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Abstract 
In this paper the fractional Euler Lagrange equations for irregular Lagrangian 
with holonomic constraints have been presented. The equations of motion are 
obtained using fractional Euler Lagrange equations in a similar manner to the 
usual mechanics. The results of fractional calculus reduce to those obtained 
from classical calculus (the standard Euler Lagrange equations) when 0γ →  
and ,α β  are equal unity only. Two problems are considered to demonstrate 
the application of the formalism. 
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1. Introduction 

The Euler Lagrange equations and Hamilton’s principle form the basis of La-
grangian or Hamiltonian mechanics. The power of Lagrangian mechanics is that 
the given equations are characterized with only one scalar function the Lagran-
gian L, or the Hamiltonian H. In general, these functions only describe conserv-
ative systems. There have been some approaches at describing nonconservative 
systems in such formalism. The method presented by Rayleigh introduces a 
function R (called Rayleigh’s dissipation function). 

The study of holonomic constrained systems is discussed in most references of 
classical mechanics [1] [2]; these systems describe dynamic systems with con-
straints depend only on the generalized coordinates ( )iq t . The canonical for-
malism of holonomic systems was treated by Rabei [3]. In this formalism the 
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author has treated the regular Lagrangian with holonomic constraints as singular 
systems and the Lagrange multipliers as generalized coordinates. The equations 
of motion are written as total differential equations then, the holonomic systems 
are quantized using the WKB approximation [4]. 

Fractional calculus is a generalization of differentiation and integration to a 
noninteger order. The interest in fractional calculus has been growing conti-
nually during the last few years because of its numerous applications in science 
and engineering [5] [6] [7]. The traditional calculus of variation cannot be used 
to obtain the equations of motion for the nonconservative systems. 

Riewe has used the fractional calculus to develop a formalism which can be 
used for both conservative and nonconservative systems [8] [9]. The Hamilto-
nian and Lagrangian involving fractional derivative is also used to derive the 
equation of damped harmonic oscillator [10]. Therefore the dynamical systems 
with fractional order can be dissipative. For this reason, the theory and methods 
of fractional calculus are extensively used for describing critical phenomena in 
nonconservative systems of physics and mechanics [11] [12]. 

Recently, the classical calculus of variations was extended by Agrawal [13] for 
systems containing Riemann-Liouville fractional derivatives. The resulting equa-
tions are found to be similar to those for variational problems containing 
integral order derivatives. In other words, the results of fractional calculus of 
variations reduce to those obtained from traditional fractional calculus of varia-
tions when the derivative of fractional order replaced by integral order. More 
recently, Euler Lagrange equations for holonomic constrained systems with reg-
ular Lagrangian have been presented by Hasan [14] using the fractional varia-
tionl problems. 

In the present paper as a continuation of Jarab’ah work [15] the fractional Eu-
ler Lagrange equations are used to obtain the equations of motion for irregular 
Lagrangian with holonomic constraints, it seems that there are several choices of 
fractional Lagrangian giving the same classical limit, in other words the same 
classical Lagrangian. 

This paper is organized as follows: In Section 2, Euler Lagrange equations 
formulation for Irregular Lagrangian with holonomic constraints is reviewed 
briefly. In Section 3, basic definitions of fractional derivatives are briefly dis-
cussed. In Section 4, the fractional Euler Lagrange equations for irregular La-
grangian with holonomic constraints are explained. In Section 5, two illustrative 
examples are examined. The work closes with some concluding remarks (In Sec-
tion 6). 

2. Euler Lagrange Equations Formulation for Regular  
Lagrangian with Holonomic Constraints 

The Lagrangian formulation for regular Lagrangian is given by 

( ), ,i iL L q q t=
 

                           (1) 

Here ( ), ,i iL q q t


  stands for the Lagrangian of the corresponding conserva-
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tive systems. The standard method for incorporating the constraint functions to 
the equations of motion is the use of the so called Lagrange multipliers. The mo-
tion of a holonomic system could in principle be determined by making use of 
the n Euler Lagrange equations and m constraints. 

d , 1,2, ,
d i i i

fL L i n
t q q q

µ
µλ
∂ ∂ ∂

− = = 
∂ ∂ ∂ 

 





               (2) 

The constraint equation with m constraints can be written as ( ), 0if q tµ = , 
1, 2, ,n n n mµ = + + + . 

µλ : are the Lagrange multipliers. 

3. Basic Definitions of Fractional Derivatives 

Now, we will give the basic definition of a fractional derivatives include the left 
and the right Riemann Liouville fractional derivatives [16] [17] and their prop-
erties. The left Riemann Liouville fractional derivative is defined as 

( ) ( ) ( ) ( )11 d d
d

n x
n

a x
a

D f x x f
n x

αα τ τ τ
α

− − = − Γ −   ∫
           (3) 

which is denoted as the LRLFD, 
and the right Riemann Liouville fractional derivative is defined as 

( ) ( ) ( ) ( )11 d d
d

n b
n

x b
x

D f x x f
n x

αα τ τ τ
α

− − = − − Γ −   ∫
           (4) 

which is denoted as the RRLFD, 
Here Γ  represents the Euler’s gamma function, and α  is the order of the 

derivative such that 1n nα− ≤ <  and is not equal to zero. If α  is an integer, 
these derivatives are defined as follows: 

( ) ( )d
da xD f x f x
x

α
α  =  

 
                     (5) 

( ) ( )d
dx bD f x f x

x

α
α  = − 

 
                    (6) 

1,2,α =   

The fractional operator ( )a xD f xα  can be written as [18]. 

d
d

n
n

a x a xnD D
x

α α−=                         (7) 

and has the following properties: 

1) ( )d , Re 0
da xD

x

α
α

α α= >  

2) ( )1, Re 0a xDα α= =  

3) ( ) ( )d , Re 0
x

a x
a

D αα τ α−= <∫  

Theorem: Let f and g be two continuous functions on [ ],a b . Then, for all 
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[ ],x a b∈ , the following properties hold: 
1) For 0m > , ( ) ( ) ( ) ( )m m m

a x a x a xD f x g x D f x D g x+ = +    

2) For 0m n≥ ≥ , ( )( ) ( )m n m n
a x a x a xD D f x D f x− −=  

3) For 0m > , ( )( ) ( )m m
a x a xD D f x f x− =  

4) For 0m > , ( )( ) ( ) ( ) ( )( )d d
b b

m m
a x x b

a a

D f x g x x f x D g x x=∫ ∫  

4. Fractional Euler Lagrange Equations for Irregular  
Lagrangian with Holonomic Constraints 

The Lagrangian formulation for irregular Lagrangian without fractional deriva-
tives is given by [19] 

( ), e t
i iL L q q γ=



                          (8) 

where L is irregular Lagrangian which is a function of n generalized coordinates 
( )iq t  and n generalized velocities ( )iq t  and γ  is defined as damping factor. 
The Euler-Lagrange equation for the fractional calculus of variations problems 

is obtained as 

0t b a t
a t t b

L L L fD D
q qD q D q

α β
µα β λ

∂ ∂ ∂ ∂
+ + + =

∂ ∂∂ ∂
              (9) 

Here L is a function of the form ( ), , e t
a t t bL L q D q D qα β γ=



. 

It is worth to mention that for 1α β= = , we have d
da tD
t

α =  and  

d
dt bD
t

α = −  and Equation (9) reduces to the standard Euler Lagrange equation 

for holonomic constraints. 

5. Examples 

1) As a first model let us consider the following Lagrangian that describes the 
motion of a bead of mass m is constrained to move on a circular wire of radius 
R. 

The Lagrangian of our problem is given by 

( )2 2 21 cos
2

L m r r mgrθ θ= + −

  

In the presence of damping factor the Lagrangian becomes 

( )2 2 21 cos e
2

tL m r r mgr γθ θ = + −  


                 (10) 

Is subject to the holonomic constraint 

( ) 0f r r R= − =                       (11) 

The Lagrangian in fractional form can be written as 

( ) ( )2 22
0 1

1 1 cos e
2 2

t
t tL m D r mr D mgrα β γθ θ = + −  

          (12) 
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Using Equation (9), the corresponding Euler Lagrange equations are 

( ) ( )2

1 1 0e e cos e 0t t t
t t tmr D mg D m D rγ β γ α α γθ θ λ − + + =          (13) 

and 

( )2
0 1e sin e 0t t

t tmgr D mr Dγ β β γθ θ + =               (14) 

From Equations (13) and (14), we obtain the classical results if 0γ →  and 
, 1α β = . One can get the angular acceleration 

sing
R
θ

θ =                           (15) 

and the Lagrange multiplier is given by 

( )3cos 2mgλ θ= −                        (16) 

2) As a second model let us consider the following Lagrangian that describes 
the motion of a disk of mass m and radius R that is rolling down an inclined 
plane without slipping. 

The Lagrangian of our problem is given by 

2 2 21 1 sin
2 4

L my mR mgyθ ϕ= + +  

In the presence of damping factor the Lagrangian becomes 

2 2 21 1 sin e
2 4

tL my mR mgy γθ ϕ = + +  


                (17) 

where ϕ  is the angle of the inline plane. 
The holonomic constraint equation is 

( ), 0f y y Rθ θ= − =                         (18) 

The Lagrangian in fractional form can be written as 

( ) ( )2 22
0 1

1 1 sin e
2 4

t
t tL m D y mR D mgyα β γθ ϕ = + +  

          (19) 

Using Equations (9), the corresponding Euler Lagrange equations are 

( )1 0e sin e 0t t
t tmg D m D yγ α α γϕ λ + + =                 (20) 

and 

( )2
0 1

1 e 0
2

t
t tmR D D Rβ β γθ λ  − =                    (21) 

again, making use of Equations (20) and (21), if 0γ →  and , 1α β = . The an-
gular accelerations take the following form 

2 sin
3

g
R

θ ϕ=                           (22) 

2 sin
3

y g ϕ=                           (23) 

and the Lagrange multiplier 
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1 sin
3

mgλ ϕ
−

=                        (24) 

which are in exact agreement with that obtained by classical method. 

6. Conclusion 

In this work, Euler Lagrange equations have been presented for irregular La-
grangian with holonomic constraints using fractional approach, the fractional 
Euler Lagrange equations for holonomic constrained systems were derived, and 
through this approach we have shown that, the fractional results are very similar 
to those for the classical results. In special cases, when 0γ →  and ,α β  are 
equal unity only; the results of fractional calculus reduce to those obtained from 
classical calculus. Given the fact that many systems can be modeled more accu-
rately using fractional derivative models, it is hoped that future research will 
continue in this area. 
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