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Abstract 
In this paper nonconservative systems are investigated within the framework 
of Euler Lagrange equations. The solutions of these equations are used to find 
the principal function S, this function is used to formulate the wave function 
and then to quantize these systems using path integral method. One example 
is considered to demonstrate the application of our formalism. 
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1. Introduction 

The path integral formulation of quantum mechanics is a description of quan-
tum theory that generalizes the action principle of classical mechanics. It replac-
es the classical notion of a single, unique classical trajectory for a system with a 
sum, or functional integral over the canonical phase space. The basic idea of the 
path integral formulation can be traced back by [1] who introduced the Wiener 
integral for solving problems in diffusion and Brownian motion. This idea was 
extended to the use of the Lagrangian in quantum mechanics [2]. The complete 
method was developed by [3]. 

The canonical formalism for investigating singular systems was developed by 
[4] [5] [6]. In this formalism, the equations of motion are obtained as total dif-
ferential equations. Depending on this method, the path integral quantization of 
constrained Lagrangian systems has been investigated by [7] [8] [9] [10]. More-
over, the quantization of constrained systems has been studied using the WKB 
approximation [11] [12] [13]. Recently, the quantization of dissipative systems 
has been studied using the WKB approximation and path integral method which 
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depending on Hamiltonian mechanics [14] [15]. More recently, regular Lagran-
gian is quantized using path integral method in [16]. 

This paper is mainly concerned with nonconservative systems which are cha-
racterized by irregular Lagrangian using canonical approach and the quantiza-
tion of these systems using the canonical path integral method.  

Our present work is organized as follows. In Section 2, the principal function 
formulation and path integral formulation of nonconservative systems for irre-
gular Lagrangian are discussed. In Section 3, the definition of the wave function 
for irregular Lagrangian is explained. In Section 4, illustrative example is ex-
amined in detail. The work closes with some concluding remarks in Section 5.  

2. The Canonical Path Integral Formalism for  
Nonconservative Systems 

The Euler Lagrange equation for conservative systems is given by [17] 
d 0
d

L L
t q q
 ∂ ∂

− = ∂ ∂ 
 



                      (1) 

In this work we would like to find the principal function for nonconservative 
systems using Euler Lagrange equation. We Start with the Lagrangian 

( ), e tL L q q λ=


  [18], where ( ),L q q


 stands for the Lagrangian of the corres-
ponding conservative system. Because the Euler Lagrange equations are second 
order equations, we find the equations of motion from the corresponding La-
grangian in terms of the generalized coordinates and their derivatives. Then, we 
substitute the solutions of these equations in the given Lagrangian. Finally, the 
evolution of this Lagrangian between two instants of time 1t  and 2t  gives the 
principal function S as a function of time.
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where H is the Hamiltonian function and p is the canonical momentum. 
The path integral representation by using Hamiltonian and Lagrangian me-

chanics may be written as  
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3. Wave Function Definition for Irregular Lagrangian  

In the semi classical expansion (WKB) of the Hamilton Jacobi function of regu-
lar systems has been studied [11]. This expansion leads to the following wave 
function [19]: 

( ) ( )
( ),

0
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, e
iS q tN

i i i
i

q t qψ ψ
=

  =       
∏                    (4) 
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where ( )0i iqψ  is the amplitude of the wave function, which is defined as 

( )
( )0
1

i i
i

q
p q

ψ = .                       (5) 

We use the principal function to formulate the wave function. 

4. Example 

Let us consider one-dimensional Lagrangian of a free particle of mass m in the 
presence of damping [15]. 

The Lagrangian is 

21 e
2

tL mq λ=                            (6) 

From Euler Lagrange equation 

d 0
d

L L
t q q
 ∂ ∂

− = ∂ ∂ 
                        (7) 

The equation of motion is 
0q qλ+ =                            (8) 

and the solution of Equation (8) is 
q C qλ= −                           (9) 

where C is the constant of integration. 
Integrating Equation (9) and choosing 0q =



 this gives 

( ) ( )1 e tCq t λ

λ
−= −                       (10) 

Taking the first time derivative of Equation (10)  

e tq C λ−=                           (11) 
and  

2 2 2e tq C λ−=                         (12)  

Substituting Equation (12) into Equation (6) we get  

21 e
2

tL mC λ−=                        (13) 

Using Equation (2)  

2

0

1 e d
2

t
tS mC tλ−= ∫                       (14) 

Thus, the principal function takes the following form  
2

1 e
2 2

tmC mCS qλ

λ
− = − =                     (15) 

Also, the conjugate momentum is  

2
S mCp
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                       (16) 
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So that using Equations (15) and (16) the principal function can be written in 
the final form as following 

( ),S q p pq=                          (17) 

Using Equation (5), we obtain the amplitude of the wave function as  

( )
( )0
1 1

2i i
i

q
mCp q

ψ = =                    (18) 

Making use of Equation (4) the wave function can be written as 
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Finally, the path integral representation may be written as  
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           (20) 

5. Conclusion 

This paper is mainly concerned with path integral quantization of nonconserva-
tive systems. Nonconservative systems were studied within framework of Euler 
Lagrange equation. The corresponding complete integral, or principal function S, 
was determined using the method of time integral of the given Lagrangian. The 
momentum p was calculated from S in the usual manner. The appropriate wave 
function was then determined. The path integral for the nonconservative sys-
tems is obtained as an integration over the canonical phase space coordinates. 
One illustrative example is considered to demonstrate the application of our 
formalism.  
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