theta_{F_{S}}$ then there exists $D \in F_{S}$ such that $s \vee x=s \vee y$ for every $s \in S \cap B(A)$. Since $D \in F_{S}, D \cap S \cap B(A) \neq \varnothing$, so there exists $s_{0} \in D \cap S \cap B(A)$; in particular we obtain $s_{0} \vee x=s_{0} \vee y$, hence $(x, y) \in \theta_{S}$, that is, $\theta_{F_{S}} \subseteq \theta_{S}$.

If $(x, y) \in \theta_{S}$, then $s_{0} \vee x=s_{0} \vee y$, for some
$s_{0} \in S \cap B(A)$. If consider $D=\left[s_{0}\right)=\left\{a \in A: s_{0} \leq a\right\}$ (the principal deductive system generated by s_{0}, see Corollary 8,1), then $D \in F_{S}$ (since
$s_{0} \in D \cap S \cap B(A)$). If $s \in S \cap B(A)$ then
$s_{0} \leq s \Rightarrow s=s \vee s_{0}$ hence

$$
\begin{aligned}
& s \vee x=\left(s \vee s_{0}\right) \vee x=s \vee\left(s_{0} \vee x\right) \\
& =s \vee\left(s_{0} \vee y\right)=\left(s \vee s_{0}\right) \vee y=s \vee y \\
& \Rightarrow(x, y) \in \theta_{F_{S}} \Rightarrow \theta_{S} \subseteq \theta_{F_{S}} \Rightarrow \theta_{F_{S}}=\theta_{S} .
\end{aligned}
$$

Proposition 35 If F_{S} is the topological system on A associated with a \vee-closed subset S of A , then $s-A_{F_{S}}$ is isomorphic with $B(A[S])$.
Proof. Following Lemma 34, $\theta_{F_{S}}=\theta_{S}$, therefore a F_{S}-multiplier can be considered in this case as a mapping $f: D \rightarrow A[S] \quad\left(D \in F_{S}\right)$ having for $x \in D$ and $a \in D \cap B(A)$ the properties

$$
\begin{aligned}
& \qquad f(a \vee x)=a / \theta_{S} \vee f(x) \\
& =x / \theta_{S} \vee f(a), x / \theta_{S} \leq f(x), \\
& \text { If } \overline{\left(D_{1}, f_{1}\right)}, \overline{\left(D_{2}, f_{2}\right)} \in s-A_{F_{S}}=\underset{\lim _{D \in F_{S}}}{\lim } M(D, A[S]),
\end{aligned}
$$

and $\overline{\left(D_{1}, f_{1}\right)}=\overline{\left(D_{2}, f_{2}\right)}$ then there exists $D \in F_{S}$ such that $D \subseteq D_{1} \cap D_{2}$ and $f_{1 \mid D}=f_{2 \mid D}$. Since $D, D_{1}, D_{2} \in F_{S}$, then

$$
D \cap S \cap B(A), D_{1} \cap S \cap B(A), D_{2} \cap S \cap B(A)
$$

are nonempty, hence there exist $s \in D \cap S \cap B(A)$, $s_{1} \in D_{1} \cap S \cap B(A)$ and $s_{2} \in D_{2} \cap S \cap B(A)$.
We shall prove that $f_{1}\left(s_{1}\right)=f_{2}\left(s_{2}\right)$. Indeed, if consider $t=s \vee s_{1} \vee s_{2} \in D \cap S \cap B(A)$, then
$f_{1}(t)=s / \theta_{S} \vee s_{2} / \theta_{S} \vee f_{1}\left(s_{1}\right)=f_{1}\left(s_{1}\right)$ (since $\left.s / \theta_{S}=s_{2} / \theta_{S}=\mathbf{0}\right)$ and analogously
$f_{2}(t)=f_{2}\left(s_{2}\right) \Rightarrow f_{1}\left(s_{1}\right)=f_{2}\left(s_{2}\right)$. In a similar way we can show that $f_{1}\left(t_{1}\right)=f_{2}\left(t_{2}\right)$ for any
$t_{1}, t_{2} \in D \cap S \cap B(A)$. In accordance with these considerations we can define the mapping
$\alpha: s-A_{F_{S}}=\xrightarrow[D \in F_{S}]{\lim } M(D, A[S]) \rightarrow B(A[S])$ by putting $\alpha \overline{(D, f)}=f(s)$, where $s \in D \cap S \cap B(A)$. It is easy to prove that α is a morphism of BCK-algebras. We
shall prove that α is injective and surjective. To prove the injectivity of α let $\overline{\left(D_{1}, f_{1}\right)}, \overline{\left(D_{2}, f_{2}\right)} \in s-A_{F_{S}}$ such that $\alpha \overline{\left(\left(D_{1}, f_{1}\right)\right)}=\alpha \overline{\left(\left(D_{2}, f_{2}\right)\right)}$. Then for any $s_{1} \in D_{1} \cap S \cap B(A), \quad s_{2} \in D_{2} \cap S \cap B(A)$ we have $f_{1}\left(s_{1}\right)=f_{2}\left(s_{2}\right)$. For two fixed elements s_{1}, s_{2} with $s_{i} \in D_{i} \cap S \cap B(A), \quad i=1,2$, we consider the element $s=s_{1} \vee s_{2} \in\left(D_{1} \cap D_{2}\right) \cap S \cap B(A)$. We have
$f_{1}(s)=s_{2} / \theta_{S} \vee f_{1}\left(s_{1}\right)=0 \vee f_{1}\left(s_{1}\right)=f_{1}\left(s_{1}\right)$ and
$f_{2}(s)=s_{1} / \theta_{S} \vee f_{2}\left(s_{2}\right)=0 \vee f_{2}\left(s_{2}\right)=f_{2}\left(s_{2}\right)$, hence $f_{1}(s)=f_{2}(s)$. Now let $D_{s}=[s) \cap D_{1} \cap D_{2}=\left\{s^{\prime} \in D_{1} \cap D_{2}: s \leq s^{\prime}\right\}$. Since $s \in D_{s}$ we deduce that $D_{s} \neq \varnothing$. If $a \in A$ and $s^{\prime} \in D_{s}$ then $s \leq s^{\prime} \leq a \vee s^{\prime} \Rightarrow a \vee s^{\prime} \in D_{s} \Rightarrow D_{s} \in S(A)$. Since $s \in D_{s} \cap D \Rightarrow D_{s} \in F_{s}$. If $s^{\prime} \in D_{s}$, then

$$
\begin{aligned}
& s \vee s^{\prime}=s^{\prime} \Rightarrow f_{1}\left(s^{\prime}\right)=f_{1}\left(s \vee s^{\prime}\right) \\
& =s^{\prime} / \theta_{S} \vee f_{1}(s)=0 \vee f_{1}(s)=f_{1}(s)
\end{aligned}
$$

and analogously,

$$
\begin{aligned}
& f_{2}\left(s^{\prime}\right)=f_{2}(s) \Rightarrow f_{1}\left(s^{\prime}\right)=f_{2}\left(s^{\prime}\right) \\
& \Rightarrow f_{1 \mid D s}=f_{2 \mid D s} \Rightarrow \overline{\left(D_{1}, f_{1}\right)}=\overline{\left(D_{2}, f_{2}\right)}
\end{aligned}
$$

that is, α is injective. To prove the surjectivity of α, let $a / \theta_{S} \in B(A[S])$ with $a \in A$.
For one fixed element $s \in S$, we consider $D=[s)=\{x \in A: s \leq x\}$. Clearly $D \in F_{S}$. We define $f_{a}: D \rightarrow A[S]$ by putting $f_{a}(x)=(a \vee x) / \theta_{S}$, for every $x \in D$. Clearly, f_{a} is a strong F_{S}-multiplier (clearly $\left(\mathrm{m}_{3}\right)$ is verified since if $e \in D \cap B(A)$, then
$f_{a}(e)=(a \vee e) / \theta_{S}=a / \theta_{S} \vee e / \theta_{S} \in B(A[S])$. From

$$
\begin{aligned}
& (a \vee s) \vee s=a \vee s \Rightarrow(a \vee s) / \theta_{s}=a / \theta_{s} \\
& \Rightarrow f_{a}(s)=a / \theta_{s} \Rightarrow \alpha \overline{\left(\left(D, f_{a}\right)\right)}=a / \theta_{s},
\end{aligned}
$$

that is, α is surjective, hence bijective.

8. References

[1] D. Piciu and C. Busneag, "The Localization of Commutative (Unbounded) Hilbert Algebras," Mathematical Reports, Vol. 12, No. 3, 2010, pp. 285-300.
[2] Y. Imai and K. Iséki, "On Axiom Systems of Propositional Calculi XIV," Proceedings of the Japan Academy, Vol. 42, No. 1, 1966, pp. 19-22. doi:10.3792/pja/1195522169
[3] A. N. Prior, "Formal logic, 2nd Ed," Oxford, 1962.
[4] G. Georgescu, "F-Multipliers and the Localization of Distributive Lattices," Algebra Universalis, Vol. 21, No. 2-3, 1985, pp. 181-197. doi:10.1007/BF01188055
[5] S. Rudeanu, "Localizations and Fractions in Algebra of Logic," Journal of Multi-Valued Logic \& Soft Computing, Vol. 16, No. 3-5, 2010, pp. 465-467.
[6] R. Cignoli and A. Torens, "Glivenko Like Theorems in

Natural Expansions of BCK-Logic," Mathematical Logic Quarterly, Vol. 50, No. 2, 2004, pp. 111-125. doi:10.1002/malq. 200310082
[7] J. Gispert and A. Torrens, "Boolean Representation of Bounded BCK-Algebras," Soft Computing, Vol. 12, No. 10, 2008, pp. 941-954. doi:10.1007/s00500-007-0261-0
[8] A. Iorgulescu, "Algebras of Logic as BCK-Algebras," ASE, Bucharest, 2008.
[9] K. Iséki and S. Tanaka, "An Introduction to the Theory of BCK-Algebras," Mathematica Japonica, Vol. 23, No. 1, 1978, pp. 1-25.
[10] F. M. G. Olmedo and A. J. R. Salas, "Negation and BCKAlgebras," Mathematical Logic Quarterly, Vol. 49, No. 4, 2003, pp. 336-346. doi:10.1002/malq. 200310035
[11] J. Schmid, "Multipliers on Distributive Lattices and Rings of Quotients," Houston Journal of Mathematics, Vol. 6, No. 3, 1980, pp. 401-425.
[12] J. Schmid, "Distributive Lattices and Rings of Quotients," Colloquia Mathematica Societatis János Bolyai, Vol. 33, Szeged, Hungary, 1980.
[13] J. Lambek, "Lectures on Rings and Modules," Blaisdell Publishing Company, New York, 1966.
[14] H. Cornish, "The Multiplier Extension of a Distributive Lattice," Journal of Algebra, Vol. 32, No. 2, 1974, pp. 339-355. doi:10.1016/0021-8693(74)90143-4
[15] R. Balbes and Ph. Dwinger, "Distributive Lattices," University of Missouri Press, Columbia, 1974.
[16] N. Popescu, "Abelian Categories with Applications to Rings and Modules," Academic Press, New York, 1973.
[17] B. Strenström, "Platnes and Localization over Monoids," Mathematische Nachrichten, Vol. 48, No. 1-6, 1971, pp. 315-334. doi:10.1002/mana. 19710480124

