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Abstract 
 
In This paper, we deal with the study of the effect of magnetohydrodynamic on thin films of unsteady mi-
cropolar fluid through a porous medium. These Thin films are considered for three different geometries. The 
governing continuity, momentum and angular momentum equations are converted into a system of non-lin-
ear ordinary differential equations by means of similarity transformation. The resulting system of coupled 
non-linear ordinary differential equations is solved numerically by using shooting method. A representative 
set of numerical results in the three thin film flow problems for velocity and micro-rotation profiles are dis-
cussed and presented graphically. A comprehensive parametric study is carried out to show the effects of the 
micropolar fluid parameters, magnetic field parameter, permeability parameter and etc. on the obtained solu-
tions. 
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1. Introduction 
 
Nowadays, the world has a great interest in the study of 
non-Newtonian fluids from both fundamental and prac-
tical point of view. The understanding of physics in-
volved in the flows of such fluids can have immediate 
effects on polymer processing, coating, ink-jet printing, 
micro fluidics, geological flows in the earth mantle, 
homodynamic, the flow of colloidal suspensions, liquid 
crystals, additive suspensions, animal blood, turbulent 
shear flows and many others. In view of this, a lot of 
interest has been shown towards the study of non-New- 
tonian flows and hence extensive literature regarding 
analytic and numerical solutions is available on the topic. 
It is also accepted now that in general, the governing 
equations of non-Newtonian fluids are highly non-linear 
and of higher order than the Navier-Stokes equations. 
Because of the non-linearity and the inapplicability of 
the superposition principle, the exact solutions are even 
difficult to be obtained for the case of viscous fluids. 
Such exact solutions further narrow down when non- 
Newtonian fluids are taken into account. A lot of work 
has been carried out regarding the analytic solutions for 
flows of non-Newtonian fluids in cases where the in-
volved equations have been linearized and in cases 
where the partial differential equations have been re-

duced into ordinary differential equations. Some recent 
attempts in this direction have been made in the studies 
[1-10].  

Due to complexity of fluids there is not a single con-
stitutive equation which can describe the properties of all 
non-Newtonian fluids. In view of this, several non- 
Newtonian fluid models have been proposed. 

In micropolar fluids, rigid particles contained in a 
small volume element and rotate about the center of the 
volume element are described by the micro-rotation vec-
tor. This local rotation of the particles is in addition to 
the usual rigid body motion of the entire volume ele-
ment. 

In micropolar fluid theory, the laws of classical con-
tinuum mechanics are augmented with additional equa-
tions that account for conservation of microinertia mo-
ments and balance of first stress moments that arise due 
to consideration of the microstructure in a material. 
Amongst these, a micropolar fluid model is introduced 
by Eringen [11-13]. This model includes the effects of 
local rotary and couple stresses. Physically, some fluids 
with additives, nemotogenic and smectogenic liquid 
crystals, flow of colloidal fluids, suspension solutions, 
blood, fluid with bar like elements may be represented 
by the mathematical model underlying micropolar fluids. 
The study of micropolar fluid mechanics has attracted 
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the attention of many researchers. A good list of refer-
ences on the published papers for this fluid can be found 
in Eringen [14] and Ishak et al. [15]. Recently, Lok et al. 
[16] analyzed the boundary layer flow of a micropolar 
fluid near the forward stagnation point of a plane surface. 
Nazar et al. [17] studied the stagnation point flow of a 
micropolar fluid towards a stretching sheet. The problem 
of the porous stretching sheet has been of great use in 
engineering studies. Numerical study for micropolar flow 
over a stretching sheet is presented by Moncef [18]. 

The work on the thin film flows of non-Newtonian 
fluids under various configurations is relatively of recent 
origin. Siddiqui et al. [19] discussed the thin film flows 
of a third grade fluid down an inclined plane. In [20] they 
examined the thin film flows of Sisko and Oldroyd-6 
constant fluids on a moving belt. The thin film flow of a 
fourth grade fluid down a vertical cylinder is also ana-
lyzed by Siddiqui et al. [21]. Sajid et al. [22] studied the 
above mentioned on exact solutions for thin film flows of 
a micropolar fluid in the absence of a magnetic field, i.e 
M = 0. The studied effect of MHD on thin films of a mi-
cropolar fluid in the absence of a porous medium, i.e S = 0 
by Abdel-Rahman [23]. 

Hence, the objective of the present paper is the study 
of the effect of magnetohydrodynamic on thin films of 
unsteady micropolar fluid through a porous medium. 
These Thin films are considered for three different ge-
ometries. A representative set of numerical results in the 
three thin film flow problems for velocity and micro- 
rotation profiles are discussed and presented graphically. 
A comprehensive parametric study is carried out to show 
the effects of the micropolar fluid parameters (K, m1, m2 
and m3), magnetic field parameter, permeability parame-
ter and etc., which are also discussed. 
 
2. Mathematical Analysis  
 
The equation of continuity and the conservation equa-
tions of linear momentum and angular momentum for an 
incompressible unsteady micropolar fluid, in the pres-
ence of magnetohydrodynamic through a porous medium, 
by neglecting the body force and body couple, are: 

0 V ,                 (1) 
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Subject to appropriate initial and boundary conditions. 

Here V,  and B represent the velocity, micro-rotation 
and total magnetic vectors respectively, ρ and j denote 
the density and the gyration parameters of the fluid. p is 
the pressure and μ, κ, α, β, k* and γ are the material con-
stants. If the velocity, micro-rotation and magnetic com-
ponents are (u, v, 0), (0, 0, N) and (0, 0, B0) respectively, 
where B is the total magnetic field, so B = B0 + b, b is the 
induced magnetic field.  

Ω

In the low magnetic Reynolds number approximations, 
in which the induced magnetic field b can be ignored, the 
magnetic body force becomes; (see e.g. [24]) 

2
0x B J B V                 (4) 

In which   is the electrical conductivity of the fluid. 
Consider the two-dimensional flow of unsteady, in- 

compressible and micropolar fluid in absence of pressure 
gradient [25] and applying the magnetic field B0 per- 
pendicular to the velocity field through a porous medium. 
Under the usual boundary layer approximation, the gov-
erning equations for this problem can be written as fol-
lowing: 

Continuity equation: 
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Momentum equation in the x  direction is:  
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Momentum equation in the y  direction is:  
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Angular momentum equation:  
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where, u  and v  are the respective velocity compo-
nents in x  and y  directions, N  is the micro- rota-
tion or angular velocity whose direction of rotation in the 
xy   plane,   is the kinematics viscosity and j, γ and κ 
are the micro inertial per unit mass, spin gradient viscos-
ity and vortex viscosity, respectively. Here γ is assumed 
to be given by [26]; 
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 2 j                     (9) 

In which μ is the dynamic viscosity and j is the refer-
ence length. As pointed out by Ahmadi [27]. 

Equation (9) is invoked to allow Equations (5)-(8) to 
predict the correct behavior in the limiting case when 
microstructure effects become negligible and in this case 
micro-rotation is reduced to the angular velocity. The 
micro-rotation N at the wall is related to the shear stress 
at the wall by the relation: 

N n                   (10) 

Where N  and   are micro-rotation and shear stress 
at the wall and n is a constant . (0 1)n 

0N The case at n = 0 indicates that  , which repre-
sents concentrated particle flows, in which the micro-
elements, close to the wall surface are unable to rotate 
[28]. This case corresponds to the strong concentration of 
microelements [29]. The case at n = 0.5 indicates the 
vanishing of the anti symmetric part of the stress tensor 
and denotes weak concentration of microelements [27]. 
We now consider the thin film flows for both the cases. 
 
3. Thin Film Flow down an Inclined Plane 
 
In the presence of a magnetic field B through a porous 
medium, we consider the thin film of an incompressible 
micropolar fluid down an inclined plane. The ambient air 
is assumed stationary so that the flow is caused by grav- 
ity only. Also, the surface tension is assumed negligible 
and the film thickness   is uniform, as shown in Fig- 
ure 1. The velocity V, microrotation N and the magnetic 
body force xJ B  are: 
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In view of above definition of velocity, Equations (5) 
and (7) are satisfied automatically and Equations (6) and 
(8) give:  
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Figure 1. The geometry of the problem. 
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Subject to the boundary conditions 
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where 1g  is the gravity. 
We introduce the following dimensionless variables: 

2
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where j is equal to 2 . With the help of Equations (12)- 
(14), we have: 
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where 3 2
1 1 sinm g     is the parameter of film 

thickness  , K    is the parameter of micropolar 
fluid, 2 2

0M B    is the magnetic parameter and 
2 *kS    is the permeability parameter. 

The boundary conditions (14) become: 
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4. Thin Film Flow on a Moving Belt  
 
We consider presence of container with wide moving 
belt passing through it, and contain thin films of a mi-
cropolar fluid through a porous medium affected by 
magnetohydrodynamic. A the container. The belt moves 
in the vertical direction with velocity 0  as shown in 
Figure 2. The belt picks up a thin film thickness 

U
 . The 

fluid is drained down due to gravity. We assume a steady 
laminar flow with uniform film thickness. The x   axis 
is taken normal to the belt and therefore the velocity V, 
micro-rotation N and the magnetic body force xJ B  are: 
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Note that Equations (5) and (6) are identically satisfied 
while Equations (7) and (8) give: 
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Figure 2. Geometry of the flow of moving belt through a 
micropolar fluid. 
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For the problem under consideration, the boundary 
conditions are: 
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We introduce the following dimensionless variables: 
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Equations (19)-(21) are reduced to:  
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where 2
2 1m g U  0  is the parameter of film thick- 

ness  , 
The boundary conditions (21) become: 
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5. Thin Film Flow down a Vertical Cylinder 
 
The governing equations here are [29] 
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where u and w are the velocity components in the r   
and z   directions. 

Consider a micropolar fluid falling on the outside sur-
face of an infinitely long vertical cylinder of radius R in 
the presence of a magnetic field B and a porous medium 
as shown in Figure 3. We also assume that, the uniform 
magnetic field of intensity 0  acts in the radial direc-
tion and the effect of the induced magnetic field is negli-
gible, which is valid when the magnetic Reynolds num-
ber is small. 

B

The flow is in the form of a thin, uniform axisymmet-
ric film of thickness  , in contact with stationary air. 
The velocity and micro-rotation are 

    2 10,0, , andw r N r F g    V N  
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r, u
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Figure 3. Physical model and coordinate system. 
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Obviously, Equations (25) and (26) are satisfied identi- 
cally and Equations (27) and (28) become:  
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With the appropriate boundary conditions are: 
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where 3 3
3 1m g R   is the parameter of film thickness δ, 
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6. Numerical Results and Discussions  
 
The system of the non-linear ordinary differential equa-
tions together with the boundary conditions are solved 
numerically by using Shooting method. Numerical re-
sults are presented for velocity and micro-rotation fields 
in the three thin film flow problems of a micropolar fluid: 
1) flow down an inclined plane, 2) flow on a moving belt 
and 3) flow down a vertical cylinder, with the boundary 
layer for different parameters of the problem including 
micropolar fluid parameters (K, m1, m2 and m3) and the 
magnetic parameter for all (n = 0.0 and n = 0.5).  

For the three considered problems, Figures 4 and 5 
show magnetic field effect on a) the velocity and b) the 
micro-rotation profiles, it is noted that, the increase of 
the magnetic parameter M leads to; at n = 0.0 and n = 0.5, 
the velocity decreases and at n = 0.0, the micro-rotation 
decreases in two cases 1) and 3) but it increases in case 2) 
while at n = 0.5 the micro-rotation decreases.  

Figures 6 and 7 show micropolar fluid parameter K 
effect on a) the velocity and b) the micro-rotation pro-
files, it is noted that, the increase of the micropolar fluid 
parameter K leads to; at n = 0.0 and n = 0.5 the velocity 
decreases in two cases 1) and 3) but it increases in case 2) 
and at n = 0.0, the micro-rotation decreases while at n = 
0.5 it decreases in two cases 1) and 3) but it increases in 
case 2). However, the velocity and the micro-rotation 
profiles are greater for n = 1/2 when compared with the 
case at n = 0.0. We have also prepared Figures 8 and 9 
just to see the effects of film thickness δ on a) the veloc-
ity and b) the micro-rotation profiles. It is seen that, the 
increase of the film thickness δ results in; at n = 0.0 and 
n = 0.5, the velocity increases in two cases 1) and 3) but 
it decreases in case 2) and at n = 0.0, the micro-rotation 
increases in two cases 1) and 2) but it decreases in case 
3), while at n = 0.5, the micro-rotation increases in two 
cases 1) and 3) but it decreases in case 2). Furthermore, 
this increase is enhanced when the value of n increases 
from zero to 1/2. 

Figures 10 and 11 show porous medium effect on a) 
the velocity and b) the micro-rotation profiles , it is noted 
that, the increase of the porous medium parameter S 
leads to; at n = 0.0 and n = 0.5, the velocity decreases 
while at n = 0.0 the micro-rotation decreases and at n = 
0.5 the micro-rotation decreases  in two cases 1) and 3) 
but it increases in case 2). 
 
7. Conclusions  
 
In this paper, we have studied numerically the effect of 
magnetohydrodynamic on thin films of unsteady mi-
cropolar fluid through a porous medium. These Thin films 
are considered for three different geometries, named: 1) 
flow down an inclined plane, 2) flow on a moving belt 
and 3) flow down a vertical cylinder. From the present 
study we have found that: 

Numerical results are presented for velocity and mi-
cro-rotation fields in the three thin film flow problems of 
a micropolar fluid. The results are graphically presented 
and the influence of micropolar fluid parameters, the 
porous medium parameter and the magnetic parameter 
are discussed for strong and weak concentrations of the 
microelements. It is observed that, the rotation of the 
microelements at the boundary increases the velocity     
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Figure 4. (a) velocity and (b) micro-rotation profiles for different values of M for n = 0.0. 
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Figure 5. (a) velocity and (b) micro-rotation profiles for different values of M for n = 0.5. 
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Figure 6. (a) velocity and (b) micro-rotation profiles for different values of K for n = 0.0. 
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Figure 7. (a) velocity and (b) micro-rotation profiles for different values of K for n = 0.5. 
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Figure 8. (a) velocity and (b) micro-rotation profiles for different values of m1, m2 and m3 for n = 0.0. 
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Figure 9. (a) velocity and (b) micro-rotation profiles for different values of m1, m2 and m3 for n = 0.5. 
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Figure 10. (a) velocity and (b) micro-rotation profiles for different values of S for n = 0.0. 
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Figure 11. (a) velocity and (b) micro-rotation profiles for different values of S for n = 0.5.    
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when compared with the case when there is no rotation at 
the boundary. 
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