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Abstract 
 
We study the approximation properties of the extremal polynomials in Ap-norm and C-norm. We prove esti-
mates for the rate of such convergence of the sequence of the extremal polynomials on domains with corners 
and special cusps. 
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1. Introduction and Main Results 
 
1.1. Statement of Problem and Some Definitions 
 
Let  be a finite domain bounded by Jordan curve 

 and 0

G  
G:=L G   be an arbitrary fixed point. Let 

 be conformal mapping of  onto the disk  w z
 
= G

0 00, :=D r
 0 = 0,

: <w w r
 0 = 1 

 with normalization  
 , where 0  is a conformal 

radius of G  with respect to 
  r

0  and let 1:=   be 
an inverse mapping. 

Let  We denote by > 0.p  1
pA G  the set of 

functions  f z
= 0, f

 analytic in  and normalized by 
  such that 

G
 0f   0 = 1

   
1

1 := d < ,
pp'

zA Gp
G

f f z 
 

 
 
  

where d z  is a two-dimensional Lebesque measure on 
 .G

We denote by n  of all algebraic polynomials  
 satisfying   


n n  ,degnP z P   0 = 0,nP   0 = 1.nP 
Let us consider following extremal problem: 

  1 :n n nA Gp
P P    min        (1.1) 

Using a method similar to the one given in ([1], p. 
137), it is seen that there exists an extremal polynomial 

 nP z  furnishing to the problem (1.1), these polyno- 
mials  nP z  are determined uniquely in case of  
([1], p. 142). This extremal problem was first considered 
by Kucukaslan M. and Abdullayev F.G. and they were 
called the p-Bieberbach polynomial of degree  for the 
pair 

> 1p

n
 0,G   in [2], and denoted by   , .n pB z

The main goal of this paper is to investigate the 
approximation rate of convergence  to the 
function 

 ,n pB z
  in uniform norm for some domains when 

has some certain singularity, i.e. 

    , ,( )
:= max ,n p n pC G z G

c
B z B z

n 


     (1.2) 

where  := , > 0,p G   the constant  is independent 
of  

c
.n

In case of  the solution of (1.1) coincides with 
the well known  Bieberbach polynomial  

= 2,p
-n th

   z,2n n  (see, for example, [3,4] ). The appro- 
ximation properties in the uniform norm of 
B z B

 nB z  on 
G  first was observed by Keldysh in 1939 [3] for the 
domains with sufficiently smooth boundary. A consi- 
derable progress in this area has been achieved by 
Mergelyan [5], Suetin [4], Simonenko [6], Andrievskii 
[7,8] Gaier [9,10], Abdullayev [11-13], Israfilov [14,15] 
and the others. 

In this paper, we are going to consider the case  
the problem in (1.2). First, we will investigate the 
approximation rate of  to the function 

> 1p

 ,n pB z   in 



C. KOŞAR  ET  AL. 306
 

 

1 -pA norm and using well known Simonenko and 
Andrievskii method (see, for example, [6,7]), the appro- 
ximation rate of  to the function  ,n pB z   in uniform 
norm will be obtained. 

Now we need some definitions: 
Definition 1.1. ([16], p. 97)The Jordan arc or a curve 
 is called a  quasiconformal ( ) arc or curve 

if there is a quasiconformal mapping 
L -K 1K 

-K f  of a region 
 containing  such that D L  f L  is line segment or 

circle.  
Let  F L  denote the set of all sense-preserving 

plane homeomorphisms f  of regions  such 
that 

D L
 f L  is a line segment or circle and let  

  = inf    : ,K L K f f F L  

where  K f
.

 is the maximal dilatation of such a map- 
ping f  Then  is L -K quasiconformal if and only if 

 If  is a   < .K L L -K quasiconformal, then  
  .K L K  
D    gives the global definition of a -K qua- 

siconformal arc or curve consequently. This definition is 
common in the literature. At the same time, we can 
consider the domain  as the neighborhood of the 
curve  In this case, Definition 1.1 will be called local 
definition of quasiconformal arc or curve. Through this 
work we consider the local definition. The local defi- 
nition has an advantage in determining the coefficients of 
quasiconformality for some simple arcs or curves. 

D 

 = ,z z s

L
.L

Let us denote   0,s mesL  natural repre- 
sentation of  := .L G

Definition 1.2. ([4]) We say that G C  if G  has 
a continuous tangent   := s z s 

,G C

 for every points 
.  z s

Corollary 1.1. ([17]) If   then = 1K   for 
all > 0.   

Definition 1.3. ([12]) We say that  

  if  is expressed 
as a union of a finite number of 

 ; , 0    0 < < 2, ,G C  :=L 
-C

G

 arcs, connecting at 
the points 0, 1  such that  is locally smooth at 

0  and in the local coordinate system 
, , ,mzz z L

 ,z x y  with origin 
at ,jz   the following conditions are satisfied: 1 j  ,m

,1) For every jz   the domain  has 1 j p  ,m G
π,j  0 < <j 2,  exterior angle at the corner ,jz  
  =: .jmin    

2) For every ,jz   in 1 ,p j   m  ,x y  coor- 
dinate system with origin at jz  we have 

 1 1  
1 2 1= : ,0 ,z x iy y c x x G   c x  

  ,2 1= : ,0z x iy y x x G    C 

> 0

 

for some constants  1 2< < <c c   , ,i    = 1,2.i
It is clear from the definition that each domain  

 ; G C    may have exterior πj  angles,  
0 < < 2j , at the points jz , , and interior 

zero angles at which the boundary arcs are touching with 

1 j  p

1 -x  speed at the points jz , . If 1p j   m = 0  
then the domain  does not has interior zero angles 
and 

G
  ,0 < 2G C  < , i.e.,    .;0C C    

If = 1  then the domain  has piecewise smooth 
boundary with only interior zero angles. We denote the 
class of domains by 

G

 .1;C   
 
1.2. New Results 
 
We introduce the following notation. For any  
and 

1 < < 2p
0 < < 2 we set    , , ,jp pj    and  

 ,j p 

 

 as follows: 

 
  

1 1
           0 < ,

2
4 2 1 2

, := ,  < ,
2 2 2 2 3

1 2
1 ,          < 2,

2 3

p

 


  


 






 


  

 
  



,        

3

      

p p



= 1,

 = 2,

 = 3,

j

p j

p j

j



 

 

 

 

2

2

8

 

p p

  



1,    
4 2 4

3 3
,    

4 2 4
, :=

2 3
,               

4

1
1 4 2 , .

2

p p p
j

j

p
p

j

p p p







 




    


  






    

= 1,

= 2,

= 3,

= 4j

j  

 

2
, =

2

1 1
, = 2,

2 2
, :=

1
,       = 3, 

1 2 1
, =

1 2

j

j
p

j
p

p
j

p

j
p

  





 


 

   


  





      

1,

4.

 

Throughout this paper, 1 2  are positive and 

1 2

, , ,c c c 
, , , ,     sufficiently small positive constants which 

in general depend on . G
Theorem 1.2. Let  and assume that  1 < < 2p

 ;G C    for some 
1

0 <
2

   and  

    1 1min , , ,p p0 < .       

Then the Bieberbach polynomial  satisfies -p  ,n pB z

 , 1n p C G
B c n      

  with  1

2
0 < < 2 2 .p

p
       for each 
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Theorem 1.3. Let 
 6 2

< < 2
6

p





 and assume that 

 ;G C    for some 
1

<
2 3

 
2

.

 and  

    2 20 < min , , ,p p    
 ,n pB z

 Then the Bie- 
berbach polynomial  satisfies 

-p

 , 2n p C G
B c n      

for each   with  2

2
0 < < 2 2 .p

p
       

Theorem 1.4. Let 
3

< < 2
2

p  and assume that  

 ;G C    for some 
2

< < 2
3

  and  

 3

2 3
0 < min , ,

4

p
p      

 
.   

Then the Bieberbach polynomial  satisfies -p  ,n pB z

 , 3n p C G
B c n      

for each   with  3

2
0 < < 2 2 .p

p
       

For 0 < < 1 we obtain  

    1

1
max , , = 1,2,3 = , =i p j p

   



 and so, we  

have the following theorem. 

Theorem 1.5. Let 
   

 
2

2

1 4 2
max 1, < < 2

2 2 2
p

 

  

   
 

   

  

and assume that  ;G C    for some 
2

< < 1
9

  and  

4

1
< , p


.  




  Then the Bieberbach poly-  -p

nomial  satisfies  ,n pB z

 , 4 lnn p C G
B c n n     

for each   with  4

2
0 < < 2 2 .p

p
       

Analogously result can be written for case 1 < 2.  

Theorem 1.6. Let 
2

2 < < 2
1

p





and assume that  

 ;G C     for some 0 < < 2 , and 0.   Then, 
for any  and arbitrary small 3n > 0 . 

 , 5n p C G
B c n     

for each 

Corollary 1.7. Let  and assume that  = 2p
 ;G C    for some 0 < < 2  and  
1 1

0 < min ,
2 2 2

 .


 

  with 
1

0 < < ,
p

  if 0 < < 1  and  

 1 2
0 < < 1 1 ,

p p
 

 
   
 

 if 1 < 2.  

   
 Then the Bieberbach polyno-  

mial  ,n pB z  satisfies 

 ,2 6 log  n C G
B c n n     

for each   with 
1

0 < < min , 2 .
2 2

 


   
 

Remark 1.1. 1) Theorems 1.2-1.2, extend the cor- 
responding results in [3-5, 10,12,13] to case 2p  . 

2) Corollary 1.2 is extending the one result [10] to 
domains bounded by a piecewise smooth curve with 
interior zero angles and in = 0 coincides with the 
corresponding result of this work.  
 
2. Some Auxiliary Results 
 
The notation “ ”, we mean that 1  for a 
constant , which doesn’t depend on  and b . The 
relation “ ” indicates that c  where 

 are independent of  and  

a b

b

a c b
a

,b a c b 
1c



a 2 3

2 3,c c a .b
Let  be finite domain bounded by Jordan 

curve  and let 
G 
L  =w z  ( ) be the con- 

formal mapping of 
 ˆ=w  z

:= extG   G  onto  

 ˆ = : > 1w w    : < 1 ,w w  normalized by  

   = , > 0      (    0 0ˆ ˆ= 0, > 0    ) .  

The level curve (exterior or interior) can be defined for 
 as > 0t

     1ˆ:= : = ,if < 1; = ,if > 1 , .tL z z t t z t t L   L  

Let us denote  t  and  := ,t tG intL :=t extL
   , := inf :d z L z L   .  

Let  be a L -K quasiconformal curve and .D    
Then the region  can be chosen to be the region 

0

D

0
\ ,R rG
, ,

G
ˆ

 for a certain number 01 <  depending 
on 

2R 
f   and 1

0R0 =r  . In this case, it is known that  

the function     1
1. = .f f   


2 is a -K  quasi-  

conformal reflection across  as shown in ([18], p. 28) 
by analogously in ([19], p. 75), that is,  is a 

L
 . 2 -K  

quasiconformal mapping leaving points on  fixed and  L

satisfying the conditions \
R

G G G    
  0\ rG ,   

  0
\ r RG G G G  \  for some    01 < < ,R R

0 < < 1.r r

By using the facts in ([16], p. 97) and ([19], p. 76, [20], p. 
26) we can find a   -C K quasiconformal reflection 
 .  across such fies the following L  that it satis
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 1 1 1

2 2

1
, , < < ,z z z z z L z 

1
1, < < ,

1
, < , , > ,

zz

zz z

z

z z z



  


   




 

 

  (2.1) 

and Jacobian 

  

22
= z z

J   of  .  satisfied  

by means of the f a 
qu

D

Lemma 2.1. ([18]) Let  be a 

1.J   
Therefore,  ex n theorem otensio
asiconformal mapping, without loss of generality we 

may assume that 

   = , .z z z    

L -K quasiconformal 
curve;  

 1 2 3 1 1 1 0
; , : , ,R L z z G z z z c d z L    z  

 ˆ=j jw z  

     2 3 1 2 1 0
, : , ,  =

= 1,2,3.

j jorz z G z z z c d z L w z

j

    
 

Then, 
ents 1) The statem 1 2 1 3z z z z   and  

1 2 1 3w w w   are  are  w  equivalent. So

1 2 1 3z z z z   and 1 2 1 3w w w w   
2) If 1 2 1 3z z ,z z   then 

2 2

1 3 1 3 1 3

1 2 1 2 1 2

K K
w w z z w w

w w z z w w



  
  

   

and, consequently, for any  3 30 0Rz L z L   
2

1 2 1

K
w w z   

2

2 1 2 ,
K

z w w
where  and are fixed co tants. 

al 
cu




01 < < 2R
ma 2.2. ([2

1
0 0= R   

t :=L 
ns

Lem 1]) Le G  be a quasiconform
rve. Then, For every z L  

0

there exists an arc 
 0 , z   in G  joining   to z  with following 

p : 
1)  

roperties
,d L   z  for every 

If 
0 , z    

2)   1 2,    is  joining  the subarc of  , z  0

1  to 2 ,  then  1 2 1 ,es 2m       very pair 

2 0, , .z     
([7] a -K qua- 

  for e

) Let  be 
si

e ar itrary J an domain and  
le arc except 

 
Lemma 2.3. 

1
:=L G

 mesconformal curve. Then   mes   , f very 
rectifiable arc  .G   

Let G  b b ord
 

or e

 0:= , , , z L     an rectifiab

0 L  which satisfies the 
following conditions: 

1) mes  

0z
for one of its endpoints of its z

1 2,  1 2 ,      for all 1 2, .    
ng function 2) There exists a monotone increasi  g t  

su hat ch t    0,d L g z    for all .   
Lemma 2.4. ([22]) Let  ;G C    for some 

0 < < 2,
 

  0   and o func-  

tion 

n the arc   a measurable 

 f   n such that b e give
1

2
0zf     for  

all   . en for all z .  Th

 
   

2 11
22

2 1
2

2

ln 1 < < 2,
d

2
2 < 2

1
.p

A Gp

pf

z p
























   


p






 


  

 
. Approximation in the 3   -1

pA G Norm 

 
Suppose that  ;G C    f 0 < < 2or some   and 

0   

=z

is give of simp ut n. For the sake 
, we assume

licity, but witho
= 1,z   loss of generality  that = 2,m  1

2 1;   1,1 G   and let the local coordinate axes 
be parallel to OX  and OY  in the coordinate system; 

  ,z   2 := : , 0 .L z z L Imz   Then 

0z  is taken a  arbitrary point on 2L  (or on 1L  

We recall that the domain 

1 :=L z

subject t

:

o

, 0L Imz 
s an
hosen directio the c n). 

 ;G C    has exteri r 
π

o
   0 < < 2  non zero angle and 1x 

d of the po
 type interior 

zero angle in the neighborhoo ints 1 = 1z   
 2 ectively. 

We can say that the function  ˆ=w z   
domain 

and = 1,z  resp
for the

 ;CG    satis fies the escribed 
in

conditions d
int 1z Lemma 2 in the neighborhood of po 1=  . So, 

we can e  Lemma 2 

   

asily get from

       1ˆ 1 ,z 
  

(3.1) 

for all 

2 21
ˆ ˆ, 1 ;  1d z L z z

 
 

 
  

 1:= : 1 > .z M z G z     

On the other hand, using properties of the function 
 zˆ=w    in the neigbourhood of the point 1 = 1z   

(see, [7,23]) we obtain 

   
1

ˆ ˆ1 ln 1z z


 


                (3.2)

Because each  is a , = 1, 2jL j  1 -i quasi- 
 .j  muconformal arc, st be 

re
the quasiconformal 

flection across .jL sider the Let us con  curve  

 11 1 2
1 1

2
:= : = 1 ;

3

c c
z x iy y x

  
=

   
 

 
 

 12 1 2
1 2

2
:= = : = 1 ;

3

c c
z x iy y x

     
 

 
 

 1
2 3:= = : = 1 ;z x iy y c x    

 2
2 4:= = : = 1 ;z x iy y c x    
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for some where a const nts  and 

from
mma 2.2 that 

4 3< < < ,c c  
 Definition 1.3. 

It is easy to check from Le

a 1c
2c  

 1 2 1 2 , ,jmes i  

fo
Let fficiently large n tural number. 

For arbitrary 

   

r all 1 2, ,  , = 1,2.i
j i j    

 =N N R  su0

>n N  and 
a

0 < < 1,  let us choose  
1cn0=R r    such 

= 1,2  such 
that  and points  0 0< <r R R

,  ,j j that they are in the intersection of iz i

RL  and i
j  

ts divide These poin RL parts:  

   1 1 3 1 2
2 1 1 1:= , , := , , R R R RL z z L L z z

 into four 

   2 2 4 2 1
1 2 2 2:= , := ,R R R RL L z L L z z

1

2,

L

z
 

are traversed in the positive direction (counterclockwise). 
41 3 2:=R R R RL L L L L   R  and are subarcs of  i

j R  i
j  

joining points −1,1 with i
jz . Le note t us de

       1 1 1 2 2 2
1 2 2 1:= ,R R RR L R R L R          

 := RU int   and := \ .RU U G  

We can extend the function  to   the 
following way 

 z U in

 

  
2

, ,

( ) :=

z z G

z r






  (3.3) 0 , , = 1, 2.R

i

z U i
z 



 


    

Then, 

      ,

0, ,
=

, , =z
i Ri z

z G
z

z z z U i


  


  


1,2.
  (3.4) 

From the Cauchy-Pompeiu formula ([16], p. 148), we 
get 

     1 1
= d d , .

2π π
z z G

i z z




 
  

 
 

  


 
UR R

 





Then, using the above notations we obtain 

   

    
 

 

2

, =1

1
= d

2π
LR

i z

 
 
 
 

1 2

3

4

        or ,

= 1        ,

1           . 

R R

R

R

L L

f L

L

   

  

 

  
  






 

Since the first part of right hand side in (3.5) is 
analytic function in G , there exists a polynomial 

 1 ,nP z  where  1deg 1nP z n    ([24], p. 142), such 
that 

 
 

 12

1
d <

2π
LR

n

f c
P z

i nz








 .        (3.6) 

Let Then, and from  

(3

   1

0

:= ( )d .
z

n nQ z P t t


    0 = 0nQ   

.5) and (3.6) we have 

  
    
 

11
         d

2π

1
         d ,

π

i Rj

j

i j

UR

f
z

i z

z







 

  




 




 









 







    (3.5) 

where 



 

 
 

2

2
, =1

2

1

2π

1
                          d

π

n
i j i Rj

UR

c
z

n z

z






1
d

j

Q z
  

 
 

  




 







 


 




 

an  us take integrals ove f the 
each de we obtain 

d let r G  o power of 
si

-p th  

   

    
  

 
 

2

2
, 1

2

d

11
d d

  d d .

i
j

p

n z
G

p
j

p
i jG R

p

z

n z

z








  
z

G UR

z Q z

 


 
 





 







 

 





   (3.7) 

n-Zygmund inequality ([19], p. 98), 
we obtain 

 

From the Caldero

 
 

  2
d d d ,  = 1,

UR

p

p

z i
G UR

i
z


 

 
     





  


  2.

So, (3.7) and (3.8) give us 
(3.8) 

 

  
 

   

  

2

2
, =1

( ) 11
d

      d .

p
j

p

n pA Gp i j

p

i
UR

Q
n z



  
 



   

 
  





 






(3.9) 

                 

i Rj A Gp
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Let us consider two case of in the last double 
integral in (3.9) as:  an

If then, using Hölder Inequality ([25
10

p  
d p1 < < 2p 2.  

1 < < 2,p  ], p. 
5) we obtain 

     

 
   

       

1
2 2

2
d

p

1
2 2

2

1
2 2

d d

                              d d

                                .

p

p

i i
U U UR R R

p p

U Ui R i R

p p

i R i Rmes U mes U

  

 
 

    

   

  





 
   

   
   

   
   
   
   



 







                      (3.10) 

Thus, (3.9) and (3.10) give us 

 


 
  

 

    
  

 

       
  

2

2
, =1

1
2 2

11
d

 , 1 < < 2, = 1,2,
                          

, 2

p
j

p

n pA Gp i j i Rj A Gp

p p

i R i R

p

i
UR

Q
n z

mes U mes U p i

d p





  
 



  

   



 
  




 

 


 






             (3.11) 

, = 1, 2.i

 
Now, we need some technical estimates to attack the 

problem in (3.11). 
Lemma 3.1. Let  ;G C    for some 0 < < 2,  

0.   Then for all > 0  

    
  

 

1 2 1
1 1 2
2

1 2 1

1 2

2 2 1

2 1

2

1
ln , 1 < 2, = 1,  

1 2
,    2 < < 2 , = 1,

1 1
d

1
2, = 2, 

1
,           

p

p
j

p

p

n p j
n

p j
n

j
n

n

 
 

 
 



 


   


 
    

 
    

 
 



 
   

   
 

      


 

 
 
 





1

2ln
i Rj A Gp

z
n

  
 
 

2
,  1 < p


  

2
2 < < 2 , = 2.

1
p j



















 

 
Proof. Let us choose 




      := 1 ,
j

f       = 1,2j , in Lemma 2.4, we obtain 

    
  

 

2 11
22

, ,

2 12
2

,

ln , 1 < 2,1
d

2
,           2 < < 2 ,

1

pj
i j i j

pi Rj i jA Gp

p

z p







  
















  


  

 


 


               (3.12) 

 
here On the other hand, according 

1, we have  
  1, .i i

jd z L n   
all >

 , :=  .i
i j jmes R  w

to
Then, from (2.1), (3.1) and (3.2), for 

 Lemma 2.1 and Corollary 1. 0,  we get        
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1

11

1

,
1

1
, = 1

, , = 1
1 .

1, , = 2
, =

i i
ji j

i j j
i i
j

j
d z L j nz

d z L j
j

n
















        

      
 

     

2

                       (3.13) 

 
Then, the following inequalities are obtained from (3.12) and (3.13)  

   
    

1 2 1
1 1 2
2

2

ln < < 2,
1

d

n p

z 

  

 
 


  

 1 1

1 21

1
,1

1 2
, 2 < 2 .

1

p

i R
A Gp

n

p
n
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and  
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Combining (3.14) and (3.15) the proof is completed. □ 
Now, for sufficiently small 
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 we are going 
to use following notations:  
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Lemma 3.2. ([26], p. 10) Let  ;G C    for some 
0 < < 2,  0.  ll > 0 Then for a    
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On the other hand if we use 
but except the conformal mapping

the method of Gaier in [9] 
   in method, then 

we obtain 
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After then using the second and third inequality in the 
 we obtain the desire roof. □ 

Lemma 3.4. Let 
first one d p
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After this estimation, we get 
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By using Lemma 3.1, 3.2, 3.3, 3.4 and (3.11) we get 
the following results. We need this notation: 
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Lemma 3.5. Let and assume that  
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Proof. The proof of Lemma 3.5-3.6 is similar. So, we 
give them together. From (3.11) and Lemma 3.1-3.4 we 
obtain  
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Now, let us consider the polynomial  

 .  

In this case from (3.18) we have  
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So, if we consider the extremal property of the 

polynomials then we obtain (3.16) and (3.1 ) 
respectively. 

To prove Theorem 1.2-1.6 and Corollary 1.7, we use a 
si o the one of Andrievskii and Simonenko 
employed in the proofs of analogous theorems for 

 (see [6,8,10]). 
simply connected 

4.1) in (3.19) to prove Theorems 1.2-1.6. 
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