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Abstract 
The original application of general relativity to the universe showed that the 
universe is expanding, albeit at a decreasing rate. Supernova data have estab-
lished that although early in its history the universe was expanding at a de-
creasing rate, the rate of expansion has been increasing for the past several 
billion years. Einstein’s equations were modified by adding the cosmological 
constant to make the expansion of the universe accelerate and fit the data, 
giving birth to the notion of dark energy. However, there is to date no good 
explanation of dark energy. This paper proposes that Einstein’s original equa-
tions be left alone and that instead, the model assumed for the expanding un-
iverse be changed: from a single uniformly isotropic expanding space un-
iverse of constant mass to a similarly expanding universe surrounded by an 
isotropic, uniform shell. The overall mass of the structure remains constant. 
This new geometry produces the observed expansion behavior of the universe 
and is simply a result of different initial conditions.  
 

Subject Areas 
Theoretical Physics 
 

Keywords 
Cosmology: Distance Scale, Dark Energy, Theory, Cosmological Parameters, 
Large-Scale Structure of Universe  

 

1. Introduction 

It has been observed that the universe is expanding, for half of its history at a 
decelerating rate (after a very early period of inflation), but for the past six bil-
lion years or so, at an accelerating rate, see for example, [1] and [2]. The deter-
mination that expansion is occurring is a direct result of solving Einstein’s equa-
tions [3]. However, the solution to these equations shows that expansion decele-
rates through the full history of the universe. Thus, without some modification, 
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there is no way to fit the observations from supernova data that demand a new 
view: a universe expanding at an increasing rate during the past several billion 
years [2].  

The current approach to resolving the lack of congruence between general re-
lativity and observation has been to add a cosmological constant to the equa-
tions, creating a repulsive force. The resulting concordance ΛCDM (Lambda 
Cold Dark Matter) model [4] posits an unknown form of energy with negative 
pressure and an energy density 123 orders of magnitude different from theoretical 
expectations. The ΛCDM paradigm reproduces most observations, although so 
far no plausible candidate for dark energy has emerged and some issues remain 
[5]. In particular, recent local measurements of the Hubble constant [6] are up 
to 3.4σ higher than the value derived from Planck’s observations [4] of the cos-
mic microwave background. 

In addition to positing dark energy, some have tried to account for the differ-
ences by modifying gravitational theory (for a review, see [7]). However, Eins-
tein’s theoretical predictions continue to be proven right. 

Another approach has been based on the fact that local inhomogeneities 
influence the overall expansion rate and can produce acceleration (for a review, 
see [8] and [9]). Some have argued that these effects are inconsequential (see, for 
example, [10] [11] [12]), while some have argued the effect is real [13]. Buchert 
et al. [5] have disputed the general applicability of the Green and Wald [10] 
proof.  

Yet homogeneity in the universe is still not well understood. For example, [14] 
have shown homogeneity in our universe over vastly larger volumes and scales 
than prior studies. Solutions to the general relativity equations in inhomogene-
ous scenarios are also still not well understood. For example, Giblin, Mertens 
and Starkman [15] have used numerical solution approaches to show a stronger 
impact from inhomogeneities, beyond what is expected from simpler mathe-
matical solutions. Finally, Rácz et al. [16], have shown multiscale statistical solu-
tions for a universe with many void regions that show accelerated expansion. 

The debate continues. What remains clear is that inhomogeneities produce 
acceleration, and yet we know neither the magnitude of the inhomogeneities in 
the universe nor how to solve Einstein’s equations of general relativity accurately 
in this complex “Swiss-cheese” universe.  

Is there a way to maintain our concept of the homogeneous isotropic universe 
at very large scale which has served us so well and still generate an accelerated 
expansion effect from inhomogeneity beyond the Hubble sphere or even the ob-
servable universe? 

This paper proposes an approach that preserves our isotropic homogeneous 
universe but surrounds it, at scale on the order of the observable universe, by 
another isotropic homogeneous section—perhaps best described as a thick shell 
universe versus the traditional, more locally inhomogeneous Swiss-cheese un-
iverse discussed above. 
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This geometry violates the Copernican principle. However, the geometry 
maybe appropriate because repeated observations of the Cosmic Microwave 
Background (CMB) show an anisotropy, perhaps centered around the plane of 
the ecliptic [17] [18] [19]. 

In Section 2, we state the hypothesis. In Section 3, we develop the mathemati-
cal model for such a universe and in Section 4, we numerically solve the equa-
tions to explore how well the model can account for the observed acceleration. 
In Section 5, we discuss how such a universe could develop naturally as our as-
sumed ΛCDM model universe if we posit different initial conditions. 

2. Hypothesis 

The geometric hypothesis used thus far for the universe envisions an isotropic 
spherical expanding space. According to this hypothesis, the expanding universe 
is always converting its initial kinetic energy into potential energy. This naturally 
results in continuous deceleration of the universe throughout its history.  

As we have seen above, one can add repulsive energy or modify the equations 
of gravitational theory to produce acceleration. But can the same result be 
achieved by altering the geometry and mass distribution at the beginning of the 
universe? What if our isotropic spherical expanding space universe was sur-
rounded by a shell of different density, and this shell was beyond the observable 
universe? For a shell with decreasing mass, the modified equation for the expan-
sion of the spherical space inside the shell would show an acceleration term due 
to the decreasing mass of the shell. Can this account for the observations of an 
accelerating universe? 

3. Theoretical Development 
3.1. Standard Universe 

For the case of an isotropic spherical expanding universe it has been shown that 
the key aspects of the solution can be understood with purely Newtonian dy-
namics, as it generates almost the identical Friedmann equation [3]. In general 
relativity, the universe and space expand together; in the Newtonian treatment, 
we imagine a homogeneous sphere of matter expanding isotropically into exist-
ing empty Euclidian space. The sphere has an edge, a center of symmetry and a 
fixed mass.  

Assume a sphere of mass MT and radius rs that expands with time. We con-
sider the effect on a small mass at the very edge of the sphere. The gravitational 
force on the small mass is caused by the same constant mass MT enclosed at all 
times. Equating the gravitational force to mass times acceleration and solving for 
the velocity vs of the small mass, we obtain [20]: 

2
1

2 T
s

s

GMv k
r

= − ,                        (1) 

where G is the gravitational constant and k1 is a constant representing twice the 
total energy of a unit of mass. The rate of change of the radius rs of the sphere 
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(our universe) is equal to vs. 
It is well known that Equation (1) has three solutions, depending on k1 [20]: a 

closed universe that will expand and then contract for positive value of k1; a 
zero-curvature universe that will expand into a “whimper” (parabolic expansion) 
for k1 equal zero; and a more open universe that will also continue to expand 
(hyperbolic expansion) for a negative value of k1. In all cases, expansion is decel-
erating right from the beginning as rs increases, driving vs lower and lower. 

3.2. Proposed Universe 

We now proceed to develop the solution for a different proposed universe. We 
will continue to use Newtonian mechanics, as we maintain our isotropic spheri-
cal geometry and Newtonian mechanics has been shown to lead to the same re-
sult as general relativity for a “spherical symmetric dust solution” [21]. 

Our proposed universe now consists of a similar homogeneous isotropic uni-
form sphere but with a shell of uniform density surrounding it, as depicted in 
Figure 1. We make no assumptions about the thickness of the shell versus the 
sphere’s radius and we allow the structure to expand. We imagine a mass exist-
ing just outside the shell at rs to determine the behaviour of the outside radius, 
and we consider the expansion of the inner radius of the shell to see how the ra-
dius r of our universe develops with time. In this universe, we allow M1 and M2 
to be different but their sum, MT, the total mass, to be constant.  

The outer radius rs of the sphere is given by Equation (1), as the enclosed mass 
and spherical geometry are the same as before and the different distribution of 
mass does not affect the solution. Thus, the outside of this sphere decelerates 
with time, depending on k1. 

To understand the behaviour of the inner radius r, we proceed to calculate the 
gravitational force from the enclosed sphere of mass M1 on a very thin section of 
the shell of mass m at radius r and equate it to the rate of change of its momen-
tum. The sphere behaves as if all its mass, M1, is at its center. Thus, the force on 
the section of the shell of mass m is given by 
 

 
Figure 1. Proposed universe. 
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1
2

GM m
r

−                           (2) 

The rate of change of momentum of the thin section is  

d d d
d d d
mv m vv m
t t t
= +                      (3) 

where v is the rate of change of radius r. We assume that the mass of the thin 
section is proportional to M2, an assumption that is more accurate if M2 is 
changing slowly (Alternatively, one can assume that the density of the thin sec-
tion is proportional to the density of the shell. The author obtained similar re-
sults with this assumption). Thus, Equation (3) becomes: 

2
2

dd d
d d d

Mmv vv M
t t t

α α= +                       (4) 

where α is a constant. 
Combining Equations (2) and (4) we obtain:  

2
1 2

2 2
2

dd 1 d
d dd

GM Mr r
M t tt r

= − −                   (5) 

As the sphere expands, it gains mass: 
2

1 2d 4π dM r rρ=                       (6) 

where 2ρ  is the density of the shell. Thus, the change in M1, which is equal to 
the negative of the change of M2 (as the total mass remains constant), is given by 

2
1 2 2

dd d 4π d
d
rM M r t
t

ρ= − =                  (7) 

We can calculate 2ρ  straightforwardly from M2, rs and r as follows: 

( ) ( )
2

2 3 34 3 π s

M
r r

ρ =
−

                    (8) 

We are left with the following set of equations to solve together: 
 Equation (1)—providing rs as a function of time, with MT and k1 being free 

variables to fit the observed data; 
 Equation (5)—providing r as a function of time, with M1, r and v (r’s rate of 

change) at some time being free variables to fit the data (in particular, we can 
obtain the rate of change of r over r at the current time from the Hubble con-
stant); and 

 Equation (7)—combined with Equation (8)—providing the increase of M1 
and decrease of M2. 

Thus, to run the equations we allow MT, k1, rs and M1 to vary for the best fit 
(to the ΛCDM universe with dark matter). We set the current rate of change in r 
over r to the current value of the Hubble constant. 

It is clear from Equation (5) that for a decreasing M2, there could well be pe-
riods where the acceleration term (the positive term on the right-hand side, 
when M2 is decreasing) exceeds the deceleration term (the negative term on the 
right-hand side, due to gravity from M1), producing the appearance of an accel-
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erating universe. It is also clear that the value of the acceleration term can be de-
termined independently from the deceleration term by varying the input pa-
rameters above. 

4. Results 

We solve the set of equations numerically and plot the results in Figure 2. Fig-
ure 2 shows time along the x axis, with time zero being today. The y axis shows 
the scale factor of the universe, scaled to a value of 10 today. Displayed are 
curves for: 
 A standard all-matter universe at critical mass (dash-dot line);  
 The ΛCDM universe (solid black line) with a Hubble constant of 67.8 km s–1 

Mpc–1 and a matter component ΩM of 0.3089 and ΩΛ of 0.6911 [4]; and 
 The proposed universe r (dotted line) and rs (dashed line).  

We vary the parameters to provide the best fit possible of the proposed uni-
verse (r) to the ΛCDM curve. We keep the proposed universe “flat” (although 
technically the acceleration term here has nothing to do with dark energy). The 
best fit is achieved with a current matter component ΩM of 0.38 (note that ΩM of 
0.38 and ΩΛ of 0.62 lie on the edge of the 95% confidence interval for CMB and 
supernova data [3]). This fit best fit is achieved for: 
 MT 1.086 times critical mass; 
 rs of 1.803 the current scale factor value; and 
 k1 of –9.547 times the value of the mass term in Equation (1) at the current 

time, i.e., an open universe. 
One can see that the fit is very good, and that the main effect is on the age of 

the universe, although in the proposed universe, the deceleration and accelera-
tion components are a different function of radius than in the ΛCDM uni-
verse—in particular, the “cosmological” constant or acceleration parameter is 
not constant. 
 

 
Figure 2. Scale factor vs. time for different universe models. 
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Figure 3. Ratio of acceleration to deceleration components. 

A useful graph for seeing the difference in the nature of the acceleration and 
deceleration components between the proposed model and the ΛCDM model is 
shown in Figure 3, which displays the ratio of acceleration to deceleration 
components as a function of time for the proposed universe in Figure 2 and the 
ΛCDM universe. When the ratio is one, the universes flip from decelerating to 
accelerating. Clearly the fit in Figure 2 is achieved with different varying terms 
that integrate to almost the same result for times in the past 10 billion years. The 
proposed universe is gentler in terms of its switch from deceleration to accelera-
tion. 

5. Mechanism 

The results described above have been achieved by fitting the data for the past 
several billion years and then running the model back in time. What emerges is 
the following picture: 
 Initially, the mass of the universe is concentrated in the shell and the core is 

almost empty. However, the core quickly gains mass at the expense of the 
shell, and for the large majority of the universe’s existence, the mass of the 
shell, M2, slowly decreases, producing the effect required for acceleration. 
The masses of the two regions of the universe versus time are shown in Fig-
ure 4. 

 Except at the very beginning of the universe, the density of the core is higher 
than the density of the shell, and the ratio of core density to shell density in-
creases with time. At the current time, the core is 65 times denser than the 
shell. 

 The ratio of r to rs varies very slowly after the initial period, getting larger, as 
expected, in the past several billion years, as shown in Figure 5. 

The acceleration effect is being produced by a universe like the one we currently 
imagine but surrounded outside its visible extent by (currently) a very 
low-density thick shell. 
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Figure 4. M1 and M2 as a function of time. 

 

 
Figure 5. Ratio of r to rs as a function of time. 

6. Conclusions  

It is demonstrated herein that by altering the geometry of the assumed expand-
ing universe, one can achieve an initially decelerating universe and later in time 
an accelerating universe without inventing dark energy—simply by retaining 
visible and dark matter. Furthermore, the universe remains an expanding sphere 
that obeys Hubble’s law. The process develops naturally from the initial condi-
tions and explains how the universe has been accelerating for the past several 
billion years or so with no dark energy. 

Three key pieces of work remain. The first is to perform a detailed fit to the 
experimental data, in particular the supernova data, by varying the parameters 
described herein. The second is to reproduce the theoretical result with the gen-
eral relativity equations, and the last is to fully explore the initial conditions that 
make this approach work.  
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