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Abstract 
Future energy descent systems will be expected to be controlled by the using 
of renewable power sources of which wind energy is one of the favorable 
sources. This paper treats with the implantation of genetic algorithms for 
making the parameters needed for PID applied to interconnected thermal 
and hydraulic power systems at best use and most effective. Two-areas of hy-
draulic and thermal power systems with wind connected parallel to each one 
are considered to exemplify the effective parameter investigation. First hy-
draulic and thermal are connected with tie line with the wind connected pa-
rallel to hydraulic or thermal, and then disturbance was made at thermal 
power plant, then to hydraulic power plant. Simulations are performed aided 
by the integrated Simulink/Matlab environment taking into consideration the 
genetic optimization process. Multiple integral representations variables with 
different cost functions were considered in the search for the effective AGC 
parameters. The outcomes established by this paper shows the impact of the 
genetic algorithms for LFC about multiple areas connected power systems 
based on different wind power using in the tuning of such a process. 
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1. Introduction 

Now, wind energy is the fastest growing and the most widely utilized renewable 
energy source for the purpose of electric energy descents. Between various RES, 
wind energy source is the most promising [1]. As the penetration level of the 
wind energy to the connected power system increases, the control of voltage and 
frequency turns to be more significant and necessary because of sporadic im-
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pression of wind power. Thus, the problem of LFC of the interconnected power 
system having wind power penetration becomes all the more important [1]. 

The use of Doubly Fed Induction Generator (DFIG) based wind turbine in 
frequency control has been explored for the purpose in [2] and [3]. In the 
DFTG’s turbine, inertia is totally decoupled from the system, which means ge-
nerators are not supporting to frequency change of the system. Some methods 
have been reported to show how a variable speed wind turbine participates in 
frequency control in [4] and [5]. These are based either on inertial control or 
power reserve control (speed control and pitch control), or on controlling 
through communication. In the inertial control, an additional loop is introduced 
with a suitable gain, which is sensitive to the system frequency and provides ki-
netic energy from DFTG to support system inertia [6]. In another work, the ro-
tor speed and active power were adapted according to de-loaded best power ex-
traction curve to deliver ultimate power [6]. Based on the kinetic energy extract 
from DFIG wind turbines, there are some research works that have been re-
ported for load frequency control [7] [8] [9]. 

In this work, the optimum adjustment of the LFCs used in connected hydrau-
lic-power system investigated with the genetic optimization algorithms [10], and 
also a set of performance indices which are various functions of error and time 
[11]. In this way, the various performances that the power system might have 
can be observed when different performance parameters were used. 

2. System Model 
2.1. Single Diagram 

Figure 1 shows the single diagram for the system investigated. Area 1) is the 
thermal always attached to area 2) hydraulic and adding wind parallel with the 
two areas are investigated. 
 

 
Figure 1. Single diagram. 
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2.2. Block Diagram 

Figure 2 shows the block diagram of thermal power plant attached to wind and 
hydraulic power plant attached to wind. 

2.3. DFIG-Based Wind Turbine 

Due to the increasing of using wind turbines DFIG is desired to use and be stu-
died. The DFIG stores the kinetic energy in its turbine blade. So the extraction of 
this kinetic energy depends on the inertia of the turbine. By controlling this in-
ertia, the stored energy can be extracted from the blade. Under normal opera-
tion, the convertor controllers of the DFIG keep the turbine at its optimal speed 
in order to extract the maximum power. Figure 3 shows the model used for ac-
tive power control. 
 

 
Figure 2. Block diagram. 
 

 
Figure 3. Wind model. 

https://doi.org/10.4236/jpee.2018.67005


G. El-Saady et al. 
 

 

DOI: 10.4236/jpee.2018.67005 79 Journal of Power and Energy Engineering 
 

3. Multi-Objective Genetic Algorithm (MO-GA) 
3.1. Genetic Algorithm (GA) 

The GA is a utilization search technique depending on the principles of genetics 
selection. Population used to evolve under selection rules were allowed by GA to 
a state that maximizes the “fitness” (i.e., minimizes the cost function), GA was 
first rise by John Holland in 1975, various versions of programming have been 
contributed with different prosperity degrees.  

Some of the advantages of a GA include [12] [13]:  
• Variables (continuous - discrete) utilization.  
• No need for derivative parameters.  
• Looking simultaneously from many sampling of the cost surface.  
• Extremely complex utilization of the variables. 
• Variables encoding so that the utilization encoded variables could be used.  
• Many data such as numerically generated data, experimental data, or analyt-

ical functions can be used by GA.  
These advantages made outstanding outcomes when conventional optimiza-

tion approaches cannot get the results. 
There are wide types of the GAs but the main form is simple genetic algo-

rithm (SGA). SGA functions with various population of candidate solution in-
troduced as strings. The first population assembled by random individual gener-
ation. Subsequently the fitness of all individual in this population is calculated. 
Then the population is converted in stages to achieve a new current population 
for incoming iteration. The conversations were usually calculated in three steps 
by three genetic operators: 1) Selection genetic operator, 2) Crossover genetic 
operator, and 3) Mutation genetic operator were detail discussed in [14].  

Because of the properties of genetic, which is population based approach, it 
can be used to solve multi-objective problems [15]. 

Many various algorithms introduced and perfectly applied to different prob-
lems like [16] [17] [18]: Vector-Evaluated GA (VEGA), Multi-Objective GA 
(MOGA), A Non-Dominated Sorting GA (NSGA) and Non-Dominated Sorting 
GA (NSGA II) which is used in the proposed research. The Non-Dominated 
Sorting Genetic Algorithm [19] (NSGA) which is used to find the solutions of 
multi objective optimizations problems was written by Srinivas and Deb. But has 
little disadvantages such as wide computational complexity. To decrease these, 
Deb et al. developed NSGA-II [20]. Mohamed et al. [21] reduce the computa-
tional complexity of NSGA II and choose new fitness assignment with Global 
Ranking Genetic Algorithm (GRGA). 

This paper present work achieved by GRMOGA algorithm to solve the LFC 
problem of two area interconnected power system. The major steps in 
GRMOGA algorithm are: 

1) Global Ranking Fitness Assignment 
2) Dominance Rank 
3) Crowding Distance. 
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3.2. Cost Functions 

In this paper, the optimal parameters were investigated to adjust of the load fre-
quency controllers used in an interconnected hydraulic-thermal and wind power 
system, with the aim of multi objective genetic algorithms to minimize a set of 
performance indices which are various functions of error and time. These indic-
es include: 

( ) 1 2 tiee t f f P= ∆ + ∆ + ∆                   (1) 

1) The integral of the square of the error criterion (ISE) which is given by: 

( )2
0

ISE de t t
∞

= ∫                      (2) 

2) The integral of time-multiplied absolute value of the error criterion (ITAE) 
which is given by: 

( )
0

ITAE dt e t t
∞

= ∫                     (3) 

This criterion penalizes long duration transients and is much more selec-
tive than the ISE. A system designed by use of this criterion exhibits small 
overshoot and well damped oscillations. 
3) The integral of time-multiplied square of the error criterion (ITSE) which 

is given by: 

( )2
0

ITSE dte t t
∞

= ∫                     (4) 

This criterion weights large initial error lightly, while errors occurring late 
in the transient response are penalized heavily. This criterion has a better se-
lectivity than the ISE. 
4) The integral of squared time-multiplied absolute value of the error crite-

rion (ISTAE) which is given by: 

( )2
0

ISTAE dt e t t
∞

= ∫                   (5) 

5) The integral of squared time-multiplied square of the error criterion 
(ISTSE) which is given by: 

( )2 2
0

ISTSE dt e t t
∞

= ∫                   (6) 

Equations (4)-(6) shows cost functions. 

4. Simulation Result and Discussion 

This section shows the simulations results of the proposed power system with 
the results of first disturbance area 1, then area 2, then changing the level of 
wind penetration. Our power system is thermal connect to hydraulic with tie 
line, and then adding wind to each side with disturbance at area 1. And do the 
same but with disturbance at area 2. 

4.1. Disturbance Area 1 

The change of frequency of area 1, 2 and power of tie line was studied with 
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our three models hydraulic with thermal, then hydraulic with thermal parallel 
to wind, at last hydraulic parallel to wind tied with thermal. 

4.1.1. Thermal Tied Line with Hydraulic ←→Tie linethermal hydraulic  

Figure 4 shows thermal power system connected to hydraulic power system 
with tie-line and using MO-GA to calculate the parameters of PID controller 
and the bias frequency B1 and B2 without wind turbine. 

The parameters calculated using MO-GA are shown in Table 1. 

4.1.2. (Wind Parallel Thermal) Tied Line with Hydraulic  
←→Tie linewind & thermal hydraulic  

Figure 5 shows thermal power system connected to hydraulic power system 
with tie-line and using MO-GA to calculate the parameters of PID controller, 
with wind turbine connected parallel to thermal power system. 

The parameters calculated using MO-GA are shown in Table 2. 
 
Table 1. The parameters calculated using MO-GA for thermal tied line with hydraluic 
with disturbance at area 1. 

P1 I1 P2 I2 B1 B2 

0.399 1.884 13.962 0.1 1 0.996 

 
Table 2. The parameters calculated using MO-GA for thermal parallel to wind tied line 
with hydraluic with disturbance at area 1. 

P1 I1 P2 I2 B1 B2 Kwp kwi 

0.399 1.884 13.962 0.1 1 0.996 0.225 0.901 

 

 
Figure 4. Hydraulic connected with tie-line to thermal with disturbance at area 1. 
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Figure 5. Hydraulic connected with tie-line to thermal parallel to wind with disturbance at area 1. 

4.1.3. (Wind Parallel Hydraulic) Tied Line with Thermal  
←→Tie linewind & hydraulic thermal  

Figure 6 shows thermal power system connected to hydraulic power system 
with tie-line and using multi-objective GA to calculate the parameters of 
PID controller, with wind turbine connected parallel to hydraulic power 
system. 

Figure 7 shows a) 1f∆  b) 2f∆  c) tieP∆  with disturbance at area 1 with the 
three models of our power systems. 

The parameters calculated using MO-GA are shown in Table 3. 

https://doi.org/10.4236/jpee.2018.67005


G. El-Saady et al. 
 

 

DOI: 10.4236/jpee.2018.67005 83 Journal of Power and Energy Engineering 
 

4.2. Disturbance Area 2 

4.2.1. Thermal Tied Line with Hydraulic ←→Tie linethermal hydraulic  

Same as section 4.1.1 but with disturbance at area 2 
The parameters calculated using MO-GA are shown in Table 4. 

4.2.2. Thermal Tied Line with Hydraulic ←→Tie linethermal hydraulic  

Same as section 4.1.2 but with disturbance at area 2 
The parameters calculated using MO-GA are shown in Table 5. 

 

 
Figure 6. Hydraulic parallel to wind connected with tie-line to thermal with disturbance at area 1. 
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Figure 7. (a) 1f∆  (b) 2f∆  (c) tieP∆ . 
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Table 3. The parameters calculated using MO-GA for hydraluic parallel to wind tied line 
with thermal with disturbance at area 1. 

P1 I1 P2 I2 B1 B2 Kwp kwi 

0.399 1.884 13.962 0.1 1 0.996 0.105 0.832 

 
Table 4. The parameters calculated using MO-GA for thermal tied line with hydraluic 
with disturbance at area 2. 

P1 I1 P2 I2 B1 B2 

0.381 2.084 14.814 0.8 1.112 1.303 

 
Table 5. The parameters calculated using MO-GA for thermal parallel to wind tied line 
with hydraluic with disturbance at area 2. 

P1 I1 P2 I2 B1 B2 Kwp kwi 

0.381 2.084 14.814 0.8 1.112 1.303 0.1 0.343 

4.2.3. Thermal Tied Line with Hydraulic ←→Tie linethermal hydraulic  

Same as section 4.1.3 but with disturbance at area 2 
The parameters calculated using MO-GA are shown in Table 6. 
Figure 8 shows a) 1f∆  b) 2f∆  c) tieP∆  with disturbance at area 2 with the 

three models of our power systems. 

4.3. Disturbance Area 2 (Pen 10%, 25%, 100%) 

Figure 9 shows a) 1f∆  b) 2f∆  c) tieP∆  with different wind Penetration with 
disturbance at area 2. 

4.4. Change Time Constant Hydraulic (±10%, ±25%) 

Figure 10 shows (a) 1f∆  (b) 2f∆  (c) tieP∆  with change ±10% time constant 
of hydraulic power plant with disturbance at area 2. 

Figure 11 shows (a) 1f∆  (b) 2f∆  (c) tieP∆  with change ±25% of hydraulic 
power plant with disturbance at area 2. 

5. Conclusion 

In this paper, MO-GA optimization algorithm has been investigated for optimal 
LFC in multi-area interconnected power systems. The proposed approach is ap-
plied to obtain the optimal PID controller parameters to solve frequency regula-
tion problem. A comparative study between the systems with wind turbine and 
without wind turbine scheme is carried out in this work. The test systems have 
been simulated for step load disturbance in multi-area. The results are compared 
with the systems without any renewable energy. Among all the responses and 
results obtained, it is observed that adding wind turbines parallel with hydraulic 
give the best performances, achieving good response and stability with minimum 
error or disturbance, and are better in terms of rise time, settling time, oscillations 
and overshoot for both frequency and tie-line power. From the qualitative and  
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Figure 8. (a) 1f∆  (b) 2f∆  (c) tieP∆ . 
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Figure 9. (a) 1f∆  (b) 2f∆  (c) tieP∆ . 
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Figure 10. (a) 1f∆  (b) 2f∆  (c) tieP∆ . 
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Figure 11. (a) 1f∆  (b) 2f∆  (c) tieP∆ . 
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Table 6. The parameters calculated using MO-GA for hydraluic parallel to wind tied line 
with thermal with disturbance at area 2. 

P1 I1 P2 I2 B1 B2 Kwp kwi 

0.381 2.084 14.814 0.8 1.112 1.303 0.345 0.784 

 
quantitative comparison of the results, adding wind turbines with hydraulic 
yield better results and the superiority of this method is compared with adding 
wind turbine with thermal to solve load frequency. 
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