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Abstract 
The common failure mechanism for brittle rocks is known to be axial split-
ting which happens parallel to the direction of maximum compression. One 
of the mechanisms proposed for modelling of axial splitting is the sliding 
crack or so called, “wing crack” model. Fairhurst-Cook model explains this 
specific type of failure which starts by a pre-crack and finally breaks the rock 
by propagating 2-D cracks under uniaxial compression. In this paper, opti-
mization of this model has been considered and the process has been done by 
a complete sensitivity analysis on the main parameters of the model and ex-
cluding the trends of their changes and also their limits and “peak points”. 
Later on this paper, three artificial intelligence algorithms including Particle 
Swarm Intelligence (PSO), Ant Colony Optimization (ACO) and genetic al-
gorithm (GA) has been used and compared in order to achieve optimized sets 
of parameters resulting in near-maximum or near-minimum amounts of 
wedging forces creating a wing crack. 
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1. Introduction 

The study of rock failure under compression is a matter of importance in rock 
mechanics. Two main mechanisms, including axial splitting and shear failure, 
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have been identified for this type of rock failure [1]. Failure by splitting mechan-
ism can be related to the spalling phenomenon [2]. This phenomenon always 
occurs at high stress contact points, for example in a ball bearing. Spalling occurs 
where the maximum shear stress occurs below the rock surface. 

Splitting parallel to the direction of maximum compression is a common type 
of macroscopic fracture of a brittle rock in the vicinity of its surface. Modelling 
of brittle failure is one of the greatest challenges of material failure analysis 
which results from the irreversible and very rapid propagation and connection 
of cracks, in a process called fracturing. 

Materials like natural ice and rock are heterogeneous and crystalline with dif-
ferent behaviors under variation of applying forces. Generally, their behavior can 
be categorized in two main types, including ductile behavior under high confin-
ing pressures, and brittle behavior under low confining pressures [3]. Because 
most rocks are brittle at low temperature and low confining pressure, virtually 
most of the rocks at or near the Earth’s surface exhibits brittle failure mechan-
ism. In other words, failure in these rocks occurs as deformation-induced loss of 
cohesion [4] [5] [6] [7]. 

One of the main mechanisms proposed for modelling of axial splitting is the 
sliding crack or “wing crack” model which was originally proposed for a 2D 
crack in a plate [3] [8] [9] [10]. Splitting failure begins with a primary crack 
(pre-crack) and then sliding mechanism creates secondary cracks or so called, 
wings, at the edges of those primary cracks. The macroscopic failure occur when 
a series of cracks extend and link together to split the material. The wedged 
crack can be modelled as a straight representative crack, where the wedging 
forces on the pre-crack area are opening the crack. This is often called the 
Fairhurst-Cook model [3]. The whole process of creating a 2D wing crack with 
Fairhurst-Cook model and an optimization process on this model is done by 
Dyskin et al. (1994). The basis of this optimization was the crack semi-length (l) 
and a critical point for this parameter found in this study which results in an un-
stable mode for the crack [11]. Another Optimization on the Fairhurst-Cook 
model is the purpose of this paper which is the optimization of wedging force 
based on the crack angle to find its critical points.  

2. Ultimate Rock Strength 

The ultimate rock strength and the orientation of the macroscopic failure 
plane depend on the confining pressure applying on the rock. Some models for 
micro-cracking under compression (e.g. [8] and [12]) have been proposed based 
on the fact that frictional sliding on pre-existing cracks results in the formation 
of tension cracks at their tips. It has been shown that under triaxial compression, 
the micro-crack distribution is almost uniform until the applied stress reaches 
the ultimate strength, and at the ultimate strength a region of high crack-density 
(tension cracks) emerges along a plane which eventually becomes a macroscopic 
shear failure plane [1] [13]. Variations of the “ultimate strength” and the orien-
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tation of shear failure with confining pressure using this model are already 
known and presented by Nemat-Nasser and Horii (1984) [1]. 

As discussed before, under uniaxial compression, the tension cracks grow at a 
sharp angle relative to the orientation of overall failure plane with confining 
pressure. Variation of this “crack angle” changes the amount of wedging force 
with specific but different trends, resulting different amounts of opening in wing 
cracks and “ultimate strengths” for rocks to fail under compression. Excluding 
these trends is another purpose of this paper.  

3. Fairhurst-Cook Model 

As it can be seen in Figure 1, under uniaxial compression, crack opens in the 
shape of a wing with a specific crack angle (α) and also a specific crack ampli-
tude (a) (This parameter is also called “half-length” or “semi-length” in other 
studies; but here it is called “crack amplitude” which is more proper and diffe-
rentiates it from the other “semi-length” or “l”). 

The amount of this wedging force (f) which creates the wing crack can be de-
termined from the following equation: 

f = 2.a.σ.β(α)                         (1) 

where “σ” represents the maximum principal stress, “a” represents the crack 
amplitude, “f” represents the wedging force and “β(α)” is a function of crack an-
gle which can be determined from the following equation: 

β(α) = sin2(α).cos(α).(1-tan(α).tan(μ))               (2) 

In the above equation, “μ” represents the internal frictional angle of the rock. 

4. Sensitivity Analysis 

In this study, a complete sensitivity analysis performed to find the optimized 
amounts of parameters in Fairhurst-Cook Model. Three main parameters  

 

 
Figure 1. Schematic of 2-D wing crack growth according to Fairhurst-Cook Model [14]. 
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including crack amplitude (a), crack angle (α) and maximum principal stress (σ) 
and a fixed amount of 89 degrees for internal friction angle (μ) have been consi-
dered in this sensitivity analysis. According to this model, these parameters have 
the main roles in determining the amount of wedging force which creates a 
two-dimensional wing crack, while the internal friction angle (μ) should be de-
termined according to the rock sample which is being cracked. 

Three different stages have been considered in the sensitivity analysis process. 
In the first stage of this process, crack amplitude analyzed and this process re-
peated for the second and third stages by analyzing crack angle (α) and maxi-
mum principal stress (σ). Performing this sensitivity analysis in Matlab envi-
ronment, results in Figure 2 as the output. 

As it can be seen in Figure 2, it includes two different parts which are diffe-
rentiated in a specific point. By focusing on this figure, the trend of changing the 
wedging force creating wing crack by variation of crack angle in different crack 
amplitudes can be excluded. This process is shown in Figure 3.  

As it is shown in Figure 3, trends change in a certain point (α = 60.7˚). Before 
this point, in any crack angle, the amount of wedging force increases by increas-
ing the crack amplitude, but this trend changes after this point (α = 60.7˚) and 
by increasing the crack amplitude, wedging force will decrease. This amount of 
crack angle (α = 60.7˚) virtually acts like a border line and specifies the maxi-
mum amount of crack angle which causes the increase of wedging force. In other 
words, this specific crack angle (α = 60.7˚) has considered to be the “peak point” 
for crack angle in analyzing the change of wedging force by variation of crack 
amplitude. 

 

 
Figure 2. Change of wedging force (f) by variation of crack angle (α) in different crack amplitudes (a) by σ = 60 (Mpa). 

https://doi.org/10.4236/jamp.2018.68134


M. Najjarpour, H. Jalalifar 
 

 

DOI: 10.4236/jamp.2018.68134 1585 Journal of Applied Mathematics and Physics 
 

Another fact which can be excluded from Figure 1 is the reversion of wedging 
force sign from positive to negative. The reason of this conversion is thought to 
be the conversion of applying wedging force from tensile to compression as a 
result of increasing the crack angle and decreasing the angle between force di-
rection and its applying area, resulting in closing of the crack lips, instead of 
opening. In is thought that the reason for the variation of trends is also the same, 
indicating that the bigger wedging force still stays bigger after peak point angle, 
but with a different type of force and in an apposite way, applying compression 
force instead of tensile and closing the crack instead of opening it. This fact 
highlights the importance of finding the critical angle or so called, the “peak 
point”. 

In the next stage of analyzing, the change of wedging force creating wing 
crack by variation of crack angle has been examined. For this purpose, one of the 
curves in Figure 2 has been chosen (a = 11 mm) and by focusing on it, the trend 
of changing the wedging force by variation of crack angle has been excluded. As 
it can be seen in Figure 4, this trend changes in a specific point (α = 37.7˚). Be-
fore this point, by fixing the amount of crack amplitude (a) and maximum prin-
cipal stress (σ), the amount of wedging force increases as the amount of crack 
angle increases. In other words, there is a straight proportion between these pa-
rameters. After that specific point (α = 37.7˚) which is considered to be the 
“peak point” in variation of wedging force by changing the crack angle, that 
trend changes and in a reverse relation, the amount of wedging force decreases 
as crack angle increases. Just like the first stage, this specific amount of crack  

 

 
Figure 3. Different trends of changing the wedging force (f) by variation of crack amplitude (a). 
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Figure 4. Different trends of changing the wedging force by variation of crack angle. 
 

angle (α = 37.7˚) acts like a border line which limits the increase of wedging 
force by increasing the amount of the relevant parameter. 

For the third stage of this sensitivity analysis which includes analyzing the 
wedging force variation by changing the maximum principal stress (σ), three 
different amounts of maximum principal stress considered in a fixed amount of 
crack amplitude (a). In this stage, the variation of wedging force by changing the 
crack angle in different amounts of maximum principal stress has been investi-
gated and by its excluded trends, plotted in Figure 5 and Figure 6. 

As it can been seen in Figure 6, trend of changing the wedging force by 
changing the crack angle in different amounts of maximum principal stress 
changes in a specific amount of crack angle (α = 60.7˚), like the previous stages. 
This point which considered to be the “peak point”, differentiates the trends and 
returns it from straight relation to the reverse. Just like previous stages. This 
peak point limits the increase of wedging force by increasing the relevant para-
meter. 

According to this sensitivity analysis, optimized amounts of each parameter 
by fixing other relevant parameters have been excluded, but finding the opti-
mum amounts of parameters without fixing others is much more important. For 
this reason, using some of the efficient algorithms of artificial intelligence for 
optimization is suggested. In this research three algorithms including Ant Colo-
ny Optimization (ACO), Particle Swarm Intelligence (PSO) and Genetic Algo-
rithm (GA) were used and their results have been compared in order to find the 
most efficient method in general or separate parts (before and after the peak  
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Figure 5. Variation of the wedging force (f) by changing maximum principal stress (σ). 
 

 
Figure 6. Different trends of changing the wedging force (f) by variation of maximum principal stress (σ). 
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point angle) and also to achieve the more reliable results. 

5. Ant Colony Optimization (ACO) 

Ant colony optimization (ACO) is a population-based metaheuristic algorithm 
which can be used to find approximate solutions to hard and discrete optimiza-
tion problems. ACO is an algorithm for finding optimal paths that is based on 
foraging behavior of some ant species searching for food [15]. In this algorithm, 
a set of software agents called “artificial ants” search for good solutions to a giv-
en optimization problem [16]. At first, the ants distribute randomly to start 
searching for food. When an ant finds a food source, it walks back to the colony 
depositing pheromone on the ground in order to mark its favorable path which 
should be followed by other ants. In this situation, other ants are more likely to 
follow that path. As more ants find a path, it gets stronger and this process re-
peats so many times until there are a couple streams of ants traveling to various 
food sources near the colony. However, the pheromone trail starts to evaporate 
over time, thus its attractive strength reduces. The more time it takes for an ant 
to travel down the path and back again, the more time the pheromones have to 
evaporate [17]. Because the ants drop pheromones every time they bring food, 
shorter paths are more likely to be stronger, hence optimizing the “solution”. 
“Positive Feedback” eventually leads to all the ants following a single path. Ant 
colony optimization exploits a similar mechanism for solving optimization 
problems. To apply ACO, the optimization problem is transformed into the 
problem of finding the best path on a weighted graph. The artificial ants incre-
mentally build solutions by moving on the graph. The solution construction 
process is stochastic and is biased by a pheromone model, that is, a set of para-
meters associated with graph components (i.e. nodes) whose values are modified 
at runtime by the ants. This process is repeated many times until the stopping 
condition is being satisfied and a satisfactory result is achieved. The most fam-
ous application of this algorithm is finding near-optimal solutions to the travel-
ing salesman problem (TSP) [15] [18] [19].  

6. Particle Swarm Intelligence (PSO) 

Particle Swarm Intelligence originally formed based on the movement of organ-
isms in animal swarms such as bird flocks or fish schools to simulate their social 
behavior [20]. A basic version of PSO algorithm starts by having a population 
(called a swarm) of candidate solutions (called particles). These particles are 
moved around the search-space to find the optimized solution (called global best 
solution) [21]. In this process, each particle determines its movement through 
the search-space by combining some aspects of the history of its own current 
and best locations with those of other members of the swarm, with some ran-
dom perturbations. When improved positions discovered, these positions will 
guide the movements of the swarm. The process is repeated many times trying 
to find a satisfactory solution and is expected to find a global or near-global op-
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timized answer at the end of all algorithm cycles, although it is not guaranteed.  
This algorithm can be summarized in four main steps, which are repeated un-

til the stopping condition is satisfied: 
• Assigning initially random positions and velocities for all of the particles in 

the search-space 
• Evaluation of the fitness of each individual particle 
• Updating the individual and global best positions  
• Updating the velocity and position of each particle [22] 

In past several years, PSO Algorithm has been successfully applied in many 
researches and different application areas. It is demonstrated that PSO algorithm 
gives better results in a faster, cheaper way compared with other methods [23].  

7. Genetic Algorithm (GA) 

Genetic Algorithm (GA) is a heuristic optimizer algorithm based on the evolu-
tionary ideas of natural selection and principles of “survival of the fittest” from 
“Charles Darwin”. Genetic Algorithms are commonly used to generate proper 
solutions to optimization problems by relying on bio-inspired operators such as 
“crossover” and “mutation”. 

GA simulates the natural selection process among individuals (also called 
“phenotypes”), each of which representing a possible solution. Each possible so-
lution has a set of properties and is known as a “chromosome” (also called “ge-
notype”). Representing the solutions as binary strings of 0 s and 1 s are more 
common, but other types such as “real strings” are also applicable. The initially 
created individuals then lead through the process of evolution [24]. 

Starting with a randomly generated population of chromosomes, the evolu-
tion occurs as a process of fitness based selection and recombination to produce 
a better population in each iteration called a “generation” [25]. This process will 
be done by defining a proper “fitness function” and improving the initial popu-
lation through repetitive application of the mutation, crossover and selection 
operators.  

In each generation, the fitness of every individual in the population which is 
usually the value of the objective function in the problem, is being evaluated and 
the GA creates a new population by a new group of chromosomes with resulted 
fitness values. In this process, firstly, parents are selected to mate, based on their 
fitness, producing “offspring”, so better solutions with more fitness are given 
better chance to reproduce by crossover operation. The offspring inherit charac-
teristics from both parents, but not equally. As parents mate and produce 
offspring, some new rooms must be freed for the newly generated chromosomes. 

Since the population contains more information than each individual fitness, 
GA combines the good information hidden in a solution with good information 
from another one in the mating pool, in order to produce new solutions with 
good information inherited from both parents [24]. After the GA mates the new 
individuals and mutates some of them, the population undergoes a complete 
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generation change. Some of the individuals in the population are replaced by 
new ones, since the size of the population has to remain fixed and shouldn’t in-
crease. The population will then consist of offspring plus a few of the older indi-
viduals, which the genetic algorithm allows to survive to the next generation, 
because they are the best members of the population, called “elite individuals”. 
Following this procedure, it is hoped, but not guaranteed, that over many gener-
ations, better solutions will remain while the least fit solutions die out. 

Each generation will contain, on average, more good genes than the previous 
one. Once the population is not producing much better solutions than previous 
generations, the algorithm is said to have converged to a specific set of solutions 
for the problem. Eventually, the algorithm terminates when either it converged 
to a proper solution with satisfactory fitness level or a specific number of genera-
tions has been produced [26] (Figure 7). 

8. Optimization Process 

As it has been discussed earlier, three different optimization algorithms includ-
ing Ant Colony Optimization (ACO), Particle Swarm Intelligence (PSO) and 
Genetic Algorithm (GA) have been used in order to find the optimum or near 
optimum parameters influencing the wedging force which creates a wing crack. 
This optimization has been performed in several cases including general max-
imizing and minimizing of the wedging force and also separate maximizing and 
minimizing of this parameter, isolated in before and after the peak point angle 
(37.7˚).  

The First algorithm was ACO and it has been performed by a colony of 46 
ants trying to find the optimum amounts of crack angle (α), crack amplitude (a), 
maximum principal stress (σ) and frictional angle (μ) in 100 iterations. Two spe-
cific upper and lower limits have been considered for each parameter in order to 
specify their valid range of variation. This range was from 0 to 120 degrees for  

 

 
Figure 7. Schematic of Genetic Algorithm. 
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crack angle, from 0 to 89.999 degrees for frictional angle, from 0.001 to 0.046 
meters for crack amplitude and finally 10 to 100 mega-Pascal for maximum 
principal stress. The results of this optimization are illustrated in Table 1.  

The second optimization algorithm was Particle Swarm Intelligence (PSO) 
and it has been performed in 50,000 iterations with 10,000 swarms and 4 par-
ticles for each swarm, representing crack angle (α), crack amplitude (a), maxi-
mum principal stress (σ) and frictional angle (μ). Just like the previous algo-
rithm, two specific upper and lower limits with the same amounts have been 
considered for each parameter in order to specify their valid range of variation. 
The results of this optimization are also illustrated in Table 1.  

The third and final optimization algorithm was Genetic Algorithm (GA). In 
this study, real genetic algorithm used and it has been performed with 200 
chromosomes and 4 genes for each chromosome. These genes represented the 
related parameters including crack angle (α), crack amplitude (a), maximum 
principal stress (σ1) and frictional angle (μ) and each chromosome represented a 
resulting amount of wedging force (f). The optimization process repeated for 
4000 iterations with the same upper and lower limits for different parameters 
and like the previous stages, its results is illustrated in Table 1. 

These steps repeated several times, in order to achieve better results of wedg-
ing force without exiting the valid range for each parameter and as it can be seen 
in this table, Particle Swarm Intelligence (PSO) algorithm achieved better results 
with more amount of wedging force at the end. So these amounts of parameters 
will be more proper to use as the optimum amounts and this method is more ef-
ficient in general maximizing of wedging force in wing crack model comparing 
to the ACO and GA algorithms. These steps have been repeated for the general 
minimization stage with the same ranges for the parameters. The results are 
shown in Table 2 which indicate that GA is the optimum method in this stage of 
the optimization. 

 
Table 1. Results of the optimization algorithms in general maximization of the wedging force. 

 Crack Angle (α) [deg] 
Crack Amplitude  

(a) [m] 
Maximum Principal  

Stress (σ) [Mpa] 
Frictional Angle  

(μ) [deg] 
Wedging  

Force (f) [KN] 

Ant Colony Optimization (ACO) 34.658 0.045 100.000 26.000 1586.823 

Particle Swarm Intelligence (PSO) 55.393 0.045 96.812 0.0886 3266.574 

Genetic Algorithm (GA) 52.874 0.043 97.009 1.977 3055.086 

 
Table 2. Results of the optimization algorithms in general minimization of the wedging force. 

 
Crack Angle  

(α) [deg] 
Crack Amplitude  

(a) [m] 
Maximum Principal  

Stress (σ) [Mpa] 
Frictional Angle  

(μ) [deg] 
Wedging Force  

(f) [MN] 

Ant Colony Optimization (ACO) 118.637 0.045 100.000 89.000 −0.352 

Particle Swarm Intelligence (PSO) 102.752 0.014 86.183 89.996 −34.347 

Genetic Algorithm (GA) 93.887 0.044 79.444 89.999 −397.802 
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As it can be understood from Table 1 and Table 2, the GA and PSO algo-
rithms both had proper results with near optimum amounts of wedging forces, 
but ACO didn’t show any acceptable results; so this algorithm has been neg-
lected in the next stages of the optimization. The results of these stages of opti-
mization are shown in Table 3 and Table 4. 

For better understanding and easier access to the best algorithms and opti-
mum amounts of parameters, a summary of these methods and results are 
shown in Table 5. Using these optimum amounts helps to accelerate or decele-
rate (in different cases of maximizing and minimizing) the opening of a wing 
crack by more applying wedging force in the tensile or comparison modes, 
avoiding the waste of time and resources. 

9. Conclusions 

In the first part of this study, a complete sensitivity analysis performed on the 
main parameters of Fairhurst-Cook Model to determine their relations and  

 
Table 3. Results of the optimization algorithms in separate maximization of the wedging force. 

 
State relative to the peak  

point angle (37.7˚) 
Crack Angle  

(α) [deg] 
Crack Amplitude  

(a) [m] 
Maximum Principal  

Stress (σ) [Mpa] 
Frictional Angle  

(μ) [deg] 
Wedging Force 

(f) [KN] 

Particle Swarm Intelligence (PSO) Before 36.684 0.046 95.710 12.878 2082.467 

Genetic Algorithm (GA) Before 36.568 0.043 97.994 1.412 2358.560 

Particle Swarm Intelligence (PSO) After 55.393 0.045 96.812 0.0886 3266.574 

Genetic Algorithm (GA) After 52.874 0.043 97.009 1.977 3055.086 

 
Table 4. Results of the optimization algorithms in separate minimization of the wedging force. 

 
State relative to the peak  

point angle (37.7˚) 
Crack Angle  

(α) [deg] 
Crack Amplitude  

(a) [m] 
Maximum Principal  

Stress (σ) [Mpa] 
Frictional Angle  

(μ) [deg] 
Wedging Force  

(f) [MN] 

Particle Swarm Intelligence (PSO) Before 28.640 0.044 46.570 89.948 −0.490 

Genetic Algorithm (GA) Before 37.515 0.045 98.897 89.998 −72.087 

Particle Swarm Intelligence (PSO) After 102.752 0.014 86.183 89.996 −34.347 

Genetic Algorithm (GA) After 93.887 0.044 79.444 89.999 −397.802 

 
Table 5. Summary of best algorithms and optimum results in different cases. 

Case 
Best  

Algorithm 
Crack Angle  

(α) [deg] 
Crack Amplitude  

(a) [m] 
Maximum Principal Stress  

(σ) [Mpa] 
Frictional Angle  

(μ) [deg] 
Wedging Force  

(f) [KN] 

General Maximizing PSO 55.393 0.045 96.812 0.0886 3266.574 

General Minimizing GA 93.887 0.044 79.444 89.999 −397,802 

Maximizing Before The Peak Point Angle GA 36.568 0.043 97.994 1.412 2358.560 

Maximizing After The Peak Point Angle PSO 55.393 0.045 96.812 0.0886 3266.574 

Minimizing Before The Peak Point Angle GA 37.515 0.045 98.897 89.998 −72,087 

Minimizing After The Peak Point Angle GA 93.887 0.044 79.444 89.999 −397,802 
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trends of change. Concluded results from this sensitivity analysis are summa-
rized as below: 
• The trend of changes for each of these parameters reversed in a specific 

amount of crack angle (α) as a “peak point”. 
• This peak point is about 60.7 degrees in the analysis of crack amplitude and 

also maximum principal stress and it is about 37.7 degrees in crack angle 
analysis. 

• In all of above cases, straight relations between that specific parameter and 
the amount of wedging force observed before the peak point, but it has 
changed to reverse relations after that point. 

• The peak point virtually acts like a border line and limits the increase of 
wedging force by increasing the crack angle. 

• The reason for the reversion of wedging force sign is thought to be the rever-
sion of force from compression to tensile with the same magnitude order; 
which means the biggest force still remains the biggest one, but in a reverse 
direction and it happens because of the changes in crack angle, making an 
angle of more than 90 ̊ between the direction of wedging force and its apply-
ing area.  

Knowing the amount of peak points can be helpful for understanding the ul-
timate rock strength under uniaxial compression and also to apply optimum 
wedging force on a rock sample and create a wing crack. In order to achieve this 
optimum wedging force, a set of optimum amounts of related parameters should 
be used. For this purpose, three different optimizer algorithms (e.g. ACO, PSO 
and GA) were used and compared to identify the best algorithms and optimum 
results. Although it is not guaranteed that these resulted amounts of parameters 
are complete optimum, but they are expected to have proper applications as the 
local and near-global optimums with satisfactory resulting wedging force to 
create a wing crack.  
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Nomenclature 

a = crack amplitude 
f = wedging force 
l = crack semi-length 
α = crack angle 
β(α) = model function depending on crack angle 
σ = maximum principal stress 
μ = internal friction angle 
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