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Abstract 
In this paper, we demonstrated a compact Si-SiO2 waveguide coupler with a 
footprint of only 2 μm × 3 μm by topology optimization in the communica-
tion wavelength. The transmission was increased from 30% to 100%, much 
higher than other methods. Besides, the optimized structure did not incorpo-
rate other dielectric materials, facilitating fabrications and applications. 
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1. Introduction 

Photonic integrated circuits (PICs) integrate multiple photonic functional ele-
ments (such as waveguides [1], lasers [2], detectors [3], modulators [4], etc. [5] 
[6] [7]) to perform a wide variety of advanced optical functions. Progress in 
other fields such as plasmonics [8], meta-materials [9], etc. has also contributed 
to the development of PICs. However, there are still some basic issues to be 
solved with optimization method, instead of using complicated fabrication or 
intensive parameter search. 

In this paper, we first numerically demonstrate that topological optimization 
could be applied in designing waveguide coupler with near unity efficiency. We 
designed a new coupler for Si-SiO2 waveguide transition with high transmission 
efficiency. 100% transmission is achieved with the design based on topology op-
timization while introducing minimum modification in the optimization region. 
This technique could be potentially used in different areas of photonic device 
design. 

2. Model Definition 
The topology optimization problem for the Si-SiO2 waveguide coupler is sche-
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matically shown in Figure 1. Light at communication wavelength of 1550 nm is 
launched from the input port made of 430 nm thick Si (with refractive index of 
3.5). To get the transmission, the outgoing power is monitored at the output 
port made of 1.8 μm thick SiO2. Other scattered light is absorbed by the perfectly 
matched layer as indicated between the two dashed lines. To get a high trans-
mission from the Si waveguide to the SiO2 waveguide, we defined an optimiza-
tion region of 2 μm × 3 μm in size. The refractive index in this region can vary 
from 1 to 3.5 according to the following equation. 
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where η is the parameter to be optimized directly. p1 is a control parameter set to 
be 10 so that over a large range of the value of η, nRAMP is close to either nair or nSi. 
η is constrained to vary between 0 and 1. nRAMP is chosen this way such that 
nRAMP(η = 0) = nair while nRAMP(η = 1) = nSi. 

Infrared light with 1550 nm is sent from the left input port and transmission 
is monitored at the output port. Scattered light is absorbed by the perfectly 
matched layers (the region between the two dashed box). 

On the other hand, we still have possibility to get refractive index that is not 
close nair or nSi, in which case, it will be difficult to achieve. We impose another 
constrain by designating a weight function (w) on every point in the optimiza-
tion region. The integration over the optimization region is set to be lower 
bounded by 95% of its area, restricting w to be as close to unit as possible. 
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The Equation (2) shows that w is determined by η which is shown in Figure 2, 
control parameter 1 and control parameter 2 which are defined by Table 1. As 
shown in Figure 2, η has different value due to nRAMP and w. 

3. Results and Discussions 
Figure 3 shows the refractive index (left) and electric field (right) distribution of 
the original waveguide coupler assuming the optimization region is originally set 

 

 
Figure 1. Schematic of the photonic waveguide topology optimization problem. 
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Figure 2. nRAMP and w as a function of η. The two functions are cho-
sen in this way such that the optimized structure tends to choose re-
fractive index of either nair or nSi. 

 

 
Figure 3. Refractive index (left) and electric field (right) distribution 
of the original waveguide coupler. 

 
Table 1. Global parameters used in the model to define structures, frequency and tem-
perature. 

Lambda 1550 [nm] Wavelength 

W_SiO2 1.8 [um] Width of the SiO2 waveguide 

W_Si 430 [nm] Width of the Si waveguide 

p1 10 Control parameter 

p2 10 Control parameter 

n_SiO2 1.5 Refractive index of SiO2 

n_Si 3.5 Refractive index of Si 

n_air 1 Refractive index of air 

L_domain 2 [um] Length of the optimization region 

W_domain 3 [nm] Width of the optimization region 

eta_initial 0.8 Initial value of eta 

d_PML 0.8 [um] Thickness of the PML region 

 
to be Si. It is clear that strong scatterings towards unwanted directions and ref-
lection occurs, resulting in only 30% transmission. 
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Figure 4. Refractive index (left) and electric field (right) distribution of the 
waveguide coupler for comparison. 

 

 
Figure 5. Refractive index (left) and electric field (right) distribution of the 
topologically optimized waveguide coupler. 

 

 
Figure 6. Norm of the electric field distribution outside the optimization re-
gion along with contours of η(x,y) = 0, 0.1, 0.2, 0.3, 0.4 and 0.5. 

 
Strong light scattering outside the dielectric region can be observed from the 

distorted wave front. A transmission of 30% is recorded. 
A first step to optimize is to simply introduce a transitional tapered region as 

shown in the left side of Figure 4. The refractive index in the tapered region is 
chosen to be 2, in between nSi and 

2SiOn . Simulation results on right side indi-
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cate improved transmission to 72%. Though this is more than twice than the 
original case, much need to be improved for real applications. 

Last, we employ the method described in previous section for topology opti-
mization with results shown in Figure 5. Although the refractive index distribu-
tion on the left side cannot give us any intuition about the final transmission re-
sults, the scattering and interference magically leads to a transmission of 100%, 
confirming the effectiveness of topology optimization. Moreover in Figure 6, we 
plot the contours of the optimization parameter η ranging from 0 to 0.5. It is 
clear that the regions between contours of 0.4 and 0.5 is small, indicating most 
regions with η < 0.5 has anRAMP close to nair and w close to unit, fulfilling our ini-
tial design goal. 

Relatively uniform waveguide mode propagation in the input and output wa-
veguide and some scattering outside the dielectric region is observed. A trans-
mission of 72% is recorded. 

Uniform waveguide mode propagation in the input and output waveguide and 
little scattering outside the dielectric region is observed. A transmission of 100% 
is recorded. 

4. Conclusion 

In conclusion, we have numerically studied a topological optimization problem 
for a Si-SiO2 waveguide coupler in photonic integrated circuits. The design fea-
tures a compact footprint with minimal region removed. This method could po-
tentially be used in optimization problems of other photonic devices. 
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