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Abstract 
An extension of the linear irreversible thermodynamics is proposed through 
the inclusion of the first gradients of velocity and of the classical local state 
parameters as additional independent variables in the fundamental energy 
state equation of a fluid system. We show that consistency of this hypothesis 
with the energy balance equation leads to generalized nonlinear constitutive 
equations, which we discuss in terms of an isotropic non-Newtonian viscous 
fluid. 
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1. Introduction 

Non-Newtonian fluid mechanics is an area of active and intense research. Most 
of the materials that are of interest in a variety of manufacturing processes, exhi-
bit non-Newtonian behaviors, which implies that the shear stress is not propor-
tional to the shear rate [1]. Apart from some common fluids such as air and wa-
ter, virtually no fluid is actually Newtonian. The non-Newtonian fluids arise 
everywhere. Examples are the blood and mucus within our own bodies, tooth-
paste, tomato ketchup, paints, molten rubber, and emulsions. Other examples 
are the geophysical flows that involve rapid gravity-driven mass movements of 
solid particles within a fluid, such as snow avalanches, debris flows, lava flows, 
and submarine avalanches. In general, engineers are faced with the practical dif-
ficulties of modeling a variety of industrial processes involving the flow of some 
of these materials. 
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Basic principles of continuum mechanics, namely, the balances of mass, mo-
mentum, energy, and entropy, lead to the following fundamental equations [1]: 

0Dρ = ,                          (1) 

( )D ρ ρ= +∇ ⋅v f T ,                     (2) 

( ) T :D ρε = −∇ ⋅T G q ,                    (3) 

( )D ρη σ= −∇ ⋅ j ,                     (4) 

where, for any function F , operator D  is defined by 

d dDF F t F F F≡ + ∇ ⋅ ≡ + ∇ ⋅v v .               (5) 

In total, Equations (1)-(4) constitute 6 independent equations for 22 unknown 
field variables, namely, mass density ρ, velocity v, specific internal energy ε, spe-
cific entropy η, stress tensor T, heat flux q, entropy flux j, and the entropy pro-
duction σ (per unit volume and time). No distribution of heat sources is being 
considered, and the specific body force f is assumed to be known. Clearly, the 
foregoing basic equations are not adequate for the determination of these un-
knowns except for some trivial situations (for example, rigid body motions in 
the absence of heat conduction). Hence, 16 additional equations must be sup-
plied in order to make the problem well-posed. Restriction to non-polar mate-
rials (i.e. when there are no assigned traction couples or body couples and no 
couple stresses), the moment of momentum principle establishes the symmetry 
of the stress tensor in general without any assumption of equilibrium or of un-
iformity of the stress distribution [1, pp. 215-216]. Then, in the case of non-polar 
materials, the number of unknown variables is reduced to 19. 

In the derivation of the Equations (1) to (4), no specification has been re-
quired about any particular material. Therefore, the foregoing equations are not 
sufficient to explain fully the motions of materials having various types of phys-
ical properties. The character of the material is brought into the formulation 
through the constitutive equations, which specify the mechanical and thermal 
properties of particular materials based upon their internal constitution. These 
equations describe the relationships among the kinematic, mechanical, and 
thermal field variables, allowing the formulations of well-posed problems of 
continuum mechanics. Constitutive equations, from the physical standpoint, de-
fine various idealized materials that serve as models for the behavior of real ma-
terials. 

In Gibbsian linear irreversible thermodynamics (LIT), the local equilibrium 
hypothesis (LEH) postulates the existence of a fundamental state equation for 
energy (or entropy), and the state equations of pressure and temperature are de-
rived from it. However, the constitutive equations for the stress tensor and the 
heat flux remain as an open problem to be solved by the constitutive theory, 
which strives to find the form or at least restricts the generality of the constitu-
tive functions [2]. 

For Newtonian fluids, the constitutive equation for the stress tensor is partic-
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ularly simple: the deviatoric stress is linearly proportional to the rate of strain 
and the coefficient of proportionality is the viscosity. For non-Newtonian fluids, 
the constitutive equations can be much more complicated, implying, in general, 
a non-linear dependence of the stress tensor on the rate of strain. These consti-
tutive relations must be built to reflect the macroscopic properties engendered 
by the fluid microstructure. One can go about this construction in several dif-
ferent ways. 

In extended irreversible thermodynamics (EIT), for example, the LEH of LIT 
is replaced by an extension of the state variables space, accomplished by rising 
the thermodynamic fluxes (such as stress tensor and heat flux vector) to the sta-
tus of additional independent variables. Then, the constitutive equations in this 
theory are intended to be recovered as solutions of the evolution equations of the 
new independent variables [3] [4] [5]. A different approach to derive the consti-
tutive equations for non-uniform complex fluids was proposed in [6], an exten-
sion of which we present in this work. 

Our main objective in this paper is the development of a phenomenological 
gradient approach that consents to obtain generalized expressions for the con-
stitutive equations of non-equilibrium fluid systems. To do it, we presumed that 
the local values of the ordinary state variables (mass density and specific entropy 
or energy) provide only a first approximation to the complete definition of the 
local state of a non-equilibrium fluid. In consequence, we also assumed that the 
specific internal energy of an isotropic, viscous and heat conducting fluid might 
depend not only on the ordinary state variables (mass density and specific en-
tropy) but also on the first gradients of the mass density, specific entropy, and 
velocity fields. Our main hypothesis implies a fundamental state equation of 
energy that contains new information about the local behavior of the ordinary 
state variables and endows the fluid with a non-local character. Notwithstand-
ing, the LEH is not relaxed completely in the theoretical framework of this ap-
proach, and the mass, momentum, energy and entropy balance equations, Equa-
tions (1)-(4), are still accepted as the complete set of fundamental physical laws 
that govern the fluid behavior. 

We showed that consistence of our hypothesis with the energy balance equa-
tion brings out generalized non-linear expressions for the pressure and temper-
ature state equations and for the constitutive equation of the stress tensor. We 
discussed this method for isotropic generalized viscous and heat conducting flu-
ids. As simple examples, we applied this method to obtain the explicit forms of 
the constitutive equations for a second-order fluid [7], for the square density 
gradient approximation of fluid energy [8] [9], and for a power law viscous fluid 
[10] [11] [12]. We finish this work with a brief comparison against the results 
reported for a Lennard-Jones fluid from non-equilibrium molecular dynamics 
simulations [13] [14] [15] [16] [17]. 

The paper is organized as follows. In Section 2, the theoretical framework that 
supports the method we are proposing to derive constitutive equations for com-
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plex fluids is presented, and the method is developed. In particular, the genera-
lized equations that consent the derivation of pressure, temperature, and stress 
tensor from the derivatives of the internal energy are drawn. In Section 3, we 
discussed the proposed method in terms of an isotropic fluid. Here, by consi-
dering the frame-indifferent and isotropic scalar character of the energy func-
tion, and with the base on the representation theorems for isotropic scalar func-
tions of tensor arguments, the generalized expressions for pressure, temperature, 
and stress tensor are obtained. In Section 4, we applied the method to three cases 
of non-Newtonian viscous fluids for which an expression of the internal energy 
can be written explicitly as a function of the extended state variables such as the 
gradient of mass density and the shear rate, and the corresponding generalized 
constitutive equations were obtained. Finally, a brief paragraph of conclusions is 
presented in Section 5.  

2. Thermodynamic Formalism 

The LIT description of a system presupposes that one can find a partition of a 
non-uniform and non-equilibrium system with the property that each subsystem 
can be considered uniform and be locally described by exactly the same funda-
mental state equation of entropy that is valid under equilibrium conditions. This 
statement is the local equilibrium hypothesis and it implies that the Gibbs fun-
damental relation, which combines the first and second laws of thermodynam-
ics, remains valid as a first approximation in the LIT description of a 
non-equilibrium system. The LEH restricts the applicability of LIT to systems 
close to equilibrium and presupposes that the gradients of the intensive proper-
ties are small enough that can be ignored locally. In case of fluid systems, LIT is 
only applicable to describe the Newtonian fluid behavior not far from equili-
brium. 

It is interesting to underline, however, that LIT definition of the entropy fun-
damental equation is the simplest among all possibilities because the second law 
requires merely that the entropy of an adiabatically isolated system should not 
decrease when a transition occurs between equilibrium states. Therefore, ac-
ceptable definitions may render an entropy function dependent on the values of 
the intensive variables at a point in the system, but also on their gradients, in 
such a way that one recovers the equilibrium entropy when the gradients go to 
zero [18]. 

Consequently, we postulate, within the framework of the energy representa-
tion, that the specific internal energy (ε) depends on the specific entropy (η) and 
mass density (ρ), but also on its first gradients ∇η, ∇ρ, and on the gradient of ve-
locity, G (=∇v): 

( ), , , ,ε ε ρ ρ η η= ∇ ∇ G                      (6) 

Under this hypothesis, we presume that a better description of the thermody-
namic behavior of a non-equilibrium and non-uniform fluid system can be ob-
tained. 
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The specific energy given by Equation (6), however, must be a frame-indifferent 
scalar function that reduces itself to the local equilibrium specific internal energy 
of the fluid, ε0(ρ,η), when the gradients become negligible small: 

, , 0
0( , , , , ) ( , )ρ ηε ρ ρ η η ε ρ η∇ ∇ →∇ ∇ →GG              (7) 

Then, our main hypothesis in this work comprises the assumptions expressed 
by the Equation (6) and Equation (7), and the acceptance of the Equations (1) to 
(4) as the complete set of fundamental physical laws that will govern the fluid 
behavior.  

2.1. Generalized Pressure and Temperature State Equations 

Equation (6) allows writing the following generalized Gibbs equation, 

( ) ( ) ( ) ( ) ( ): :D D p D Dρε θ ρη ρ ρ ρ ρ= + − + + +∇ ⋅ +  A B H G h H G  (8) 

where 

( ) ( )ρθ ρ ε η ρ ε η= ∂ ∂ −∇ ⋅ ∂ ∂∇                 (9) 

( ) ( )p ρ ρ ε ρ ρ ε ρ= ∂ ∂ −∇ ⋅ ∂ ∂∇                (10) 

( ) ( )ρ ε ρ ρ ε η η= ∂ ∂∇ ∇ + ∂ ∂∇ ∇  A             (11) 

( )T Tρ= ⋅ − ⋅B G H H G                   (12) 

ε= ∂ ∂H G                        (13)  

( ) ( )ρ ε ρ ρ ε η η= ∂ ∂∇ + ∂ ∂∇  h                 (14) 

Equation (9) and Equation (10) are generalized state equations for tempera-
ture θ and pressure p, respectively. When the specific energy does not depend on 
the gradients of specific entropy and mass density, these equations give the local 
equilibrium temperature and pressure. 

2.2. Generalized Stress Tensor, Entropy Flux, and Entropy  
Production 

Now, with the help of the mass and entropy balance equations (Equation (1) and 
Equation (4), respectively), Equation (8) can be written as 

( ) ( ) ( )
( )

:

:

D p D

D

ρε ρ θ

θσ θ ρ

= − + + + −∇ ⋅ −  
+ + ⋅∇ +  

I A B H G j h

j H G
      (15) 

where I denotes the unit tensor. 
Then, from the comparison of Equation (15) with Equation (3), we obtain the 

following expressions for the stress tensor T, the entropy flux j, and the entropy 
production σ: 

( ) T
p D ρ= − + + +  T I A B H               (16) 

( ) θ= +j q h                      (17) 

( ):Dσ θ ρ θ= − ⋅∇ +  j H G                (18) 
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In principle, the Equations (9), (10) and (16) allow to calculate the tempera-
ture (θ), pressure (p), and the stress tensor (T) of the fluid from the derivatives 
of the generalized specific internal energy with respect the classical state va-
riables, its gradients, and the gradient of velocity. Equation (17) and Equation 
(18), however, provide expressions for the entropy flux (j) and entropy produc-
tion (σ) which also involve the derivatives of the generalized internal energy, but 
these properties are not completely determined by these energy derivatives be-
cause the heat flux (q) remains as an unknown within this formalism. 

3. Generalized Constitutive Equations for an Isotropic Fluid 

Within the framework of a phenomenological theory, the internal energy func-
tion must be determined by experiment for each particular fluid. However, it is 
possible to obtain important information about the constitutive equations for an 
isotropic fluid if we consider the frame-indifferent and isotropic scalar character 
of the energy function1. 

Therefore, in the case of an isotropic fluid, the specific internal energy can be 
a function of the velocity gradient, G, only through the strain tensor 

( )T1
2

= +D G G ,                       (19) 

because G itself is non-indifferent [19]. So 

( ) ( ), , , , , , , ,ε ρ ρ η η ε ρ ρ η η∇ ∇ = ∇ ∇G D .             (20) 

Now, according to the representation theorems for isotropic scalar functions 
of tensor arguments, the specific internal energy of an isotropic fluid can be ex-
pressed as a function of the scalar invariants Iα of ∇ρ, ∇η and D, that is, 

( ) ( ), , , , , , Iαε ρ ρ η η ε ρ η∇ ∇ =D .                (21) 

Therefore, the partial derivatives of the energy function with respect to the va-
riables ∇ρ, ∇η and D can be expressed in the form 

( ) ( ) ( )( )u A I u I I uα α α αε ε∂ ∂∇ = ∂ ∂∇ ≡ ∂ ∂ ∂ ∂∇∑ ∑         (22) 

where the sums run over the number of the independent scalar invariants. In 
general, the coefficients Aα depend on the same variables as the internal energy. 

Hereafter, we will be considering a specific internal energy dependent only on 
the first nine independent scalar invariants of ∇ρ, ∇η and D. These scalar inva-
riants involve the variables ∇ρ, ∇η and D up to third order: 

( ) ( ) ( )
1 2 3

2 3
4 5 6

7 8 9

, , ,

, , ,

, , .

I I I

I Tr I Tr I Tr

I I I

η η η ρ ρ ρ

η η η ρ ρ ρ

= ∇ ⋅∇ = ∇ ⋅∇ = ∇ ⋅∇

= = =

= ∇ ⋅ ⋅∇ = ∇ ⋅ ⋅∇ = ∇ ⋅ ⋅∇

D D D

D D D

       (23) 

 

 

1A scalar function F of a tensor argument X is said to be indifferent if it remains unchanged after a 
change of frame, so that ( ) ( )*F F=X X , where X* is the image of X under the change of frame. In 

addition, the function F is an isotropic scalar function of the tensor argument X, if it satisfies
* T= ⋅ ⋅X Q X Q , for any orthogonal tensor Q [19]. 
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In this case, Equation (16) leads to the following expression for the genera-
lized stress tensor: 

( ) ( ) ( ){ }
( )
( )

2
1 2 3

1 2 3

7 8 9

2

2

p

A A A

D A A A

π µ α α α

ρ η η η ρ ρ ρ

ρ η η η ρ ρ ρ

 = − + + + + ⋅ − ⋅ + + ⋅ + ⋅ 

− ∇ ∇ + ∇ ∇ + ∇ ∇

 − ∇ ∇ + ∇ ∇ + ∇ ∇  

T I D D D D D D D D D  Ω Ω

(24) 

where only the terms up to second order in ∇ρ, ∇η and D have been retained. In 
this equation, we have introduced the vorticity tensor 

( )T1
2

= −G GΩ ,                      (25) 

and the following definitions 

4Aπ ρ=  , 5Aµ ρ= −  , ( )1
2

η ρ η ρ ρ η∇ ∇ = ∇ ∇ +∇ ∇ ,        (26) 

1 5 5A Aα =  , ( )2 6 5
3
2

A Aα =   , ( )3 6 5
3
2

A Aα =  .         (27) 

The generalized state equations for temperature and pressure are obtained in a 
similar way starting from Equation (9) and Equation (10), respectively. The re-
sults are 

( ) ( )
( ) ( )
( ) ( )

2 2
1 2 3

1 7 2 8

7 8

2 : :

2

B B B

A A A A

A A

θ ε η η η ρ ρ

η ρ

= ∂ ∂ − ∇ + ∇ ⋅∇ + ∇

 − + + + 
− ∇ ⋅ ⋅∇ + ∇ ⋅ ⋅∇  

I D N I D M

D D

         (28) 

( ) ( )
( ) ( )

( ) ( )

2 22
1 2 3

2
2 8 3 9

2
8 9

: 2 :

2

p C C C

A A A A

A A

ρ ε ρ η η ρ ρ

ρ

ρ η ρ

= ∂ ∂ − ∇ + ∇ ⋅∇ + ∇

 − + + + 
− ∇ ⋅ ⋅∇ + ∇ ⋅ ⋅∇  

I D N I D M

D D

        (29) 

where 

( ) ( ) ( ) ( )
( ) ( )

1 1 2 1 1 2

3 2 2

2 , 1 2 2 ,

1 ,

B A B A A A

B A A

η ρ ρ η

ρ ρ ρ

= ∂ ∂ = + ∂ ∂ + ∂ ∂  
= + ∂ ∂  

     (30) 

( ) ( ) ( )
( )

2
1 2 2 2 2 3

3 3 3

, 2 ,

2 ,

C A C A A A

C A A

ρ η ρ ρ ρ ρ η

ρ ρ

 = ∂ ∂ = + ∂ ∂ + ∂ ∂ 
 = + ∂ ∂ 

    (31) 

( )ρ= ∇ ∇M , ( )η= ∇ ∇N .               (32) 

Equation (24), Equation (28) and Equation (29) reduce themselves to the cor-
responding linear expressions of LIT when the time rate terms are negligible and 
the gradients are small enough to neglect the quadratic and higher order terms 
involving them. When this is not the case, the additional terms in these equa-
tions represent nonlinear corrections that become relevant when gradients are 
not locally negligible. In particular, the expression for the stress tensor contains 
some additional terms that one can find in rheological constitutive equations [20] 
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[21]. For example, in the classical models of second-order fluids [7], the stress 
tensor T is represented in terms of the first and second Rivlin-Ericksen tensors, 
2D and ( )2  + ⋅ − ⋅ D D D Ω Ω  [22], respectively, according to 

( )2
0 1 22 4 2p µ µ µ  = − + + + + ⋅ − ⋅ T I D D D D D Ω Ω .        (33) 

4. Simple Examples 

In this section, as simple applications of the proposed method, we used the ge-
neralized equations for pressure, temperature, and the stress tensor that we 
found in the previous section, in order to obtain explicit forms of these proper-
ties for three cases already reported in literature. In the first case, we started with 
the square gradient approximation for the specific internal energy, and the cor-
responding constitutive equations were obtained. In the second case, we pro-
posed an expression for the internal energy of a power law viscous fluid, and 
then the known constitutive equations were derived. Finally, we carry out a 
comparison with results reported from non-equilibrium molecular dynamics 
simulations. 

4.1. The Square Gradient Approximation 

From the standpoint of the square gradient approximation [9] [23], the specific 
internal energy for a fluid can be written as 

( ) ( ) ( ) 2
0, , , 2bε η ρ ρ ε η ρ ρ ρ∇ = + ∇ ,            (34) 

where ε0 is the local equilibrium energy and b is a constant. Application of 
Equation (24) to the energy given by Equation (34), leads to the following 
stress tensor 

2 2
0

1
2

p b bρ ρ ρ ρ ρ  = − − ∇ + ∇ − ∇ ∇    
T I ,        (35) 

with p0 being the local equilibrium pressure given by 

( )2
0 0p ρ ε ρ= ∂ ∂ .                  (36)  

The pressure p is defined by 

( ) 2 2
0

1 1
3 6

p Tr p b bρ ρ ρ= − = − ∇ − ∇T .          (37)  

Equation (35) is the Lovett expression [24] for the stress tensor of a 
non-uniform fluid. L. Mistura [8] deduced also this stress tensor and the pres-
sure given by equation (37) using a generalization of a device introduced inde-
pendently by Bogoliubov [25] and Green [26] to calculate the scalar pressure in a 
homogeneous fluid. He also used these results to show that pressure exhibits the 
same singularity as the specific heat in the critical point. 

4.2. The Power Law Fluid Model 

A simple generalization of the Newtonian fluid is a phenomenological model 
that assumes that the flow regime changes the fluid viscosity (the rate of dissipa-
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tion), but the tensorial structure of the Newtonian constitutive equation remains 
unchanged. The constitutive equation for this class of fluid models has the fol-
lowing form 

( )2p µ= − +T I D D ,                  (37) 

where μ(D) is the viscosity, which is different from the Newtonian viscosity due 
to its possible dependence upon the fluid flow [10]. In this model, viscosity μ(D) 
can only depend on the invariants of the tensor D, otherwise a change of coor-
dinate system could be reflected on the value of the viscosity, which has no any 
physical meaning. The simplest possible deviation from the Newtonian fluid be-
havior occurs when the viscosity μ(D) is a function that only depends on the 
shear rate, 

( )2: Trγ = =D D D , 

(i.e., on the square root of the second scalar invariant of the tensor D). Then 

( ) ( )µ µ γ=D .  

The material properties of a generalized Newtonian fluid are determined en-
tirely by the behavior of the function μ(γ). Often, over an interval of shear rate, a 
straight line can approximate the relationship between the apparent viscosity 
and the shear rate, when plotted in log-log coordinates, i.e., 

( ) 1nKµ γ γ −= .                        (38) 

This expression for the viscosity is called the Ostwald de Weale model or the 
power law model [12] [27]. It is valid at intermediate values of strain rate. In 
these equations, K and n are empirical curve-fitting parameters. They are known 
as the fluid consistency coefficient and the power law index (or flow behavior 
index), respectively [11]. The power law index is an important parameter in 
rheological measurements, because it gives some idea of how fast the viscosity 
decreases with strain rate. This also has an effect on the fluid functionality: for n 
< 1, the fluid exhibits shear-thinning properties; for n = 1, the fluid shows New-
tonian viscous behavior; and for n > 1, the fluid shows shear-thickening beha-
vior [10] [11] [12]. Under this model, the deviatoric stress tensor of a power law 
fluid is written as follows: 

12 nKγ −=T D .                       (39) 

Now, for the power law fluid, let us assume a specific internal energy with the 
form 

( ) ( ) ( ) 1
0 1, , , , nε ρ η γ ε ρ η ε ρ η γ += + ,              (40) 

where ε0 denote the local equilibrium value of energy, ε1 denote a 
non-equilibrium coefficient, and n is the power law index. 

This expression for energy constitutes a particular case of the more general 
expression given by the Equation (21) because it depends on the gradients of the 
velocity field through the shear rate. Then, for the power law fluid with an ener-
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gy given by Equation (40), the Equation (28), Equation (29) and Equation (24) 
can be used to obtain the temperature and pressure generalized state equations 
and the stress tensor. Respectively, the results were 

( ) ( ) ( ) 1
0 1, , , , nθ ρ η γ θ ρ η θ ρ η γ += + ,            (41) 

( ) ( ) ( ) 1
0 1, , , , np p pρ η γ ρ η ρ η γ += + ,            (42) 

( ) ( ) 1, , 2 , np ρ η γ β ρ η γ − = − +  T I D .            (43) 

Here, the terms involving time derivatives of shear rate were ignored, and the 
following symbols were introduced 

( ) , 0,1i i iθ ε η= ∂ ∂ = ,                  (44) 

( )2 , 0,1i ip iρ ε ρ= ∂ ∂ = ,                (45) 

( ) ( ) 1
1, 1
2

nβ ρ η ρε= − +  .                 (46) 

Equation (43) gives the deviatoric stress tensor with an apparent viscosity with 
the same dependence on shear rate as in Equation (38) of the power law model 
by Ostwald de Weale [12] [27]. 

4.3. Comparison with Non-Equilibrium Molecular Dynamics  
Simulations 

The properties of a fluid under a shear have been investigated with non-equilibrium 
molecular dynamics (NEMD) simulations [13] [14] [15] [28] [29]. For a Le-
nard-Jones fluid, the strain rate dependent shear viscosity, hydrostatic pressure, 
and configurational internal energy were predicted (originally by Kawasaki and 
Gunton in 1973 [30]) by mode-mode coupling theory to follow the asymptotic 
expressions: 

1
2

0 1µ µ µ γ= − ,                       (47) 
3
2

0 1p p p γ= + ,                       (48) 

3
2

0 1ε ε ε γ= + ,                      (49)  

where the quantities with zero subscript are the zero strain rate quantities, so 
that, in particular, μ0 is the Newtonian viscosity. At temperatures at or near the 
triple point of a Lennard-Jones Fluid, the Equation (47) for viscosity is in good 
agreement with the simulation results. However, better overall agreement for 
other temperatures and densities has been obtained using other values of the 
exponent of the shear rate [16] [17]. 

For n = 1⁄2, Equation (40) and Equation (42) give the specific energy and the 
pressure with the same dependence on shear rate γ as in Equation (49) and Equ-
ation (48). For n = 1⁄2, however, Equation (43) gives a deviatoric stress tensor 
with an apparent viscosity with dependence on shear rate to the power minus 
one-half (γ−1⁄2) which is different from that predicted by mode-coupling theory 
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in the NEMD simulations.  
It is worth to mention, however, that the power law model, Equation (39), is 

perhaps the most widely used model in literature dealing with process engineer-
ing applications, and that there exist a variety of substances whose viscosity 
presents a dependence on γ−1⁄2 (power law index n = 1/2), such as chocolate, gu-
ava puree, papaya puree, and tomato paste, among others [11]. 

5. Conclusion 

A slight generalization of the local equilibrium energy equation carried out with 
the inclusion of the first gradients of mass density, specific entropy, and velocity 
as additional state variables allowed developing a method to derive non-linear 
expressions for pressure, temperature, and the stress tensor for complex fluids. 
The proposed method was discussed in terms of an isotropic viscous fluid. As 
simple examples, it was shown that the generalized stress tensor could be re-
duced, under specific constraints, to the stress tensor of second-order fluids, to 
the Lovett expression for the stress tensor of a non-uniform fluid, and to stress 
tensor of a power law fluid. We also compared the results of the proposed me-
thod with results of NEMD simulations reported in the literature, and we could 
reproduce the pressure expression obtained for a Lennard-Jones fluid under 
shear. 
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