
Open Access Library Journal 
2018, Volume 5, e4657 
ISSN Online: 2333-9721 

ISSN Print: 2333-9705 

 

DOI: 10.4236/oalib.1104657  Jul. 19, 2018 1 Open Access Library Journal 
 

 
 
 

Fixed Point Results of Contractive Mappings by 
Altering Distances and C-Class Functions in 
b-Dislocated Metric Spaces 

Jani Dine1, Kastriot Zoto1, Arslan H. Ansari2 

1Department of Mathematics and Computer Sciences, Faculty of Natural Sciences, University of Gjirokastra, Gjirokastra, Albania 
2Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran 

 
 
 

Abstract 
In this work, we recall definition of functions called as C-class and use the 
concepts of dislocated metric, b-dislocated metric, altering distance function. 
We prove some coincidence, fixed and common fixed point results for two 
pairs of weakly compatible mappings under ( ), ,f sψ φ− -contractive condi-
tions and contractive conditions depended on another function T. Our theo-
rems extend and generalize related results in the literature. 
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1. Introduction 

The study of metric fixed point theory in dislocated metric spaces was consi-
dered by P. Hitzler and A. K. Seda in [1] who introduced this metric as a genera-
lization of usual metric, and generalized the Banach contraction principle on this 
space. Since then a lot of papers have been written on this topic treating the 
problem of existence and uniqueness of fixed points for mappings satisfying dif-
ferent contractive conditions, see [2]-[14]. N. Hussain et al. in [15] introduced 
the b-dislocated metric spaces associated with some topological aspects and 
properties. These spaces can be seen as generalizations of dislocated metric 
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spaces and also as generalization of b-metric space introduced by Bakhtin in [16] 
and extensively used by Czerwik in [8]. Recently, there are many papers on exis-
tence and uniqueness of fixed point and common fixed point for one, two or 
more mappings under different types of contractive conditions in the setting of 
dislocated spaces and b-dislocated metric spaces. 

Since altering distance functions were introduced by Khan et al. in [17], the 
study of the existence of fixed points of contractive maps in metric spaces and 
generalized metric spaces has a lot of interest for many authors which are based 
on this category of functions (see [17]-[23]). In September 2014, a class of func-
tions called as C-class is presented by A. H. Ansari, see in [24] [25] and is im-
portant, see example 2.15. 

The present paper is organized in two sections. Using concepts mentioned 
above, in the first section, we develop some coincidence and common fixed point 
theorems (existence and uniqueness) for two pairs of weakly compatible map-
pings in the framework of db -dislocated metric space, using weak generalized 

( ), ,f sψ φ−  contractive conditions. In the second section, we prove common 
fixed point theorems for a pair of mappings using generalized ( ), ,f sψ φ−  
contractive condition and the concept of T-contractions. The related results ge-
neralize and improve various theorems in recent literature.  

2. Preliminaries 

Consistent with [1] and [15], the following definitions, notations, basic lemma 
and remarks will be needed in the sequel.  

Definition 2.1 [1] Let X be a nonempty set and a mapping [ ): 0,ld X X× → ∞  
is called a dislocated metric (or simply ld -metric) if the following conditions 
hold for any , ,x y z X∈ : 
1) If ( ), 0ld x y = , then x y=  
2) ( ) ( ), ,l ld x y d y x=  
3) ( ) ( ) ( ), , ,l l ld x y d x z d z y≤ +  

The pair ( ), lX d  is called a dislocated metric space (or d-metric space for 
short). Note that for x y= , ( ),ld x y  may not be 0. 

Definition 2.2 [15] Let X be a nonempty set and a mapping [ ): 0,db X X× → ∞  
is called a b-dislocated metric (or simply db -dislocated metric) if the following 
conditions hold for any , ,x y z X∈  and 1s ≥ :  
1) If ( ), 0db x y = , then x y=  
2) ( ) ( ), ,d db x y b y x=  
3) ( ) ( ) ( ), , ,d d db x y s b x z b z y≤ +    

The pair ( ), dX b  is called a b-dislocated metric space. And the class of 
b-dislocated metric space is larger than that of dislocated metric spaces, since a 
b-dislocated metric is a dislocated metric when 1s = . 

Example 2.3 If X R= , then ( ),ld x y x y= +  defines a dislocated metric 
on X. 

Definition 2.4 [1] A sequence ( )nx  in ld -metric space ( ), lX d  is called:  
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1) a Cauchy sequence if, for given 0ε > , there exists 0n N∈  such that for 
all 0,m n n≥ , we have or ( )

,
lim , 0l n mn m

d x x
→∞

= ;  
2) convergent with respect to ld  if there exists x X∈  such that 
( ), 0l nd x x →  as n →∞ . In this case, x is called the limit of ( )nx  and we 

write nx x→ . 
A ld -metric space X is called complete if every Cauchy sequence in X con-

verges to a point in X.  
In [15], it was shown that each db -metric on X generates a topology 

dbτ  

whose base is the family of open db -balls ( ) ( ){ }, : ,
db dB x y X b x yε ε= ∈ < . 

Also in [15], there are presented some topological properties of db -metric spaces.  
Definition 2.5 [15] Let ( ), dX b  be a db -metric space, and { }nx  be a se-

quence of points in X. A point x X∈  is said to be the limit of the sequence 
{ }nx  if ( )lim , 0d nn

b x x
→∞

=  and we say that the sequence { }nx  is db
-convergent to x and denote it by nx x→  as n →∞ . 

The limit of a db -convergent sequence in a db -metric space is unique ([15], 
Proposition 1.27). 

Definition 2.6 [15] A sequence { }nx  in a db -metric space ( ), dX b  is 
called a db -Cauchy sequence if, given 0ε > , there exists 0n N∈  such that for 
all 0,n m n> , we have ( ),d n mb x x ε<  or ( )

,
lim , 0d n mn m

b x x
→∞

= . Every db
-convergent sequence in a db -metric space is a db -Cauchy sequence. 

Remark 2.7 The sequence { }nx  in a db -metric space ( ), dX b  is called a 

db -Cauchy sequence if ( )
,
lim , 0d n n pn m

b x x +→∞
=  for all p N ∗∈ . 

Definition 2.8 [15] A db -metric space ( ), dX b  is called complete if every 

db -Cauchy sequence in X is db -convergent.  
Example 2.9 If { }0X R+= ∪ , then ( ) ( )2,db x y x y= +  defines a b-dislocated 

metric on X with parameter 2s = . 
Example 2.10 Let { }0X R+= ∪  and any constant 0α > . Define function 
:ld X X R+× →  by ( ) ( ),ld x y x yα= + . Then, the pair ( ), lX d  is a dislocated 

metric space. 
If Fx Sx=  for some x X∈ , then x is called the coincidence point of F and S. 

Furthermore, if the mappings commute at each coincidence point, then such 
mappings are called weakly compatible [4]. 

Definition 2.11 [17] The altering distances functions ψ  and ϕ  are defined 
as 

[ ) [ ) ( ){ }: 0, 0, / is continuous,nondecreasing,and 0 if 0t tψ ψ ψΨ = ∞ → ∞ = =  

[ ) [ ) ( ){ }: 0, 0, / is lower semicontinuous,and 0 if 0t tφ φ φΦ = ∞ → ∞ = =  

The following lemmas are used to prove our results.  
Lemma 2.12 Let ( ), dX b  be a b-dislocated metric space with parameter 1s ≥ . 

Then 
1) If ( ), 0db x y =  then ( ) ( ), , 0d db x x b y y= = ; 
2) If ( )nx  is a sequence such that ( )1lim , 0d n nn

b x x +→∞
= , then we have  
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( ) ( )1 1lim , lim , 0d n n d n nn n
b x x b x x+ +→∞ →∞

= = ; 

3) If x y≠ , then ( ), 0db x y > ;  
Proof. It is clear.  
Lemma 2.13 [15] Let ( ), dX b  be a b-dislocated metric space with parameter 
1s ≥ . Suppose that { }nx  and { }ny  are db -convergent to ,x y X∈ , respec-

tively. Then we have 

( ) ( ) ( ) ( )2
2

1 , lim inf , lim sup , ,d d n n d n n dn n
b x y b x y b x y s b x y

s →∞ →∞
≤ ≤ ≤  

In particular, if ( ), 0db x y = , then we have ( ) ( )lim , 0 ,d n n dn
b x y b x y

→∞
= = . 

Moreover, for each z X∈ , we have 

( ) ( ) ( ) ( )1 , lim inf , lim sup , ,d d n d n dn n
b x z b x z b x z sb x z

s →∞ →∞
≤ ≤ ≤  

In particular, if ( ), 0db x z = , then we have ( ) ( )lim , 0 ,d n dn
b x z b x z

→∞
= = . 

Definition 2.14. [24] [25] We say that a function [ )2: 0,f R∞ →  is called a 
C-class function if it is continuous and satisfies the following properties.  

( )
( ) [ )
( )

1) ,

2) ,   0 or 0 for all , 0,

3) 0,0 0

f s t s

f s t s s t s t

f

≤

= ⇒ = = ∈ ∞

=

  

We denote C-class functions as C. 
Example 2.15 [24] [25] The following functions [ )2: 0,f R∞ →  are ele-

ments of C, for all [ ), 0,s t∈ ∞ : 

1) ( ) ( ), , , 0f s t s t f s t s t= − = ⇒ =   

2) ( ) ( ), , , 0
1
s tf s t f s t s t

t
−

= = ⇒ =
+

  

3) ( ) ( ), , , 0
1

stf s t f s t s s
t

= = ⇒ =
+

 

4) ( ) ( ), ,  , 0 or 0
1

sf s t f s t s s t
t

= = ⇒ = =
+

  

5) ( ) ( ), log , 1,  , 0 or 0
1

st af s t a f s t s s t
t

+
= > = ⇒ = =

+
  

For 1t = , we have ( ) ( )1,1 ln , ,  ,1 0
2

saf s a e f s s s+
= > = ⇒ =   

6) ( ) ( ) ( )
1

1, , 1, , 0tf s t s k k k f s t s t+= + − > = ⇒ =   

7) ( ) ( ), log , 1, , 0 or 0a tf s t s a a f s t s s t+= > = ⇒ = =  

8) ( ) ( ), ,0 1; , 0f s t ms m f s t s s= < < = ⇒ =  

9) ( ) ( ) ( ), , , 0f s t s f s t s sφ= = ⇒ = , here [ ) [ ): 0, 0,φ ∞ → ∞  is continuous 

and such that ( )0 0φ =  and ( )t tφ <  for 0t > . 
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3. Main Results 

Before we give the main result we denote with letter ( ),N x y  the following set  

( ) ( ) ( ) ( ) ( ) ( ){ }, max , , , , , , , , ,d d d d dN x y b Sx Ty b Fx Sx b Gy Ty b Sx Gy b Fx Ty= (3.1.1)  

for all ,x y X∈ . 

Motivated by the works of [15] [21]-[29] we extend the concept of ( ),ψ φ
-weakly contractive maps to four maps in a b-dislocated metric space, giving the 
following definition. 

Definition 3.1 Let , , ,F G S T  be four self maps of a b-dislocated metric space 
( ), dX b  with parameter 1s ≥ . If there exists ψ ∈Ψ , ϕ∈Φ  and f C∈  such 
that 

( )( ) ( )( ) ( )( )( )42 , , , ,ds b Fx Gy f N x y N x yψ ψ φ≤            (A) 

for all ,x y X∈ , where ( ),N x y  is defined as in (3.1.1) then , ,F G S  and T 
are said to satisfy a generalized ( ), ,f sψ φ−  weakly contractive condition. 

Theorem 3.2 Let ( ), dX b  be a b-dislocated metric space with parameter 
1s ≥  and , , , :S T F G X X→  are self-mappings such that (a) ( ) ( )F X T X⊂ , 
( ) ( )G X S X⊂  and satisfy generalized ( ), ,f sψ φ−

 
weakly contractive condi-

tion. If one of ( ) ( ) ( ), ,F X S X T X  or ( )G X  is a complete subspace of X, 
then ( ),F S  and ( ),G T  have a point of coincidence in X. Moreover if sup-
pose that ( ),F S  and ( ),G T  are weakly compatible pairs, then , , ,F G S T  
have a unique common fixed point.  

Proof. Let 0x  be an arbitrary point in X. Since ( ) ( )F X T X⊂  we can 
choose 1x X∈  such that 0 0 1y fx Tx= = . And since ( ) ( )G X S X⊂  corres-
ponding to 1x X∈  we can choose 2x X∈  such that 1 1 2y Gx Sx= = . Contin-
uing the same process we obtain sequences { }nx  and { }ny  in X such that: 

2 2 2 1 2 1 2 1 2 2;n n n n n ny Fx Tx y Gx Sx+ + + += = = =  for all 0,1,2,n =   

We consider following steps:  
Step 1. If 2 2 1n ny y +=  (that means ( )2 2 1, 0d n nb y y + = ) for some n, then 

2 1 2 1n nGx Tx+ += . Hence 2 1nx +  is a coincidence point of G and T. Using definition 
of ( ),N x y  and lemma 2.12 we have, 

( )
( ) ( ) ( ){
( ) ( )}
( ) ( ) ( ){
( ) ( )}

2 2 2 1

2 2 2 1 2 2 2 2 2 1 2 1

2 2 2 1 2 2 2 1

2 1 2 2 2 2 1 2 1 2

2 1 2 1 2 2 2

,

max , , , , , ,

, , ,

max , , , , , ,

, , ,

n n

d n n d n n d n n

d n n d n n

d n n d n n d n n

d n n d n n

N x x

b Sx Tx b Fx Sx b Gx Tx

b Sx Gx b Fx Tx

b y y b y y b y y

b y y b y y

+ +

+ + + + + +

+ + + +

+ + + +

+ + +

=

=

 

( ) ( ) ( ){
( ) ( ) ( ) }
( ) ( ){ }

( )

2 1 2 2 2 2 1 2 1 2

2 1 2 2 2 2 1 2 1 2

2 2 2 1 2 2 2 1

2 2 2 1

max , , , , , ,

2 , , , ,

max 0, , ,0,0, ,

,

d n n d n n d n n

d n n d n n d n n

d n n d n n

d n n

b y y b y y b y y

sb y y s b y y b y y

b y y sb y y

sb y y

+ + + +

+ + + +

+ + + +

+ +

≤

 + 

=

=
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Thus ( ) ( )2 2 2 1 2 2 2 1, ,n n d n nN x x sb y y+ + + +≤               (3.2.1) 

Using condition (A) and property of C-class, we have that 

( )( ) ( )( )
( )( )
( )( )
( )( ) ( )( )( )

( )( )

2 1 2 2 2 1 2 2

2 2 2 1

4
2 2 2 1

2 2 2 1 2 2 2 1

2 2 2 1

, ,

2 ,

2 ,

, , ,

,

d n n d n n

d n n

d n n

n n n n

n n

sb y y sb Gx Fx

sb Fx Gx

s b Fx Gx

f N x x N x x

N x x

ψ ψ

ψ

ψ

ψ φ

ψ

+ + + +

+ +

+ +

+ + + +

+ +

=

=

≤

≤

≤

 

By property of ψ  we have,  

( ) ( )2 2 2 1 2 2 2 1, ,d n n n nsb y y N x x+ + + +≤                (3.2.2) 

As a result we get, 

( ) ( )2 2 2 1 2 1 2 2, ,n n d n nN x x sb y y+ + + += . 

Again from contractive condition of theorem have, 

( )( ) ( )( )
( )( )
( )( ) ( )( )( )
( )( ) ( )( )( )

( )( )

2 2 2 1 2 2 2 1

4
2 2 2 1

2 2 2 1 2 2 2 1

2 1 2 2 2 1 2 2

2 1 2 2

, ,

2 ,

, , ,

, , ,

,

d n n d n n

d n n

n n n n

d n n d n n

d n n

sb y y sb Fx Gx

s b Fx Gx

f N x x N x x

f sb y y sb y y

sb y y

ψ ψ

ψ

ψ φ

ψ φ

ψ

+ + + +

+ +

+ + + +

+ + + +

+ +

=

≤

≤

=

≤

 

The inequality above implies, 

( )( ) ( )( )( ) ( )( )2 1 2 2 2 1 2 2 2 1 2 2, , , ,d n n d n n d n nf sb y y sb y y sb y yψ φ ψ+ + + + + +=  

By property of function f of C-class we obtain 

( )( )2 1 2 2, 0d n nsb y yψ + + =  or ( )( )2 1 2 2, 0d n nsb y yφ + + = . 

And also by property of ,ψ φ  we get ( )2 1 2 2, 0d n nb y y+ + =  so that 2 1 2 2n ny y+ +=  
and then 2 2 2 2n nFx Sx+ += . Also 2 2nx +  is a coincidence point of F and S.  

Step 2. Suppose 2 2 1n ny y +≠  that means ( )2 2 1, 0d n nb y y + >  for all n by condi-
tion (3.1.1) we have:  

( ) ( ) ( ) ( ){
( ) ( )}
( ) ( ) ( ){
( ) ( )}

2 2 1 2 2 1 2 2 2 1 2 1

2 2 1 2 2 1

2 1 2 2 2 1 2 1 2

2 1 2 1 2 2

, max , , , , ,

, , ,

max , , , , ,

, , ,

n n d n n d n n d n n

d n n d n n

d n n d n n d n n

d n n d n n

N x x b Sx Tx b Fx Sx b Gx Tx

b Sx Gx b Fx Tx

b y y b y y b y y

b y y b y y

+ + + +

+ +

− − +

− +

=

=
 

( ) ( ) ( ){
( ) ( ) ( )}
( ) ( ){ }

2 1 2 2 2 1 2 1 2

2 1 2 2 2 1 2 2 1

2 2 1 2 1 2

max , , , , ,

, , , 2 ,

max 2 , , 2 ,

d n n d n n d n n

d n n d n n d n n

d n n d n n

b y y b y y b y y

s b y y b y y sb y y

sb y y sb y y

− − +

− + +

+ −

≤

 + 

≤

 

If ( ) ( )2 1 2 2 2 1, ,d n n d n nb y y b y y− +<  then ( ) ( )2 2 1 2 2 1, 2 ,n n d n nN x x sb y y+ +≤   (3.2.3) 
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Also from condition of theorem we have: 

( )( ) ( )( )
( )( )
( )( ) ( )( )( )

( )( )

4
2 2 1 2 2 1

4
2 2 1

2 2 1 2 2 1

2 2 1

2 , 2 ,

2 ,

, , ,

,

d n n d n n

d n n

n n n n

n n

sb y y s b y y

s b Fx Gx

f N x x N x x

N x x

ψ ψ

ψ

ψ φ

ψ

+ +

+

+ +

+

≤

=

≤

≤

 

By property of function ψ  we have  

( ) ( )2 2 1 2 2 12 , ,d n n n nsb y y N x x+ +≤               (3.2.4) 

From (3.2.3) and (3.2.4) we get  

( ) ( )2 2 1 2 2 1, 2 ,n n d n nN x x sb y y+ +=               (3.2.5) 

Also from condition of theorem and (3.2.5) we have, 

( )( ) ( )( )
( )( )
( )( ) ( )( )( )
( )( ) ( )( )( )

( )( )

4
2 2 1 2 2 1

4
2 2 1

2 2 1 2 2 1

2 2 1 2 2 1

2 2 1

2 , 2 ,

2 ,

, , ,

2 , , 2 ,

2 ,

d n n d n n

d n n

n n n n

d n n d n n

d n n

sb y y s b y y

s b Fx Gx

f N x x N x x

f sb y y sb y y

sb y y

ψ ψ

ψ

ψ φ

ψ φ

ψ

+ +

+

+ +

+ +

+

≤

=

≤

=

≤

 

The above inequality implies: 

( )( ) ( )( ) ( )( )( )
( )( )

2 2 1 2 2 1 2 2 1

2 2 1

2 , 2 , , 2 ,

2 ,

d n n d n n d n n

d n n

sb y y f sb y y sb y y

sb y y

ψ ψ φ

ψ

+ + +

+

≤

≤
 

which means  

( )( ) ( )( )( ) ( )( )2 2 1 2 2 1 2 2 12 , , 2 , 2 ,d n n d n n d n nf sb y y sb y y sb y yψ φ ψ+ + += . 

From property of C-class we obtain 

( )( ) ( )( )2 2 1 2 2 12 , 0 or 2 , 0d n n d n nsb y y sb y yψ φ+ += = . 

So we have ( )2 2 1, 0d n nb y y + =  that is a contradiction since we suppose 
( )2 2 1, 0d n nb y y + > .  
So we have ( ) ( )2 2 1 2 1 2, ,d n n d n nb y y b y y+ −≤ .  
In a similar way as above we have ( ) ( )2 1 2 2 2 2 1, ,d n n d n nb y y b y y+ + +≤ . As a result  

the sequence ( ){ }1,d n nb y y +  is non increasing and bounded below. And so there 

exists 0l ≥  such that, 

( ) ( )1 1lim , lim ,d n n n nn n
b y y N x x l+ +→∞ →∞

= = . 

Suppose that 0l > . Since ψ  is continuous and φ  is lower semi continuous 
we have: 

( ) ( )( ) ( ) ( )( )1 1lim , and lim inf ,n n n nn n
l N x x l N x xψ ψ φ φ+ +→∞ →∞
= ≤     (3.2.6) 

If we consider condition (A) we have,  
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( )( ) ( )( )
( )( ) ( )( )( )

( )( )

4
2 2 2 1 2 2 2 1

2 2 2 1 2 2 2 1

2 2 2 1

2 , 2 ,

, , ,

,

d n n d n n

n n n n

n n

sb y y s b y y

f N x x N x x

N x x

ψ ψ

ψ φ

ψ

+ + + +

+ + + +

+ +

≤

≤

≤

  (3.2.7) 

taking the upper limit as n →∞  in (3.2.7) and using (3.2.6) we have that,  

( ) ( ) ( )( ) ( )
( ) ( )( ) ( )

( ) ( )

2 2 , 2 2

2 , 2 2

2 0 or 2 0.

sl f sl sl sl

f sl sl sl

sl sl

ψ ψ φ ψ

ψ φ ψ

ψ φ

≤ ≤

⇒ =

⇒ = =

            (3.2.8) 

From (3.2.8) and property of ψ  we get 0l =  that is a contradiction. Hence  

( ) ( )1 1lim , lim , 0d n n n nn n
b y y N x x+ +→∞ →∞

= =             (3.2.9) 

Now we prove that { }ny  is a db -Cauchy sequence. Assume the contrary that 
{ }2ny  is not a db -Cauchy sequence. Then there exists 0ε >  for which we can  
find subsequences { }2 kmy  and { }2 kny  of { }2ny  so that kn  is the smallest 

index for which 2 2k kn m k> > , that 

( )2 2,
k kd m nb y y ε≥                    (3.1.10) 

and ( )2 2 2,
k kd m nb y y ε− <                   (3.2.11) 

From property c) of definition 2.2 we have: 

( ) ( ) ( )
( ) ( ) ( )

2 2 2 2 2 2 2 2

2 2
2 2 2 2 2 2 1 2 1 2

, , ,

, , ,
k k k k k k

k k k k k k

d m n d m n d n n

d m n d n n d n n

b y y sb y y sb y y

sb y y s b y y s b y y

ε − −

− − − −

≤ ≤ +

≤ + +
    (3.2.12) 

Taking the upper limit as k →∞  in (3.2.12) and using result (3.129) and 
(3.2.11), we get 

( )2 2lim sup ,
k kd m nk

b y y sε ε
→∞

≤ ≤                  (3.2.13) 

Also we have 

( ) ( ) ( )2 2 2 2 1 2 1 2, , ,
k k k k k kd m n d m n d n nb y y sb y y sb y yε − −≤ ≤ +      (3.2.14) 

Hence taking the upper limit in above inequality, we obtain 

( )2 2 1limsup ,
k kd m n

k
b y y

s
ε

−
→∞

≤                   (3.2.15) 

Again from property c) of definition 2.2, we have 

( ) ( ) ( )2 2 1 2 2 2 2 1, , ,
k k k k k kd m n d m n d n nb y y sb y y sb y y− −≤ +         (3.2.16) 

Thus from 3.2.9; 3.2.15 we have 

( ) 2
2 2 1lim sup ,

k kd m nk
b y y sε−→∞

≤                (3.2.17) 

As a result, 

( ) 2
2 2 1lim sup ,

k kd m nk
b y y s

s
ε

ε−→∞
≤ ≤                (3.2.18) 
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Similarly, 

( ) ( ) ( )2 2 2 2 1 2 1 2, , ,
k k k k k kd m n d m m d m nb y y sb y y sb y yε + +≤ ≤ +    (3.2.19) 

Taking the upper limit in (3.2.19) and using 3.2.9, we get 

( )2 1 2limsup ,
k kd m n

k
b y y

s
ε

+
→∞

≤                 (3.2.20) 

Similarly, 

( ) ( ) ( )
( ) ( ) ( )

2 2 2 2 1 2 1 2

2 2
2 2 1 2 1 2 1 2 1 2

, , ,

, , ,
k k k k k k

k k k k k k

d m n d m m d m n

d m m d m n d n n

b y y sb y y sb y y

sb y y s b y y s b y y

ε + +

+ + − −

≤ ≤ +

≤ + +
 

Taking the upper limit in above inequality and using (3.2.9), we have 

( )2 1 2 12 limsup ,
k kd m n

k
b y y

s
ε

+ −
→∞

≤           (3.2.21)  

Also, 

( ) ( ) ( )2 1 2 1 2 1 2 2 2 1, , ,
k k k k k kd m n d m m d m nb y y sb y y sb y y+ − + −≤ +   

Taking the upper limit and using 3.2.9; 3.2.18 we get  

( ) 3
2 1 2 1limsup ,

k kd m n
k

b y y sε+ −
→∞

≤              (3.2.22) 

So, by (3.2.21) and (3.2.22) we have 

( ) 3
2 1 2 12 limsup ,

k kd m n
k

b y y s
s
ε

ε+ −
→∞

≤ ≤            (3.2.23) 

According to the set (3.1.1) we have: 

( ) ( ) ( ) ( ){
( ) ( )}
( ) ( ) ( ){
( ) ( )}

2 2 1 2 2 1 2 2 2 1 2 1

2 2 1 2 2 1

2 1 2 2 2 1 2 1 2

2 1 2 1 2 2

, max , , , , , ,

, , ,

max , , , , , ,

, , ,

k k k k k k k k

k k k k

k k k k k k

k k k k

n m d n m d n n d m m

d n m d n m

d n m d n n d m m

d n m d n m

N x x b Sx Tx b Fx Sx b Gx Tx

b Sx Gx b Fx Tx

b y y b y y b y y

b y y b y y

+ + + +

+ +

− − +

− +

=

=
 

(3.2.24) 

Taking the upper limit in (3.2.24) and using results 3.2.9; 3.2.18; 3.2.13; 3.2.23 
we get 

( )
( ) ( ) ( ){
( ) ( )}

{ }

2 2 1

2 1 2 2 2 1 2 1 2

2 1 2 1 2 2

2 3

lim sup ,

limsup max , , , , , ,

, , ,

max ,0,0, ,

k k

k k k k k k

k k k k

n mk

d n m d n n d m m
k

d n m d n m

N x x

b y y b y y b y y

b y y b y y

s s sε ε ε

+→∞

− − +
→∞

− +

=

≤

 (3.2.25) 

Similarly, we can show, 

( ) 3
2 2 12min , , liminf ,

k kn mk
N x x s

s s
ε ε
ε ε+→∞

  ≤ ≤ 
 

         (3.2.26) 

From contractive condition of theorem, we have  
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( )( ) ( )( )
( )( ) ( )( )( )

( )( )

4 4
2 2 1 2 2 1

2 2 1 2 2 1

2 2 1

2 , 2 ,

, , ,

,

k k k k

k k k k

k k

d n m d n m

n m n m

n m

s b y y s b Fx Gx

f N x x N x x

N x x

ψ ψ

ψ φ

ψ

+ +

+ +

+

≤

≤

≤

(3.2.27) 

Taking the upper limit as k →∞  in (3.2.27) and using 3.2.25; 3.2.26, we ob-
tain 

( ) ( )

( )

( ) ( )( )
( ) ( )( ) ( )

3 4 4
2 2 1

4
2 2 1

2 2 1 2 2 1

3 3 3

2 2 2 limsup ,

2 limsup ,

limsup , , liminf ,

,

k k

k k

k k k k

d n m
k

d n m
k

n m n mkk

s s s b y y
s

s b Fx Gx

f N x x N x x

f s s s

ε
ψ ε ψ ψ

ψ

ψ φ

ψ ε φ ε ψ ε

+
→∞

+
→∞

+ +→∞→∞

   = ≤      
 =  
 
  ≤     

≤ ≤

 

From this inequality and since ψ  is non decreasing follows that  
3 3 32 0 0s s sε ε ε ε≤ ⇔ = ⇔ = . 

That is a contradiction since we supposed 0ε > . Thus { }ny  is a db -Cauchy 
sequence in b-dislocated metric space ( ), dX b . Also the subsequences { }2nfx , 
{ }2 1nTx + , { }2 1nGx + , { }2 2nSx +  are db -Cauchy. Let we suppose that ( )F X  is a 
complete subspace of X, since the subsequence { }2nfx  is db -Cauchy then there 
exists ( )z F X∈  such that 2 2lim limn nn n

y Fx z
→∞ →∞

= = . Then we have, 

2 1 2 2 1 2 2lim lim lim limn n n nn n n n
Tx Fx Gx Sx z+ + +→∞ →∞ →∞ →∞

= = = = .        (3.2.28) 

Since ( ) ( )z F X T X∈ ⊂ , then there exists y X∈  such that Ty z= . Ac-
cording to (3.1.1) consider  

( )
( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ){ }

2

2 2 2 2 2

2 1 2 2 1 2 1 2

,

max , , , , , , , , ,

max , , , , , , , , ,

n

d n d n n d d n d n

d n d n n d d n d n

N x y

b Sx Ty b Fx Sx b Gy Ty b Sx Gy b Fx Ty

b y z b y y b Gy z b y Gy b y z− − −

=

=

(3.2.29) 

Taking the upper limit and using lemma 2.13, result (3.2.9) and (3.2.28) we 
obtain 

( ) ( )2lim sup , ,n dn
N x y sb Gy z

→∞
≤               (3.2.30) 

Using contractive condition (A) of theorem we have, 

( )( ) ( )( ) ( )( )( )
( )( )

4
2 2 2

2

2 , , , ,

,

d n n n

n

s b Fx Gy f N x y N x y

N x y

ψ ψ φ

ψ

≤

≤
     (3.2.31) 

Taking the upper limit in (3.2.31) and using (3.2.30) we get 

( )( ) ( ) ( )( )3 4 12 , 2 , ,d d ds b z Gy s b z Gy sb Gy z
s

ψ ψ ψ = ≤ 
 

  

This implies ( ), 0db z Gy =  and so Gy z= . Thus Gy Ty z= = , so y is a point 
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of coincidence of the pair ( ),G T . 
Similarly we can show that Fv Sv z= = , so v is a point of coincidence of the 

pair ( ),F S . Therefore we have  

Gy Ty Fv Sv z= = = = .                (3.2.32) 

Let show that z is a unique point of coincidence of pairs ( ),F S  and ( ),G T . 
Suppose that exists another point 1z X∈  such that 1 1 1 1 1Gy Ty Fv Sv z= = = = .  

We consider, 

( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ){ }

( )

1 1 1 1 1 1

1 1 1 1 1

1

, max , , , , , , , , ,

max , , , , , , , , ,

2 ,

d d d d d

d d d d d

d

N z z b Sz Tz b Fz Sz b Gz Tz b Sz Gz b Fz Tz

b z z b z z b z z b z z b z z

sb z z

=

=

≤

 

Using contractive condition of theorem we have, 

( )( ) ( )( )
( )( ) ( )( )( )

( )( )
( )( )

4 4
1 1

1 1

1

1

2 , 2 ,

, , ,

,

2 ,

d d

d

s b z z s b Fz Gz

f N z z N z z

N z z

sb z z

ψ ψ

ψ φ

ψ

ψ

=

≤

≤

≤

 

The inequality above implies that ( )1, 0db z z =  so 1z z=  that means the 
point of coincidence is unique.  

Let prove that z is a common fixed point. By the weak compatibility of the pairs 
( ),F S  and ( ),G T  have: Sz SFv FSv Fz= = =  and Gz GTy TGy Tz= = = . 

From condition of theorem we have, 

( )( ) ( )( ) ( )( )
( )( ) ( )( )( )

( )( )

4 42 , 2 , 2 ,

, , ,

,

d d dsb Fz Gz s b Fz Gz s b Fz Gz

f N z z N z z

N z z

ψ ψ ψ

ψ φ

ψ

≤ =

≤

≤

   (3.2.33) 

This inequality implies ( ) ( )2 , ,dsb Fz Gz N z z≤ . 
And  

( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ){ }

( )

, max , , , , , , , , ,

max , , , , , , , , ,

2 ,

d d d d d

d d d d d

d

N z z b Sz Tz b Fz Sz b Gz Tz b Sz Gz b Fz Tz

b Fz Gz b Fz Fz b Gz Gz b Fz Gz b Fz Gz

sb Fz Gz

=

=

≤

(3.2.34) 

Again from (3.2.33) and (3.2.34) we get,
 

( ) ( ), 2 ,dN z z sb Fz Gz= . 
By property of functions ;ψ φ  and C-class, we have 

( )( ) ( )( ) ( )( )( )
( )( )

( )( ) ( )( )( ) ( )( )
( )( ) ( )( )

( ) ( )

2 , 2 , , 2 ,

2 ,

2 , , 2 , 2 ,

2 , 0 or 2 , 0

2 , 0 , 0

d d d

d

d d d

d d

d d

sb Fz Gz f sb Fz Gz sb Fz Gz

sb Fz Gz

f sb Fz Gz sb Fz Gz sb Fz Gz

sb Fz Gz sb Fz Gz

sb Fz Gz b Fz Gz

ψ ψ φ

ψ

ψ φ ψ

ψ φ

≤

≤

⇒ =

⇒ = =

⇒ = ⇒ =

   (3.2.35) 
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So we obtained ( ), 0db Fz Gz = , that iz Fz Gz= . Therefore Fz Gz Sz Tz= = = . 
Let we prove that z is a fixed point of F. 
Again we consider  

( )( ) ( )( ) ( )( )
( )( ) ( )( )( )

( )( )

4 42 , 2 , 2 ,

, , ,

,

d d dsb Fz z s b Fz z s b Fz Gz

f N z z N z z

N z z

ψ ψ ψ

ψ φ

ψ

≤ =

≤

≤

  

By property of ψ  follows  

( ) ( )2 , ,dsb Fz z N z z≤                   (3.2.36) 

where 

( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ){ }

( )

, max , , , , , , , , ,

max , , , , , , , , ,

2 ,

d d d d d

d d d d d

d

N z z b Sz Tz b Fz Sz b Gz Tz b Sz Gz b Fz Tz

b Fz z b Fz Fz b z z b Fz z b Fz z

sb Fz z

=

=

≤

 

(3.2.37) 

From (3.2.36), (3.2.37) we get  

( ) ( ), 2 ,dN z z sb Fz z=                     (3.2.38) 

In similar way as in (3.2.35) using (3.2.38), property of C-class and functions 
;ψ φ  we obtain, ( ), 0db Fz z =  and Fz z= . Hence z is a common fixed 

point. 
Uniqueness. Let we prove that the fixed point is unique. If suppose that u and z 

are two common fixed points of F, G, S, T then from condition (b) we have,  

( )( ) ( )( ) ( )( )
( )( ) ( )( )( )

( )( )

4 42 , 2 , 2 ,

                  , , ,

,

d d dsb u z s b u z s b Fu Gz

f N u z N u z

N u z

ψ ψ ψ

ψ φ

ψ

≤ =

≤

≤

 

By property of ψ  we get ( ) ( )2 , ,dsb u z N u z≤ . Also we have,  

( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ){ }

( )

, max , , , , , , , , ,

max , , , , , , , , ,

2 ,

d d d d d

d d d d d

d

N u z b Su Tz b Fu Su b Gz Tz b Su Gz b Fu Tz

b u z b u u b z z b u z b u z

sb u z

=

=

≤

 

So, ( ) ( ), 2 ,dN u z sb u z=  

and 

( )( ) ( )( ) ( )( )( ) ( )( )
( )( ) ( )( )

2 , 2 , , 2 , 2 ,

2 , 0 or 2 , 0

d d d d

d d

sb u z f sb u z sb u z sb u z

sb u z sb u z

ψ ψ φ ψ

ψ φ

≤ ≤

⇒ = =
 

As a result ( ), 0db u z =  and so u z= .  
The following is corollary of theorem 3.2 which is taken for parameter 1s =  

in a dislocated metric space. 
Corollary 3.3 Let ( ), lX d  be a dislocated metric space and  
, , , :S T F G X X→  are self-mappings such that (a) ( ) ( )F X T X⊂ ,  
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( ) ( )F X T X⊂  and exists ψ ∈Ψ , φ ∈Φ  and f C∈  such that satisfy the 
condition 

( )( ) ( )( ) ( )( )( )2 , , , ,ld Fx Gy f N x y N x yψ ψ φ≤            (A) 

for all ,x y X∈ , where ( ),N x y  is defined as in (3.1.0). If one of  
( ) ( ) ( ), ,F X S X T X  or ( )G X  is a complete subspace of X, then ( ),F S  and 

( ),G T  have a point of coincidence in X. Moreover if suppose that ( ),F S  and 
( ),G T  are weakly compatible pairs, then , , ,F G S T  have a unique common 
fixed point.  

Now we give an example to support our Theorem 3.2. 
Example 3.4 Let [ )0,X = ∞  and ( ) ( )2,db x y x y= + . Then the pair ( ), dX b   

is a b-dislocated metric space with parameter 2s = . We define the functions  

, ,F G S  and T as follows: 
2 , , ,
5 2 30 24
x x x xSx Tx Fx Gx= = = = . The pairs ( ),S F   

and ( ),T G  are weakly compatible, functions , ,F G S  and T are continuous 
and ( ) ( ) ( ) ( ),F X T X G X S X⊂ ⊂   

We have,  

( )( )

( ) ( )

( )

4

2 2

2 2 2

2

2 ,

3232 , 32
30 24 30 24 36 5 4

4 5 4 58 2 2 2
9 400 9 100 9 5 2

1 2 1 1,
4 5 2 4 4

d

d

d

s b Fx Gy

x y x y x yb

x y x y x y

x y b Sx Ty

ψ

ψ ψ ψ

ψ ψ ψ

ψ ψ

         = = + = +                      
     + +     = = = +            
    ≤ + = =         

( ) ( )

( ) ( ) ( )( ) ( )( )

( )( ) ( )( )( )

1, ,
4

3, , , ,
4
, , ,

db Sx Ty M x y

M x y M x y M x y M x y

f M x y M x y

ψ φ

ψ φ

≤

= − = −

=

 

where ( ),f s t s t= − ; ( )t tψ =  and ( ) 3
4

t tφ = , for all ,x y X∈ . 

Thus all conditions of theorem 3.2 are satisfied and 0x =  is the unique 
common fixed point of , ,S T F  and G. 

In a similar way as in Theorem 3.2, the following theorem can be proved.  
Theorem 3.5 Let ( ), dX b  be a complete b-dislocated metric space with pa-

rameter 1s ≥  and , , , :S T F G X X→  are self-mappings such that (a) 

( ) ( ) ( ) ( ),F X T X G X S X⊂ ⊂  and satisfy generalized ( ), ,f sψ φ−  weakly 
contractive condition. If one of ( ) ( ) ( ), ,F X S X T X  or ( )G X  is closed, then 

( ),F S  and ( ),G T  have a point of coincidence in X. Moreover if suppose that 
( ),F S  and ( ),G T  are weakly compatible pairs, then , , ,F G S T  have a 
unique common fixed point.  

For the different functions f of C-class (refer to example 2.15) we can take the 
following corollaries.  
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Corollary 3.6 Let ( ), dX b  be a db -dislocated metric space with parameter 
1s ≥  and , , , :S T F G X X→  are self-mappings where (a)  
( ) ( ) ( ) ( ),F X T X G X S X⊂ ⊂  and exists ψ ∈Ψ , φ ∈Φ  such that satisfies 

the condition 

( )( ) ( )( ) ( )( )42 , , ,ds b Fx Gy N x y N x yψ ψ φ≤ −  

for all ,x y X∈ , where ( ),N x y  is defined as in (3.1.0). If one of  
( ) ( ) ( ), ,F X S X T X  or ( )G X  is a complete subspace of X, then ( ),F S  and 

( ),G T  have a point of coincidence in X. Moreover if suppose that ( ),F S  and 
( ),G T  are weakly compatible pairs, then , , ,F G S T  have a unique common 
fixed point. 

Proof. If we take in Theorem 3.2 the function f as ( ),f s t s t= −  then we get 
the corollary. 

Corollary 3.7 Let ( ), dX b  be a db -dislocated metric space with parameter 
1s ≥  and , , , :S T F G X X→  are self-mappings where (a)  
( ) ( ) ( ) ( ),F X T X G X S X⊂ ⊂  and exists ψ ∈Ψ , φ ∈Φ  such that satisfies 

the condition 

( )( ) ( )( ) ( )( )
( )( )

4 , ,
2 ,

1 ,d

N x y N x y
s b Fx Gy

N x y
ψ φ

ψ
φ

−
≤

+
 

for all ,x y X∈ , where ( ),N x y  is defined as in (3.1.0). If one of  
( ) ( ) ( ), ,F X S X T X  or ( )G X  is a complete subspace of X, then ( ),F S  and 

( ),G T  have a point of coincidence in X. Moreover if suppose that ( ),F S  and 
( ),G T  are weakly compatible pairs, then , , ,F G S T  have a unique common 
fixed point. 

Proof. This corollary is obtained from Theorem 3.2 if we take as f the function  

( ),
1
s tf s t

t
−

=
+

. 

Corollary 3.8 Let ( ), dX b  be a db -dislocated metric space with parameter 
1s ≥  and , , , :S T F G X X→  are self-mappings where (a)  
( ) ( ) ( ) ( ),F X T X G X S X⊂ ⊂  and exists ψ ∈Ψ , φ ∈Φ  such that satisfies 

the condition 

( )( ) ( )( )
( )( )

4 ,
2 ,

1 ,d

N x y
s b Fx Gy

N x y
ψ

ψ
φ

≤
+

 

for all ,x y X∈ , where ( ),N x y  is defined as in (3.1.0). If one of  
( ) ( ) ( ), ,F X S X T X  or ( )G X  is a complete subspace of X, then ( ),F S  and 

( ),G T  have a point of coincidence in X. Moreover if suppose that ( ),F S  and 
( ),G T  are weakly compatible pairs, then , , ,F G S T  have a unique common 
fixed point. 

Proof. If we take in Theorem 3.2 the function f as ( ),
1

sf s t
t

=
+

 then we get 

the corollary. 
Corollary 3.9 Let ( ), dX b  be a db -dislocated metric space with parameter 
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1s ≥  and , , , :S T F G X X→  are self-mappings where (a)  
( ) ( ) ( ) ( ),F X T X G X S X⊂ ⊂  and exists ψ ∈Ψ , φ ∈Φ  such that satisfies 

the condition 

( )( ) ( )( ) ( )( )
( )( )

4 , ,
2 ,

1 ,d

N x y N x y
s b Fx Gy

N x y
ψ φ

ψ
φ

≤
+

 

for all ,x y X∈ , where ( ),N x y  is defined as in (3.1.0). If one of  
( ) ( ) ( ), ,F X S X T X  or ( )G X  is a complete subspace of X, then ( ),F S  and 

( ),G T  have a point of coincidence in X. Moreover if suppose that ( ),F S  and 
( ),G T  are weakly compatible pairs, then , , ,F G S T  have a unique common 
fixed point. 

Proof. If we take in Theorem 3.2 the function f as ( ),
1

stf s t
t

=
+

 then we get 

the corollary. 
Remark 3.10 As a consequence of theorem 3.2 and all corollaries for taking  

1) the parameter 1s = . 
2) the parameter 1s =  and G F=  and T S= .  
3) functions f from the set C and taking ( )t tψ =  and ( ) ( )1t k tφ = − . 

We can establish many other corollaries in the setting of dislocated and 
b-dislocated metric spaces. 
4) Our results unify, generalize, and extend several ones obtained earlier in a lot 

of papers concerning b-metric, dislocated and b-dislocated metric spaces (as 
in references [13] [15] [25] [26] [30] [31]). 

In this section, we use the notion of T-contractions introduced by Beiranvad 
et al. in [3] as a new class of contractive mappings, by generalizing the contrac-
tive condition in terms of another function. These contractions have been used 
by many authors. In this direction in order to generalize some other well-known 
results as in [32] [33] [34] we extend the notion of ( ), ,f sψ φ−  generalized 
weak contractions in the context of T-contractions, giving the following theo-
rem. 

Theorem 3.11 Let ( ), dX b  be a complete b-dislocated metric space with pa-
rameter 1s ≥  and :T X X→  be an injective, continuous and sequentially 
convergent mapping. Let , :F G X X→  be self-mappings and if exist ψ ∈Ψ , 
φ ∈Φ  and f C∈  such that  

( )( ) ( )( ) ( )( )( )42 , , , ,ds b TFx TGy f N Tx Ty N Tx Tyψ ψ φ≤         (B) 

for all ,x y X∈ , where 

( )

( ) ( ) ( ) ( ) ( )
,

, ,
max , , , , , ,

4
d d

d d d

N Tx Ty

b Tx TGy b Ty TFx
b Tx Ty b Tx TFx b Ty TGy

s
+ 

=  
 

 

then ,F G  have a unique common fixed point. 
Proof. We divide the proof into two parts as follows. 
First part. Each fixed point u of F is a fixed point of G and conversely, and the 
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common fixed point of ,F G  is unique. 
Let u X∈  be a fixed point of F. If ( ), 0db Fu Gu =  then, follows that 

u Fu Gu= =  and so u is a fixed point of G. If we suppose that ( ), 0db Fu Gu > , 
we evaluate ( ),N Tu Tu  as;  

( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( )

,

, ,
max , , , , , ,

2

, ,
max , , , , , ,

4

2 ,

d d
d d d

d d
d d d

d

N Tu Tu

b Tu TGu b Tu TFu
b Tu Tu b Tu TFu b Tu TGu

s

b Tu TGu b Tu Tu
b Tu Tu b Tu Tu b Tu TGu

s

sb Tu TGu

+ 
=  

 
+ 

=  
 

≤

 

So we have  

( ) ( ), 2 ,dN Tu Tu sb Tu TGu≤                 (3.11.1) 

Then by contractive condition (B), we have 

( )( ) ( )( )
( )( ) ( )( )( )

( )( )

22 , 2 ,

, , ,

,

d dsb Tu TGu s b TFu TGu

f N Tu Tu N Tu Tu

N Tu Tu

ψ ψ

ψ φ

ψ

≤

≤

≤

 

By property of ψ  we have  

( ) ( )2 , ,dsb Tu TGu N Tu Tu≤              (3.11.2) 

Hence from (3.11.1) and (3.11.2) follows ( ) ( ), 2 ,dN Tu Tu sb Tu TGu= . 
Again 

( )( ) ( )( )
( )( ) ( )( )( )
( )( ) ( )( )( )

( )( )

22 , 2 ,

, , ,

2 , , 2 ,

2 ,

d d

d d

d

sb Tu TGu s b TFu TGu

f N Tu Tu N Tu Tu

f sb Tu TGu sb Tu TGu

sb Tu TGu

ψ ψ

ψ φ

ψ φ

ψ

≤

≤

=

≤

 

( )( ) ( )( )( ) ( )( )
( )( ) ( )( )

2 , , 2 , 2 ,

2 , 0 or 2 , 0

d d d

d d

f sb Tu TGu sb Tu TGu sb Tu TGu

sb Tu TGu sb Tu TGu

ψ φ ψ

ψ φ

⇒ =

⇒ = =
 

By property of ,ψ φ  we get ( ), 0db Tu TGu =  that is Tu TGu=  and by in-
jectivity of T follows u Gu= . 

Thus u is a fixed point of G. Similarly we can prove the other implication.  
Second part. We prove that the function F has a fixed point. We define two 

eterative sequences { }nx  as 2 1 2n nx fx+ =  and 2 2 2 1n nx gx+ += , and { }ny  as 

n ny Tx=  for each 0,1,2,n =  .  
If for some n, we have 2 1 2n nx x+ =  then 2 2 1 2n n nx x fx+= =  and 2nx  is a fixed 

point of F and by the first part 2nx  is a fixed point of G and the proof is com-
pleted.  

Now, we assume that 2 1 2n nx x+ ≠  for all n, and since T is injective we have 

2 1 2n nTx Tx+ ≠ ; then from condition (B) of theorem, we have 
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( )( ) ( )( ) ( )( )
( )( ) ( )( )( )

( )( )

2
2 1 2 2 1 2 2 2 1

2 2 1 2 2 1

2 2 1

2 , 2 , 2 ,

, , ,

,

d n n d n n d n n

n n n n

n n

sb Tx Tx s b Tx Tx sb Tfx Tgx

f N Tx Tx N Tx Tx

N Tx Tx

ψ ψ ψ

ψ φ

ψ

+ + −

− −

−

≤ =

≤

≤

  

where 

( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

2 2 1

2 2 1 2 2 2 1 2 1

2 2 1 2 1 2

2 2 1 2 2 1 2 1 2

2 2 2 1 2 1

,

max , , , , , ,

, ,
4

max , , , , , ,

, ,
4

n n

d n n d n n d n n

d n n d n n

d n n d n n d n n

d n n d n n

N Tx Tx

b Tx Tx b Tx Tfx b Tx Tgx

b Tx Tgx b Tx Tfx
s

b Tx Tx b Tx Tx b Tx Tx

b Tx Tx b Tx Tx
s

−

− − −

− −

− + −

− +


= 


+ 




= 


+ 



 

( ) ( ) ( )

( ) ( ) ( )

2 2 1 2 2 1 2 1 2

2 2 1 2 1 2 2 2 1

max , , , , , ,

2 , s , ,
4

d n n d n n d n n

d n n d n n d n n

b Tx Tx b Tx Tx b Tx Tx

sb Tx Tx b Tx Tx b Tx Tx
s

− + −

− − +


≤ 


 + +  



 (3.11.3) 

If ( ) ( )2 2 1 2 1 2, ,d n n d n nb Tx Tx b Tx Tx− +<  then from (3.11.3) we get 

( ) ( )2 2 1 2 1 2, ,n n d n nN Tx Tx b Tx Tx− +≤               (3.11.4) 

Using condition (B) and property of C-class, we have  

( )( ) ( )( )
( )( )
( )( ) ( )( )( )

( )( )

2
2 1 2 2 1 2

2
2 2 1

2 2 1 2 2 1

2 2 1

, 2 ,

2 ,

, , ,

,

d n n d n n

d n n

n n n n

n n

b Tx Tx s b Tx Tx

s b Tfx Tgx

f N Tx Tx N Tx Tx

N Tx Tx

ψ ψ

ψ

ψ φ

ψ

+ +

−

− −

−

≤

=

≤

≤

 

By property of function ψ  we have  

( ) ( )2 1 2 2 2 1, ,d n n n nb Tx Tx N Tx Tx+ −≤                  (3.11.5) 

From (3.11.4) and (3.11.5) we get  

( ) ( )2 2 1 2 1 2, ,n n d n nN Tx Tx b Tx Tx− +=               (3.11.6) 

Also from condition of theorem and (3.11.6), we have 

( )( ) ( )( )
( )( )
( )( ) ( )( )( )
( )( ) ( )( )( )

( )( )

2
2 1 2 2 1 2

2
2 2 1

2 2 1 2 2 1

2 1 2 2 1 2

2 1 2

, 2 ,

2 ,

, , ,

, , ,

,

d n n d n n

d n n

n n n n

d n n d n n

d n n

b Tx Tx s b Tx Tx

s b Tfx Tgx

f N Tx Tx N Tx Tx

f b Tx Tx b Tx Tx

b Tx Tx

ψ ψ

ψ

ψ φ

ψ φ

ψ

+ +

−

− −

+ +

+

≤

=

≤

=

≤

 

Also we have, 
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( )( ) ( )( ) ( )( )( )
( )( )

( )( ) ( )( )( ) ( )( )
( )( ) ( )( )

2 1 2 2 1 2 2 1 2

2 1 2

2 1 2 2 1 2 2 1 2

2 1 2 2 1 2

, , , ,

,

, , , ,

, 0 or , 0

d n n d n n d n n

d n n

d n n d n n d n n

d n n d n n

b Tx Tx f b Tx Tx b Tx Tx

b Tx Tx

f b Tx Tx b Tx Tx b Tx Tx

b Tx Tx b Tx Tx

ψ ψ φ

ψ

ψ φ ψ

ψ φ

+ + +

+

+ + +

+ +

≤

≤

⇒ =

⇒ = =

 

By property of ψ  and φ  we have ( )2 1 2, 0d n nb Tx Tx+ =  so 2 1 2n nTx Tx+ =  
which is a contradiction since we supposed 2 1 2n nTx Tx+ ≠ . 

Hence, we have  

( ) ( )2 1 2 2 2 1, ,d n n d n nb Tx Tx b Tx Tx+ −≤ . 

Similarly, we have that 

( ) ( )2 2 2 1 2 1 2, ,d n n d n nb Tx Tx b Tx Tx+ + +≤  

Therefore for all n we have  

( ) ( )1 1, ,d n n d n nb Tx Tx b Tx Tx+ −≤  

and ( ){ }1,d n nb Tx Tx+  is a non increasing sequence of nonnegative real numbers  

and bounded below. Hence there exists 0r ≥  such that  

( ) ( )1 1lim , lim ,d n n n nn n
b y y N Tx Tx r+ +→∞ →∞

= =  

By the property of functions ψ  and φ , we have 

( ) ( )( ) ( ) ( )( )1 1lim , and lim inf ,n n n nn n
r N Tx Tx r N Tx Txψ ψ φ φ+ +→∞ →∞
= ≤ (3.11.7) 

If we consider condition (B) we have,  

( )( ) ( )( )
( )( ) ( )( )( )

( )( )

2
1 1

1 1

1

, 2 ,

, , ,

,

d n n d n n

n n n n

n n

b Tx Tx s b Tx Tx

f N Tx Tx N Tx Tx

N Tx Tx

ψ ψ

ψ φ

ψ

+ +

− −

−

≤

≤

≤

  (3.11.8) 

Taking the upper limit as n →∞  in (3.11.8) and using (3.11.7) we have that,  

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )
( ) ( )

, ,

0 or 0.

r f r r r f r r r

r r

ψ ψ φ ψ ψ φ ψ

ψ φ

≤ ≤ ⇒ =

⇒ = =
   (3.11.9) 

From (3.11.9) and property of ψ  and φ  follows that 0r =  and also 

( ) ( )1 1lim , lim , 0d n n n nn n
b y y N Tx Tx+ +→∞ →∞

= =          (3.11.10) 

In a similar way as in Theorem 3.2 we can show that the sequence { }nTx  
(also { }ny ) is a db -Cauchy sequence in b-dislocated metric space ( ), dX b . 
Since X is complete there exists z X∈  such that lim limn nn n

y Tx z
→∞ →∞

= = . Since T 
is sequentially convergent, we can deduce that { }nx  is convergent to u X∈  
and the subsequences { } { }2 2 1,n nFx Gx +  converge to u, that means 

( ) ( )2 2 1lim , 0 and lim , 0d n d nn n
b y u b y u+→∞ →∞

= = . 

Since T is continuous we have lim limn nn n
Tu Tx y z

→∞ →∞
= = = . 

Let we prove that u is a fixed point of F and G ( Fu Gu u= = ). If suppose that 
u Fu≠  then since T is injective follows z Tu TFu= ≠  (and ( ), 0db Tu TFu > )  
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Consider, 

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

2 1 2 1 2 1 2 1

2 1 2 1

2 1 2 1 2

2 2 1

, max , , , , , ,

, ,
4

max , , , , , ,

, ,
4

n d n d d n n

d n d n

d n d d n n

d n d n

N Tu Tx b Tu Tx b Tu Tfu b Tx Tgx

b Tu Tgx b Tx Tfu
s

b Tu y b Tu Tfu b y y

b Tu y b y Tfu
s

− − − −

− −

− −

−


= 


+ 




= 


+ 



(3.11.11) 

Taking the upper limit in (3.11.11) and using lemma (2.13), and result 
(3.11.10) we get 

( ) ( ) ( ) ( )2 1

,
lim sup , max 0, , ,0, ,

4
d

n d dn

sb Tu Tfu
N Tu Tx b Tu Tfu b Tu Tfu

s−→∞

  ≤ = 
  

(3.11.12) 

According to contractive condition (B) we have, 

( )( ) ( )( )
( )( ) ( )( )( )

( )( )

2 2
2 2 1

2 1 2 1

2 1

2 , 2 ,

, , ,

,

d n d n

n n

n

s b TFu Tx s b TFu TGx

f N Tu Tx N Tu Tx

N Tu Tx

ψ ψ

ψ φ

ψ

−

− −

−

=

≤

≤

 (3.11.13) 

Taking the upper limit in (3.11.13) and using lemma (2.13), we obtain, 

( )( ) ( ) ( )( )2 12 , 2 , ,d d dsb TFu Tu s b TFu Tu sb TFu Tu
s

ψ ψ ψ = ≤ 
 

 

This implies that ( ), 0db Tu TFu =  that is Tu TFu=  which is a contradiction. 
As a result u Fu=  and u is a fixed point of F. By the first part of proof u is a 
fixed point of G and also a common fixed point. 

Easily using the contractive condition (B) of theorem can be proved that the 
common fixed point is unique. 

Example 3.12 Let [ )0,X = ∞  be equipped with the b-dislocated metric  

( ) ( )2,db x y x y= +  for all ,x y X∈ , where 2s = . It is clear that ( ), dX b  is a 
complete b-dislocated metric space. Also let be the self-mappings  

, , :T F G X X→  defined by ( ) ( ) ( ), ,
2 5 10
x x xT x F x G x= = = . We note, T is 

continuous and sequentially convergent.  

If ( )t tψ = , ( ) 17
25

t tφ =  and ( ),f s t s t= −  then for each ,x y X∈ , we have  

( )( ) ( )

( ) ( ) ( )

( ) ( ) ( )( ) ( )( )

( )( ) ( )( )( )

2 2
2 2

2 2

2 , 2 , 8 , 8 8
10 20 10 20 10 10

8 8 8 8, ,
25 4 25 2 2 25 25

17, , , ,
25

, , ,

d d d

d

x y x y x ys b TFx TGy s b TFx TGy b

x y x y b Tx Ty N Tx Ty

N Tx Ty N Tx Ty N Tx Ty N Tx Ty

f N Tx Ty N Tx Ty

ψ

ψ φ

ψ φ

     = = = + ≤ +     
     

+  = = + = ≤ 
 

= − = −

=
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Thus , ,T F G  satisfy all the conditions of Theorem 3.11. Moreover 0x =  is 
the unique common fixed point of ,F G . 

If in theorem3.11 we take F G=  we get the following corollary. 
Corollary 3.13 Let ( ), dX b  be a complete b-dislocated metric space with 

parameter 1s ≥  and , :T G X X→  be two self mappings, where T is injective, 
continuous and sequentially convergent. If exist ψ ∈Ψ , φ ∈Φ  and f C∈  
such that  

( )( ) ( )( ) ( )( )( )22 , , , ,ds b TGx TGy f N Tx Ty N Tx Tyψ ψ φ≤  

for all ,x y X∈ , where 

( )

( ) ( ) ( ) ( ) ( )
,

, ,
max , , , , , ,

4
d d

d d d

N Tx Ty

b Tx TGy b Ty TGx
b Tx Ty b Tx TGx b Ty TGy

s
+ 

=  
 

 

then G has a unique fixed point. 
Corollary 3.14 Let ( ), dX b  be a complete b-dislocated metric space with 

parameter 1s ≥  and :T X X→  be an injective, continuous and sequentially 
convergent mapping. Let , :F G X X→  be self-mappings and if exist ψ ∈Ψ , 
φ ∈Φ  such that  

( )( ) ( )( ) ( )( )42 , , ,ds b TFx TGy N Tx Ty N Tx Tyψ ψ φ≤ −   

for all ,x y X∈ , where 

( )

( ) ( ) ( ) ( ) ( )
,

, ,
max , , , , , ,

4
d d

d d d

N Tx Ty

b Tx TGy b Ty TFx
b Tx Ty b Tx TFx b Ty TGy

s
+ 

=  
 

 

then ,F G  have a unique common fixed point. 
Proof. If we take in Theorem 3.11 the function f C∈  as ( ),f s t s t= −  then 

we get the corollary. 
Remark 3.15 

1) Theorem 3.11 generalizes, extends and unifies results as Theorem 8 in [32], 
Theorem 4 in [33] and many existing results of literature in a set effective 
larger as b-dislocated metric spaces. 

2) The class C of functions has a general character and so according to example 
2.15, we can provide many results from theorem 3.11. 

3) If we take in theorem 3.11 the parameter 1s =  as a consequence, we obtain 
results in a dislocated metric space. 
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