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Abstract 
 
In this paper we develop a theory of localization for bounded commutative BCK-algebras. We try to extend 
some results from the case of commutative Hilbert algebras (see [1]) to the case of commutative BCK-alge- 
bras. 
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1. Introduction 
 
In 1966, Y. Imai and K. Iséki introduced a new notion 
called a BCK-algebra (see [2]). This notion is originated 
from two different ways. One of the motivations is based 
on the set theory (where the set difference operation play 
the main role) and another motivation is from classical 
and non-classical propositional calculi (see [2]). There 
are some systems which contain the only implication 
functor among the logical functors. These examples are 
the systems of positive implicational calculus, weak 
positive implicational calculus by A. Church, and BCI, 
BCK-systems by C. A. Meredith (see [3]). 

In this paper we develop a theory of localization for 
commutative (bounded) BCK-algebras, and then we deal 
with generalizations of results which are obtained in the 
paper [1] for case of Hilbert algebras. For some informal 
explanations of the theory of localization for others 
categories of algebras see [4,5]. 

The paper is organized as follows: in Section 2 we re-
call the basic definitions and put in evidence many rules 
of calculus in (commutative) BCK-algebras which we 
need in the rest of paper. In Section 3 we introduce the 
commutative BCK-algebra of fractions relative to a 
∨-closed system. In Section 4 we develop a theory for 
multipliers on a commutative (bounded) BCK-algebra. In 
Section 5 we define the notions of BCK-algebras of frac-
tions and maximal BCK-algebra of quotients for a com-
mutative (bounded) BCK-algebra. In the last part of this 
section is proved the existence of the maximal BCK- 
algebra of quotients (Theorem 29). In Section 6 we de-
velop a theory of localization for commutative (bounded) 
BCK-algebras. So, for commutative (bounded) BCK- 

algebra A we define the notion of localization BCK-al-
gebra relative to a topology F  on A. In Section 7 we 
describe the localization BCK-algebra FA  in some spe-
cial instances. 
 
2. Preliminaries 
 
In this paper the symbols ⇒ and ⇔ are used for logical 
implication, respectively logical equivalence. 

Definition 1 ([6]) A BCK-algebra is an algebra 
 , ,1A   of type (2,0) such that the following axioms 
are fulfilled for every , ,x y z A :  

(a1) ;  1x x 
(a2) If 1x y y x    , then x y ;  
(B)        1x y y z x z      ;  
(C)    x y z y x z     ; 
(K)   1x y x   . 
In [7] it is proved that the system of axioms {a1, a2, B, 

C, K} is equivalent with the system {a2, a3, a4, B}, 
where: 

(a3) ; 1 1x  
(a4) 1 x x  . 
For examples of BCK-algebras see [6-8]. If A is a 

BCK-algebra, then the relation ≤ defined by x y  iff 
 is a partial order on A (which will be called 

the natural order on A; with respect to this order 1 is the 
largest element of A. A will be called bounded if A has a 
smallest element 0; in this case for 

1x y 

x A  we denote 
* 0x x  . If    x y y y   x  x  for every 
,x y A , then A is called commutative (see [5,9,10]). 
We have the following rules of calculus in a BCK-al-

gebra A (see [6,7]): 
(c1) x y x  ; 
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(c2)  x x y  
  

y ; 
(c3) x y y  y x  

  
y


; 

(c4)  x y z x z     y z x y   ; 
(c5) If x y z A z x z , then for every ,  

and 
y

y z x  z . 
Proposition 1 ([9], p. 5) If A is a commutative BCK- 

algebra, then relative to the natural ordering, A is a join- 
semilattice, where for ,x y A : 

   x y x y y y x x       . 

Lemma 2 Let A be a commutative BCK-algebra. For 
every , ,x y z A  there exists    x z y z  

  
 and 

(c6)   x y z x 
,

z y z   . 
Proof. Since x y x y   by (c5) we deduce that 

  ,x y z  
,t x z y  

x z y z 
z ,

. Let now  such that 
. Then 

t A
x y t y t z   



z x   
, that is,   t x y   

 
z

  x y z   x z y  z . □  
In [9] (Theorem 8) and [8] (Remark 2.1.32) it is 

proved the following result: 
Theorem 3 If A is a BCK-algebra, then the following 

assertions are equivalent: 
1) For every , ,x y z A , 

     x y z x y x z      ; 

2) For every ,x y A ,  x x y x y    ; 
3) For every ,x y A , 

      
  .

x y y x x y

x y y

     

  

x
 

A BCK-algebra which verify one of the above equiva-
lent conditions is called Hilbert algebra (or positive im-
plicative BCK-algebra). 

If A is a bounded BCK-algebra, we have the following 
rules of calculus in A (see [6]):  

(c7) If x y , then * *y x
**

; 
(c8) 

* *** ,x x x 
* *

x ;  

(c9)  **** **, .x y y   x x y x y     
Remark 1 If A is a bounded commutative BCK-alge- 

bra, then for every x A , 

    **0 0 0 ,x x x x       x   

that is, A is an involutive BCK-algebra (see [6], p. 115 
and [9], p. 10). 

For 1, , ,nx x x A  ( ) we will define  1n 

   1 1 2, , ; .n nx x x x x x x       

For two elements ,x y A  and a natural number 
 we denote 1n   , , , ;nx y x  x x y  where  

indicates the number of occurrences of 
n

x . Clearly, if A 
is a Hilbert algebra, then nx y x   y , for every 

. 1n 

Let A be a BCK-algebra. A deductive system (or i-filter) 
of A is a nonempty subset D of A such that 1 D  and 
for every , ,x y A  if , ,x x y D   then .y D  It is 
clear that if D is a deductive system, x y  and ,x D  
then .y D  We denote by  the set of all de-
ductive systems of A. For a nonempty subset 

 Ds A
,X A  

we denote by   :X D Ds A   X  D  ( X  is 
called the deductive system generated by X). It is known 
that  

  1 1: , ,X x A  ; 1, for some , ,n n .x x x 
A

x  x  X  
In particular for a , we denote by a  the deduc-
tive system generated by  a  ( a  is called principal 
and  : 1x , for some 1a x nnA a  ).    

Lemma 4 Let A be a bounded BCK-algebra and 
,x y A  such that there exists x y  in A. Then there 

exists * *x y  and  * .* *x y x 
*

y
* *, .

 
Proof. Clearly,  x y x  y  Let t A  such 

that  Then  * *, .t x y
 ** * **, .x y t x  

**t t
 * *

y 
  

*.

t t x y  
  x y t x  

 From (c8) we de- 
duce that  that is,  * *

,y
x y x  y □ 
Definition 2 ([7], p. 944) Let A be a bounded BCK- 

algebra. An element x A  is called boolean if 
 * 1x x      (clearly, *x x A  ). 

We denote by  B A  the set of all boolean elements 
of A; clearly,  B A0,1 .  

Lemma 5 ([7]) Let A be a BCK-algebra. Then for 
every ,x y A , .   1 1x y x y      

Corollary 6 For a bounded BCK-algebra  x B A  
iff  * 1.x x 

Remark 2 If  x B A

** *1 0,

, that is,  then 
from Lemma 4 we deduce that  

* 1,x x

 * **x x x x  
* ** *x x x x

 
0 x x

 hence  
* 0,        that is, *x  is the 

complement of x  in A. 
Boolean elements also satisfy several interesting 

properties which can be proved using above corollary 
and some arithmetical calculus: 

Proposition 7 ([7]) Let A be a bounded BCK-algebra. 
Then for every  a B A  and ,x y A  we have: 

(c10)  ;A*a B   
(c11)   ;x a xa a    
(c12)      ;x a y 

* * *, ;a a a a a a   
a x y a      

(c13)   
(c14) 

** ;a a   
(c15)  a x  ;a a   
(c16)     ;x a a a x x     
(c17)   * *a x a a a     **;x   
(c18) If  b B A , then     ;b a a  a b b    
(c19)   ;a x x *a x  a x 

 ** **.a x a x  
    

(c20)   
Corollary 8 ([7]) Let A be a bounded BCK-algebra. 

Then 
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1) If , then  a B A    : ;a a x A a x     
2) For ,   A

  , ,0,1B A 
,a b B  ;a b B A 

3)  is a Boolean algebra (where for 
,  and .  B A a b ,a b *a b  **a b a b  

Corollary 9 Let A be a commutative BCK-algebra. 
For every  and  a B A ,y z A  we have: 

(c21)   a y z   y   .a a z  



Proof. By (c6) we have 

         
      1

a y a z a a z y a z

y a z y a z y a z z

        

          
 

so (c21) is equivalent with (*)    .a y z y a z    
 a z
 .a z

 
Clearly,  and from  

 So to prove (*) let 
 such that  and 

a a z y   
z y z y   

a t
z a 
t A y z t  . We have the 
intention to prove that  

    
     ** .

y a z t y a z z

a z y z t

       

    

t
 

Indeed, from  

   

 
 
   

 
   

15

1 .

B

c

y z t a z y z

a z t t a a z a

t a a a t t t t

     

         

        

 □ 

Proposition 10 Let A be a commutative BCK-algebra. 
Then for every  and  ,a b B A x A

 .b x 
 we have: 

(c22)    a x a b x   
Proof. By (c6) we have  

   
   
    1

a x b x

a b x x b x

a b x a x b b

  

           
          .

 

Also  

      
 

    
 

  
12

                  

                 .

C

c

a b x x a b a b

a x b a b

a x b b

      

    

   

 □ 

Definition 3 If 1 2,A A  are BCK-algebras, then 

1 2:f A A
 

 is called morphism of BCK-algebras if  
   ,f x y  f x f y  for every 1,x y A  (if 

1 2,A A
 f

 are bounded BCK-algebras, then we add the con-
dition ). 0 0
 
3. Commutative BCK-Algebra of Fractions  

Relative to a ∨-Closed System  
 
In this section by A we denote a commutative bounded 

BCK-algebra. 
Definition 4 A nonempty subset  of A will be 

called ∨-closed system of A if  and 
S

S0 x y S   
for every , .x y S  

For a ∨-closed system  we define the binary 
relation 

S A
S  on A by   S,x y   iff there is  
 s S B A   such that .s x s  y  

Proposition 11 The relation S  is a congruence on 
A. 

Proof. Clearly S  is an equivalence relation on A. To 
prove the compatibility of S  with the operation →, let 

, ,x y z A  such that   S,x y   (hence there is 
 s S B  A  such that s x s  y ). By (c21) we 

deduce 

     
     ,

s z x s z s x

s z s y s z y

     

      
 

and similarly,    ,s x z s y z      that is,  
  Sy,z x z     and  x z y z, .S    □ 

We denote   SA S A  ; the commutative BCK- al-
gebra  A S  will be called BCK-algebra of fractions of 
A relative to S. For x A  we denote by  

S
x


 the 

equivalence class of x  relative to .S  Clearly, in 
 A S , 1 =     ,11 :x A x

S
S

   = { x A : there is 
 s S B A 1   such that s x  },  

0 =     0 :x A ,0x
S

S
    = { x A : there is  

 s S B A   such that s x  s } = { x A : there is 
 s S B A   such that x s } and for every ,x y A ,  

     
S S

x y x
S

y
  

  .  

Proposition 12  A S  is a bounded commutative BCK- 
algebra, when 0 =  

S
s


 with  s S B A 

 
.  

Proof. Clearly, if ,s t S  B A , since  
 Ar s t S B     and     .r t s t


  

S
 

To prove that, for 
S

r s 
 s S B A  , 

S
s


 = 0, let .x A  

We have  

             
S S S S S S S

s x s x x s x x
      
        

which is true since  s s x s x   


. □ 
We denote by :p A A SS  the canonical surjec-

tive morphism of BCK-algebras (defined by 
    ,Sp x x

S
 for every x A ). 

Remark 3 Since for every  s S B A 
 

, } 
 we deduce that 0s s s     0 .Sp S B A   

Proposition 13 If x A , then     
S

x B A S

  iff 

there exists  s S B  A  such that  So, 
if 

* 1.x x s  
  ,x B A  then     .

S
x B A S


Proof. For 

  
x A , we have  

         *
*1 1

S S

S

x B A S x x

x x

 



  

      

S  

there exists  s S B A 
1 1.s  

 such that  
 If *x x s    ,x B A  since  
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* 0 1x x    and  0 S B A  , we deduce that  

   
S

.x B A




S  □ 

A S

:

 verify the following property of universality: 
Theorem 14 For every bounded commutative BCK- 

algebra B and every morphism of bounded BCK-alge- 
bras f A 



B  such that  there 
exists a unique morphism of bounded BCK-algebras 

    0 ,B A f S

:f A S B   such that Sf p f . 
Proof. Let ,x y A  such that     .x y

S S
 Then 

there is  s S B A

 
   

   0 0

s y f s x

f x f s

   such that  

 
   

   

x f s y

f s f y

.

s

f x f

  



  y f x f

   

  

  y 

 

 

So, :f A S B  defined for x A  by  

S
    f x  f x


 is correct defined. Clearly, f   is 

morphism of bounded BCK-algebras and Sf p f  . 
The unicity of f   follows from the fact that  is 
onto. □ 

Sp

Example 1 If A is a bounded commutative BCK-al-
gebra and   0 SS   or  is such that 0 S  and 

, then for    \ 0S B A    ,x y A ,  ,x y S  
0 0 ,x y  x y     hence   .A S A  

Example 2 If A is a bounded commutative BCK-al- 
gebra and  is an ∨-closed system system such that 

 (for example  or ), then for 
every 

S
1 S

,
S A  S B A

x y A ,  , Sx y   (since 1 1x y  


 and 
 hence in this case  1 S B A  ,   1A S  .  

Definition 5  A S

T A

 is called the BCK-algebra of 
fractions of A relative to S. 
 
4. Multipliers on a Commutative Bounded  

BCK-Algebra  
 
The concept of maximal lattice of quotients for a dis-
tributive lattice was defined by J. Schmid in [11,12] 
(taking as a guide-line the construction of complete ring of 
quotients by partial morphisms introduced by G. Findlay 
and J. Lambek (see [13], p. 36). The central role in the 
construction of the maximal lattice of quotients for a 
distributive lattice due to J. Schmidt in [11] and [12] is 
played by the concept of multiplier for a distributive lat-
tice defined by W. H. Cornish in [14]. 

In this section we develop a theory for multipliers on a 
commutative bounded BCK-algebra A. 

Definition 6 A subset  is called ∨-subset of A 
if for every  and a A x T


 we have .  a x T 

We denote by T A
 T A

 the set of all ∨-subsets of A. 
Clearly  (and more generally, if denote 
by 

  Ds A
 I A

  
 the set of all increasing subsets of A, then 

I A T A
Remark 4 

). 
Clearly, if 1 2D D   , ,T A  then  

 1 2 .D T A   D
Lemma 15 If   ,T A  then D
1) 1 ;D  

x D2) If x y  and , then .y D  
Proof f . (i). I x D , si ,nce 1 A  then  1 1 .x D    
3) We have .y xy  □  

 partial strong multiplier on A we mean Definition 7 By
a map : ,f D A  where   ,D T A  such that: 

(sm1) For every x D  a  ,A   nd e B

   f e f x   ; x e

(sm2) For every x D ,  x f x ; 
(sm3) If  B A ,e D   then    ;f e B A   
(sm4) For every x D  and e   ,D B A   

   .f e f x    x e

By    A  fwe denote the domain of dom f T ; if 
 do f A , we called f  total. 

 the languag  we wil
m
To simplify

ins

ps 0

e, l use strong multiplier 

,1

tead partial strong multiplier using total to indicate 
that the domain of a certain multiplier is A. 

Examples 
 defined by 0  x x: A A1) The ma  and 

respectively 1   1x  , for every x A  are total strong 
multipliers on A. 

2) For  a B A  and  the map    ,D T A
:af D   by A  defined  af x a  x , for every x D  

is a strong multiplier on A ipal). 
If 

 (called princ
  ,adom f A  we denote af  by af  . 

Re :mark 5 If f D A  is a strong multiplier on A 
(with  D T A ), then   1.  Indeed, if in (sm1) we 
put e

1f
1 , we obtain that for every x D ,  

     1 1 1 1.f x f x f     
For   ,D T A  we denote 

   :M , :D A f is aA f D

and 

strong multiplier on A  

   
( )

, .
AD T

M A M D  A


 

 ,i if M D A A1 2,D D T , 1, 2,i For  and  we 
de 1 2 :fine 21f f D D  A  by   
      21 ,2 1f f x f x f x every   for 1 2 .x D D   

 Lemma 16 1 2 1 2 , .f M  D D A  f
Proof. If 1 2x D D  and  e B A , then  

     

  
 

    
  

     
 

     

21

2

1 2

1 2 1

1 2 2

1 2

,

,

c

sm

e x f e x f e x

e f x e f x f x

f x

f x f x f x x

f e f e B A

  

    

  

 

 

  

  

  
  

1 2

1 2

1 2

1 2

f f

e f x

e f

f f x

f f e

 

  

 

 

by Corollary 8 (since 

2

    1 2, f e f e B A  and if  
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21

4

22

1 2 1 2

1 2

1 2

1 2 1 2

,

,

c

sm

c

B A

e f f x e f x f x

e f x e f x

x f e x f e

since if ,x y A  such that  for every e x e y  
    ,e A A  B A B  then in particular, for 0e   we 

obtain 0 0 .x y x y     

1 2e D D  

x f e f e x f f e

    

   

   

     

 
If A is bounded, D T A  and  then  is 

regular. We denote  
0 D , D

   : .R A D A D is a regular subset of A   

Lemma 19 If    1 2, ,D D T A R A   then  
   .A R A1 2D D T   

 Proof. By Remark 4, 1 2  Let .AD D T  ,x y A  
such that  for every e x e y    .B A

 1 2 1 2 , .f f M D D A    
llary 17   , ,0,1M A   

that is, □ 
ounded commu-

at

Coro is a b
tative BCK-algebra. 

1 2

For every 
e D D   

  ,B A 1,2,i i ie D   since  
 1 2e e D  1 2D B A   we have   M A  

ma 16
Proof. The fact th is a commutative BCK- 

algebra follows from Lem . If   ,D T A   
 ,f M D A  and ,x D  then  

    10 1x x f 
order on 

x   and sx ince the relation of 
 M A  is given by 1 2f f  iff    1 2f x f x  

for every     ,1 2x do
that is, 

m f dom e ded
0 1,f 

f
 

   w uce that  
 M A  is bou

p
nded. □ 

 18 TheLemma  ma    :A B A M A  defined v by 

    
 

1 2 1 2 1 2

1 2 2 2 ,

e e x e e y e e x

e e y e x e y x y

        
        

 

so  1 2 .D D R A   □ 

We denote 

          : .rM A f M A dom f T A R A      
 A aa f  for every v  a B A  is a morphism of 

K-algebras. 
Proof. If  ,a b B A  and 

Corollary 20  rM A  is a BCK-subalgebra of 
 M A .  

bounded BC
,x A  then  

 Proposition 21      

   
 

 

 rM A  is a Boolean subalgebra of 
 M A . 

 
22

,

a b

c

a b

f x f f x

a x b x a b x f x       
 

so, 

a bf x  

Proof. Let :f D A  be a strong multiplier on A with 
   R AD T A  . Then * :f D A ,  

      0 ,*f x f  x  f x x  for x D .      A A Av a v b v a b    

and 
We have  

  00 0Av f   . □ 

finition 8 called regular if for every De  is        
      

*

                   

f f x f x f x x

f x x f x f x

   

     
 D A

,x y A  such tha e y   for every  
  ,B A  then

t e
 

x
.e D  x y  

nded BC


ple, a bouFor exam K-algebra A Then for  e D B A   and x D  we have  is regular  

        
 

           
 

           
 

        

21

4

22

                          

                          

                           

c

sm

c

e f f x e f x x f x f x

e f x e x e f x e f x

x f e e x x f e x f e

x f e e f e f e x f e

            

           

           

              

      *
                            1 1 1 1 .

e f e

x f e e f e x e e x

* 

   

             

 

 
Since  we deduce that   D R A

   1
 if    2 1dom f dom fextends 2f1f  we say that  and 

   2 ,1f x f x  for all  2 ;x dom f  we w 2 1rite f f  
if 1f  extend 2s f . A s rong mt ultiplier f  is called 
maximal if f  can not to a strictly larger 
do n. 

Lemma 22 1) If  1 2,

be extended 
mai

f f M A ,  rf M A  and 

 * ,f f   hence *f f x x 1,  that is,  rM A  
is a Boolean algebra (by Coro  

Remark 6 The axioms sm3, sm4 were necessary  
pr

llary 6). □
 in the

oof of Proposition 21. 
Definition 9 Given two strong multipliers 1 2,f f  on A, 
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1f f , 2f f , then 1f  and 2f  coincide on the 
   1 2 ;m f dom f  

ve g multiplier  r

do
2) E ry stron f M

ltiplier. M
A  can be ex-

tended to
ea

 a maximal stron m re precisely, g u o
ch principal strong multiplier af  with  B A  and 

     adom f T A R A   can be uniquely extended to 
the total strong multiplier 

a

af  each cipal 
extended to a maximal non- 

principal one. 
Proof. 1) If by contrary, there exists  

 1t dom f 

and non-prin
strong m  can

om

ultiplier

d

 be 

 sucf2 h that    1 2 ,f t f t
 

 since 
   m f R A , then there exists do  B A  t d om f

such that        1 2f t t t     
ctory, since t t  

2) We fir a

1 2t t f  
 .dom f   

t f
ontradi

st pr

t

ove 

t f

that 
which is c

f  with  a B A  can 
mu

not be 
extended to a non-principal strong  ltiplier. Let 

    adom f T A R   , :aD A f D A  

l stro

and suppose 
by contrary that there exists   ,D T A D D   , (

-p ng multiplier 
 ,

hence 
  A R  A ) andD T  a non rincipa

f M D A  which extends af . Since f  is non- 
ts 0 0,principal, there exis x D x D   such that  

0 0 . f x a x   Since   ,D R A then there exists  
 t D B A   such th

   0 ,a x x a t x      

 

t 

a

at 

 x t

 is cont


 sin

0 0 0ft f

which



radictory ce .f f  Hence af  is 
uniquely extended by af . 

Now, let  rf M A  be non-princi  and  

 :

pal

    , , , ,f  M D g M D A dom f  g D T A D  

and   fdom
g f  (clearly, if  , ,fD g M  then  

   D A  ). 
Th

T
e s

A R
et fM  is ordered by    1 1 2 2, ,D g D g  iff 

1 2D D  and 
1 12 D .g g  Let   , :k k k K  be  a D g

chain in .fM  Th


en ' k
k K

D D


  
.D  So, 

 T A  and  
dom f :g D A  

  
 defined by  

kg x g   if x kx D  is correctly d (sinefined ce if 

k tx D D  w  ith k  by 1),  , tK , then  k tg x


g x ). 
Clearly,  ,g M D A  and   

dom f
g f   (since if 

, x dom f  D  then x D  and ts so there exis
k K , such k that x D , hence     kg x g 

 
x f x ). 

n upper for the family  
 :kg k K ce by Zo

So,  ,D g   is
 

 a  bound
D ,k , hen rn’s lemma, fM  

 ex

co
h 

n-
tains at least one maximal strong multiplier h  whic

 .f  is non-principal and h tends 
f , h  is also non-principal. □ 

On the Boolean algebra  r

extends e.f  Sinc

M A  we consider the re-

Alation   defined by  1 2,f f A  iff  and  co-
in

1 2

cide on the intersection of mains. 
Lemma 23 A

f f
 their do

  is a  on  r co uencengr M A . 
Proof. The reflexivity and the symmetry of A  are 

im f  let  

   1 2 2 3, , , Af f f f  . Therefore 1 2,f f , and respe vely 

2 3,f f  coincide on the intersection of the omain
  0 1 3

cti
ir d s. If by 

contrary, there exists x dom f m f   such that do
   1 0 3 0 ,f x f x  since    2 ,dom f R A  there exists 

   2t dom f B A   such that  

     1 0x f t x x    0 3f t 

 since  

1 0 3 0t f x t f  

which is contradictory,
     .m f

mediately; to rove the transitivity o p  A

0 1 2

bility of A

3f do  The t x dom f dom   compati-
  with → on  rM A  is immediately. □ 

For  rf M A  we denote by  f  the congruence 
class of modulo A  and  f  A .r AM A    

Rem  Proposition 21 w educe that ark 7 From e d A  is 
a Boolea gebra. n al

Lemma 24 The map  :Av B A A  defined by  

 A av a f     injecti  of Boolean al

nd 

 is an ve morphism - 

gebras a     .B A R A   
fact that 

Av
he Proof. T A

ma 18. ove th
v  is a morphism of Boolean al-

gebras follo Tws from e injectivity  Lem o pr
of Av  let  ,a b B A  ch that su    A Av a v b . Then  

     ,a b A af f f f f x f x           , or every  a b b

,x A,x A x a x b      for every  hence for 
0x   we obtain that 0 0a b    .ba  To prove 
     ,Av B A R A  if by contrary th t  ere exis

 r1 2,f f M A  such that    1 2f f  t (that is here exists 
   20 1x dom f dom  f  such that    1 0 2 0f x 



f x ) 
and  

  1 2 1 2a a a af f f ff f f f                    

for every      1 2 ,a B A f x a x f x a x        for 
every  a B A  and every    .1 2x dom f dom f   
For 0a   and 0x x  we obtain that  

   1 0 0 2 0 0 1 0    2 0f x x x f   
contr ry. □

x f x f x    which 
to   

is
adic

 a B A , af  Remark 8 Since for every i

n

s the  

unique maximal str  af  ong multiplier o  (by Lemma  

22) we can identify af    with af . S ce o, sin Av  is in- 

jective morphism of lean alg ras, the elem nts of Boo eb e
 B A  can be identi with th  elements of the set  fied e  

  : .B A  af a

Lemma 25 In  of the identifications made above, 
if 

 view
 f A  (with  rf M A  and  

     dom f T A R A   ), then 

  
D

     .D B A a B A f B A     

Proof. Let 

: af 

 .a D B A   If by contrary,  
   B A  then af f  af f  is a non-principal strong 

m en byultiplier. Th 22, (2),  Lemma af f  c
aximal strong multiplier 

an be ex-
tended to a non-principal m

Copyright © 2011 SciRes.                                                                                 APM 



D. PICIU  ET  AL. 373 
 

:f D A  with  .D T A  Thus, D D  and for 
every ,


x D   

      .af f x f x x   x f x a a f     

Since , then   a D B A 

  f x x f a     ,f a x   that is, 
 4sm

Df  is principal  

which is contradictory with the assum tion thatp  f  is 
non-principal. □ 

mmutative BCK-Algebra of  
Quotients 

Th  section is to define (taking as a guide- 
ne the case of distributive lattices) the notions of BCK- 

 

 
5. Maximal Co

 
e goal of this

li
algebra of fractions and maximal BCK-algebra of quo-
tients for a commutative bounded BCK-algebra. For 
some informal explanations of notions of fraction see [13]
and [5]. 

Definition 10 A bounded commutative BCK-algebra 
A  is called BCK-algebra of fractions of A if: 

(f1)  B A  is a BCK-subalgebra of A ; 
(f2) For every , , ,a b c A a b       , there exists 

 suc  h that a a a b     ana B A d  .c B A   a
As a notational co  nvenience, we write A A  to in-

t dicate tha A  is a B f fractiCK-algebra o ons of A . So, 
   A B A  (since for  , ,a b c B A    with a bB   , 

if consider   ,B A  then 0 0a a b0 b        and 
 A ). 

Definition   is the tive) 
quo


0c c   B

 11 Q A maximal (commuta
BCK-algebra of ts of A iftien   A Q A  and for 
every commutative an bounded BCK-algebra d A  with 
A A , there exists a monomorphism -algebras  of BCK

 : .i A Q A   
osition 26 Let A be a commutative and bounded 

uch t
Prop

BCK-algebra s hat A A . Then A  is a Boolean 
algebra. 

Proof.  If by contrary, A  
6, there exists 

i o
Corollary 

s not a B olean algebra, 
then by x A  such that 

* 1.x   Since x A A , then there exists  e B A , 
such that  e x B A   and   1 1.e e     

emma 4,

    e x e x e   

*x x
Then, by L   

  
   

 

* * *

* *

* *

1 1

1

1 1 1,

x e x

e x e e x x

e x x e x x

    

      

        

 

a contradiction! □ 
Remark 9 If A is a Boolean algebra, then   .B A A  

By Proposition 26,  Q A  is a Boolean alge
ax

bra and the 
 ioms sm1-sm4 are equivalent with sm1, hence  Q A  is 

in this case just the cal Dedekind-MacNeille com-

pletion of A (see [12], p. 687). In contrast to th ral 
situation, the Dedekind-MacNeille completion of a Boo-
lean algebra is again distributive and, in fact, is a Boolean 
algebra (see [15], p. 239). 

Lemma 27 Let 

classi

e gene

A A ; then for every , ,a b A    
a b  , and any finite sequence 1 n

ists 
, ,c c  ,A  there 

ex  a B A  suc a a a b     andh that   
 i B A  for 1, 2, ,i na c     (n 

Proo  lemma hol 1 . So we
2).   

 for nf. Assume ds true  may 
  b B A  such thatfind  b a b   b   and  

 ic B A   for 1,2, , 1.i nb    Since A A , we 
find  c B A  such that c b c b a      and b 

 n B A 
ed proper

c c . The  c B   the 
requir ties. □ 

Let 

 element a b A  has

.a A   Lemma 28 A A  and Then  

         T B A    :a a B A B A A R    .

Proof. If

D a a

  a B A , then  x a B A    and ax D 
and since      a x a  a x a   B  A  it follows 

,ax Da    he  .   To provence a  B AD T   
 aD R A   consider ,x y A  such that e x e y   , 

for every  .AaD   ntrary, e B  If by co x y , since 
A A , the re exists a  such that   B A0

 0a a B  0 aD  ) and 0 0 ,a x a y   
s contradictory

A  (that 
. 
is, 
□  

a 
which i

Theorem 29 A  (defin ection 4) l 
(commutative) BCK-algebra o

ed in S  is the maxima
f quotients  of A.  Q A

Proof. The fact that  B A  is a BCK-subalgebra 
(Boolean subalgebra) of  Q A  follows from emma 2 L 4 
and Remark 8. To prove  ,A Q A  let  
       , ,f g h Q A  wit  , rh ,f g h M A  such that 
   g h  (that is, there  exists  0x dom g dom h   
such that    0 0g x 

Put 
h x ). 

    dom f T A R     and  D A

      [ ] : .B A f B A   f a

Then 

D a f 

   .fD B A D by Lemma 25,  If suppose  

that for every    ,a af g f h    ,B A   then   a D 

,a af g f h         ev  hence for ery  

   x dom g dom h   we have  

       logoua af g x f h x    (ana sly than as in the  

proof of Lemma 24)  

       .x a g x a h x     a x g x a x h     

Since  D R A  we    g x h xdeduce that  for 
every    x dom g dom h   so    ,g h  which is 
contrad ce, if ictory. Hen    ,g h  then   there exists 

  ,B Aa D   such that    .a  But for  

this 

af g hf 

 A  we have    af f B A   a D  B (since  

  [ ]fD B A D   .A Q A  
 of Q A

) hence 
To aximality t  prove the m , le  A  be a 
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bounded commu K-algebra h that A A (t2) If 1 2,D D F , then   
Exam

 1 2 .D D F
ple 3 If 

tative BC  suc , 
thus    ;B A B A  Then A  is dded i  , then the set D embe n  Q A  
by  :i A Q A   defined by    ,ai a f    fo  
a A  a af D   (see Lemma 28).  
Clea

r every
,  where dom

rly,  a rf M
 o bras

 of i , let a

A  (by Lemm  is a mor-
f BCK-alge emma 18). To prov

injectivity , ,b A    such that  


a 28) and i
phism  (see L e the 

      a b a bf f f x f x       for every .a bx D D    
If ,a b   by Lemm ce a 27 (sin A A )

 b B A  a
a b    which is contradicto e  

 b B A  i a b ). □ 
 1. If A is a BCK-algebra with  

nd 

, th
 nd

ry (sinc
a D D 

ere exists 
  A  such that 

a a
, a 

Remark 10
    20,1 L   a

a B

a a

B A

 ,a a

mplies 

a  

A A  0,1 , then A   hence 

T A  
  D :F D DT A D    

 recall tha
is a topological system on A. 

 denote the set 
of all regular subsets of 

Example 4 We t by  R A  we
A (see Definition 8). Then 

   F T A R A   is a topolog ystem on A (see 
Lemma 19). 

S A  a ∨-closed subset of A (see 
Definition 4). I

ical s

Example 5 Let 
f we    denote by

    : ,S D T A D B AF S      then S F  is a 
topological system on A. 

is a topological system on A, lF  If et us consider the 
relation F  of A defined by:  there exists  , Fx y  
D F  such that t x t y    for any  .t D B A   
As in the case of S  (see Prop  deduce that osition 11), we

F  is a congruence
We shall denot y 

 on A. 
 be

  2 .A L  Indeed, if , ,a b c AQ  , with a
 A  s at e (hence 
 .e c B A  0,e   he

  ,c B A  th  .

b , then
b , 

nce  

  
there exists e B

) and 
at is 

uch th
 Clearly, 

a e 
1e 

A
Fx   the congruence class of an 

ment B A  As of BCK- 
ras wi y we have  BCK-alg

hains. 
2. More general, if A is a BCK-algebra such that 


opert

 examples
 local

 
algeb
and

th this pr
 BCK-c

ebras 
ele x A  and by :F Fp A A   the canonical 
m ras. 

1 C
orphism of BCK-algeb
Remark 1 learly, if    .F FB A    
Definition 13 A 

a B A a 
F -multip B A  

is finite, if A A
lier on A is a mapping  

 then   ,A B A  hence  

der 



d 



consi
   A B A  
Indeed, A  an .a A  

Q
 B A   B A  be-

ing finite, there exists a smallest element  e B A
, then there 

a e 

a  

a
such ae   Suppose ae 
would exists  e B A  such that  ae e   
and ut e a  ,ae e

 .a B A

 .e a B A   B

a a

 B A  implies   
and thus we ob  ae a e    
a con ce  ,a    that is

 .

tain 
tradiction. Hen

,a e  
,  

e a e
a B A

a

ae
A B A   Then   ,A B A  hence    .B A  

ded  

Q A

 Boun

e localization lattice 


 

ation o tative6. Localiz f 
BCK-ALgebras  

Com

it

mu

ed th
 

[4], G. Georgescu exhibIn FL  
of a distributive lattice L with respect to a topology F  on

see
 

L in a similar way as for rings (see [16]) or monoids (  
[17]). The aim of this section is to define the notion of 
localization BCK-algebra FA  of a commutative bound- 
ed BCK-algebra A with respect to a topology F  on A. In 
the last part of this section  proved that the maximal 
commutative BCK-algebra of quotients (defi d in Sec-
tion 5) and the commutative BCK-algebra of fractions 
relative to a ∨-closed system (defined in Section 3) are 
BCK-algebras of localization. 

In this section A will be a bounded commutative 
BCK-algebra and 

 is
ne

F  a topological system on A. 
Definition 12 A non-empty family F  of elements on 
 T A  will be called a topological system on A if the 

following properties hold: 
If  1 2,D F D T A   and 1 2 ,D D  then 

2D F  (hence 
(t1) 

A F ); 

: Ff D A   where D F  such that for every  
 B A  and ,a x D  

(m1)    ;Ff a
(m ) 

x a x  f
 .x2 F f x   

  , then a FF A -multiplier is a function  
ich ve  only the conditions sm1 and sm2 

If 
: A  rifyf

fro
A  wh

Definitiom n 7. The aps 0,1:  m FA A  , defined by 
0   Fx x   and 1   1 Fx   for every x A  are 
F-multipliers. Also, for  a B A , :a Ff D A   de-
fined by  a Fx a Fxf    for every ,x D  is a 
F-multiplier (where D F ). 

For D F , we shall denote by  , FM D A   t
s havi the domain . If  

he set 
of all the F-multiplier ng D

1 2, ,D D F  1 2D D  we have a apping  cano l mnica
   

1 2, 2 1: , ,D D F FM D A M D A    def d by  ine
 

1 2 1,D D Df f  for  2 , .FM D A   Let us consider f
the directed system of sets   , ,M D A F D F

   

  FA  
1 2

1 2 1 2
, , ,D D D D F D D 

  and denote by the in ctive

limit (in the category

du   

 of sets):  li ,
D F

mF FA M D A 



 .  

For any F-multiplier : Ff D A  y 
 

 we shall denote b
,D f  the equivalence class of  in f FA . 

Remark 12 We recall that if :if i FD A  , 1, 2i    

multipliers, then    F-are 1 1 2 2f (in, ,D f D   FA ) iff  

ere exists ,D F D D Dth 1 2    such that 1 2 .D Df f  
Let : Ff D Ai i  , ( 2 ), F ulti- with , 1,D F i 

ppin
i

pliers. Let us g  
-m

 consider the ma

1 2 1 2: Ff f D D A  , define  d by  
      1 2 1 2 ,f f x f x f x    for any 1 2 ,x D D   
and let  
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     1 1 2 2 1 2 1 2, , ,D f D f D D f f     .

This definition is correct. Indeed, let :i i Ff D A    ,  

with , 1,2iD F i   such that    ,i iD f  ,i iD f  ,  

Then there  such that  1, 2i  exist 1 2,D D .  

1D
F

2D  and 1 1 2 2,D D D   D 1 1,D D    1 1f f

22 2 2D D 

1 2 1 2D D D D D     
.f f   If we set  

1 2D D    , then D F  and  
clearly    1 2 1 2 ,

D D
f f f f 

     

hence    1 2 1 2 1 2 1, ,D D f f D D f f 2 .         

ma 30Lem   1 2 1 2 , .Ff f M D D A      
Proof. If 1 2x D D 


 and n   a B A , the

    
     

 
21

1

( )

1 2

/F F

c

F 

2

1 2

1 2f f a x x  a x f

a f x a

a f f x

 



 

  

  

 

and         
 

f a

f x





2

1 2 1 2 2 .
m

Ff f x f x f x f x x      □ 

rollary 31Co   , ,0,1FA   is a bounded commutative  

B re CK-algebra (whe  0 ,A 0  and  1 ,1A ) (see Co-  

rollary 17). 
Definition 14 FA  will be called the localization BCK- 

algebra of A with respect to the topology F . 
Lemma 32 The mapping  :F Fv B A   deA fined by  

   ,F aa A f  for every orphism of  v  is a m

BCK-algebras a  is a re

 a B A

nd  Fv B A gular subset of  FA .  
Proof. If  ,a b B  A  then 

       
     

,

, , .

b

a b a b F

v b A f,F F av a A f

A f f A f v a b

  

    
 

To prove that is a regular subset of  Fv A  FA , let  

 , ,i i FD f A , 1, 2i  , such that  iD F

       1 1, , ,a a 2 2,A f D f A f   every  

Then

D f  for 

 a B A . 

    1 1 2 2, ,a aD f f D f f     there exists  

 such that  1 2D F D D , D

   
       

1 2

1 2 ,

a aD D

F F

f f

a x f x a x f x 

 

     
 

for every

f f

 x D
oose 

 and  If in this last equiva- a B A .
 B A  lence we ch 0 ,a   then we obtain that  

   
       

1 2F Fx f f x

1 2 1 1 2 2, , ,

x x

f x f x D f D f

 

   
 

hence

 

   Fv B A  is a regular subset of FA . □ 
 
7. Applications  

 that follows we describe the localization BCK-algebra 
 
In

FA  in some special in
1) If 

stances. 
 D T A  and F  is the topological system 

  :DF D T A D D     (see Example 3), then  
 ,FA FM D A   and  :F FA Av B  is defined by  

   ,F a Dv  ,x y B A   a  or any  a B A . For D f  f  

we have  , Fx y    for every  
   , x D x 

njective m  of BC  
F Fy Dt D t f v  

there exists an i orphism K-algebras
x t y f   v y  then 

: ,F     F FFA A  x v x    such that  
.F Fv p   

2) To obtain the maximal BCK-algebra of quotients 
 Q A  as a loc ization relative to l system al  a topologica

F  we will develop another theory of F-multipliers 
(m

Def
str

eaning we add new axioms for F-multipliers). 
inition 15 Let F be a topological system on A. A 

ong-F-multiplier is a mapping : Ff D A   (where 
D F ) which verifies the axioms m1 and m2 and 

(m3) If    ,e D B A   then    Ff e B A  ; 
(m4)      F F   ,x f a a    ry  f x  for eve

 B A  and .x D  a D 
If   ,  then F A F  is the identity congruence of A 

so ulti  is a strong tot (in 
sense of Defini . 

mark 13

 a str al multiplier 
tion 7)

ong F-m plier

Re  If A is a BCK-algebra, the maps 0,1: 

FA A   defined by 0   Fx x   and 1   1 Fx   
for every x A  are strong F-multipliers. If  

:i i FD Af  , (with , 1,2iD F i  ) are strong F-mul- 
mapping tipliers, the 1 22 1: Ff Af D D     

by 
 defined

      1 2 1 2 ,f f

1 2

x f x f x    for any  
x D D   is also a st ier. 

Remark 14 Analog tipliers if 
we  we obtain

of 

rong-F-multipl
ous as in the case of F-mul

work with strong-F-multipliers  a BCK- 
subalgebra FA  denoted by Fs A  which will be 
called the strong localization BCK-algebra of A with 
respect to the topological system F. 

If     ,F T A A   then R  is thF e identity con-
gruence of A and we obtain the definition for strong  
multipliers on A, so  limFA M ,D A

D F


tion it is easy to see that 

. In this situa- 

Fv  is injective, so we have: 
 Proposition 33 In t   ,he case  F I A  R A   

Fs A  is exactly the ve BCK-alge-  maximal commutati
bra of quotients  Q A  o  (see Section 5, Theorem 2f A 9). 

call (see 
Propos

3. Let S  be a ∨-closed sy
ition 11) that on A we have the congruence S

stem of A. We re
  

defined by:   iff there is  s S B A   such y, Sx 
that s x s y    and   SA S A   is called the 
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system S (  from Section
ase we have the topological system

(commutative) BCK-algebra of fractions of A relative to 
the ∨-closed see Remark 5  3). In 
this c  SF  associated 
with ,S      : .SF D T A D S B A        

Lemma 34 .
SF S   

Proof. For , ,x y A  if  ,
SFx y   then there exists 

D F S  such that s x s y    for every  s S B A . 
ts  

 
 D S B A    , so th is

 
Si

0

nce SD F , ere ex
s D S B   parti tain  

0 0 ,
A ; in cular we ob

s x  s y  hence ,S  ,x y   that is, 
S

.F S   
If   S,x y  , then 0 0 ,s x s  

 
y  for some  

0s S B A . If :A
pal e system g y 

 
rinci

consider   0D s a  
deductiv enerated 

0s a  

0 ,(the p b s  see 
Corollary  then SD F

 0

 8, 1)),   (since  
s D S  B  A  ). If s S

0 0

B A  then  
s s s s s     hence  

  
 
0 0 

, .
S

 
 

0 0

S SF S F F S

s s x s x

s s y y s

x y

s x s

s s y

   

  

     

    

 □

tion 35 If S



   

   

Proposi F  is the topological
a ∨-closed subset S  of n 

 sy
A, the

stem on A 
associated with 

SFs A  
is isomorphic with   .B A S  

Proof. Following Lemma 34, ,
SF S   therefore a 

SF -multiplier can be considered in is case as a m g  th appin
 :f D A S  ( D SF ) having for x D  and  

 
 D B A   the properties  a

 
   S

    
         , ,

.

     

S

S

f a x a f x

x f a







  x

f a B A S

 



 

If 

f x 

      1 1 2 2, , , lim ,
S

D FS

FD f D f s A ,A S



     

and 

M D

   1 1 2 2, ,D f D f  then there exists  such  
th  and  

SD F
at 1 2D D D  1 2 .D Df f  Since  

n  1 2, , D SF , the

 
D D

   1 2,S B A D A    

are nonem , hence th  

,S B A D B D S 

pty ere exist   ,s D 
 

S B A  

1 1s D S B A   and  2 2s D S 
 

B A .  
 .We shall prove that 1 1 2 2f s f s ed, if con- Inde

sider  1 2 ,t s s s D S B A       then  
  1   1 2 1 1 1S Sf t s s   f s f s  (since  

2S Sss    0 ) and an
 

alogously  
     2 2 1 1 2 .2 2f t n a simif s f s f s    

   1 1 2 2

I lar way we 
can show that f t f t  for a

, .t t S B  
ny

 with t ese consid-
 mapping

  
 A  In accordance1 2

erations we can define the
D h

  

   : l im ,
S

D FS

Fs A M B A   D A S



S  by putting  

   , ,D f f s   where  .s D S   B A  It is easy 
 is a m ebras. We

shall prove that 

orphism of BC

  is injective and surjectiv

the injectivity of 

e. To prove  

   1 1 2 2, , , let 
SFD f D f s A   such  

that      1 1 2 2, , .D f D f   Then for any  

  ,  

to prove that  K-alg  

1 1s D S B     A 2 2s D S B A    we have  
   1 1 2 2 .f s f s  For two fixed elements 1 2,s s  with 

  ,  iis D S B A    1, 2i  , we consider the element 
 2  .1 2 1s s s A  We have  D D   S B 

      0 1 2 1 1 1 1 1 1Sf s s f s  f s f s    and  
       2 2 2 2 2 20 ,f2 1 Ss s    henf s f s f s   ce  
   1 2 .f s f s  Now t  le

   s s1 2 1 2 : .D s D DsD s D    Sin      ce  

ss D  we deduce that .sD    If a A  and ss D  
then  .s ss s a  s a s D D        S A  Sinc

.
e 

s s Ss D D D F     If ss D , then  

   
     

1 1

1 10S

s s s f s f s s

1s f s f s f s

       

    
 

and analogously,  

       
   

2 2 1 2

1 1 2 21 2 , ,s sD D

f s f s f s f s

,f f D f D f

   

   
 



that is,   is injective. To prove the surjectivity of  , let 
  S A S   witha B  a A . 

ent s SFor  fixed elem one  we consider  ,
   : .D s x A s x     Clearly .SD F  We define  

 :af D A S  by putting     ,a Sf x a x    for 
every .x D  C af  ilearly, s a strong SF -multiplier 

en  (clearly (m3) is verified si   ,e D B A   thnce if 
      .S S Saf e a e  a  e    From  B A S 

   
   , ,aD f a

S S

a S S

s a s a s

f s a

a s a 

 

     

  
 



that is, 



  is surjective, hence bijective. □ 
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