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Abstract 
The determination of water saturation is a key step for the reservoir characte-
rization and prediction of future reservoir performance in terms of produc-
tion. The importance of water saturation has been further identified when the 
reservoirs refer to rocks with low porosity and permeability such as shale and 
tight formations. In this communication, two advanced artificial intelligence 
strategies consisting of least square support vector machine (LSSVM) and 
gene expression programming (GEP) have been applied in order to develop 
reliable predictive models for the calculation of water saturation of shale and 
tight reservoirs. To this end, an extensive core and log data bank has been 
analysed from 12 wells of a Mesaverde group tight reservoir located in the 
largest Western US. The results indicate that the estimated water saturation 
data by the models developed in this study are in satisfactory agreement with 
the actual log data. Furthermore, new methods proposed in this study are 
useful for the characterization of shale and tight reservoirs and can be applied 
to the relevant software. 
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1. Introduction 

The reservoir characterization is a fundamental task for the determination of 
future reservoir performance. A large number of errors may enter the calcula-
tions associated with a future prediction of reservoir performance if there is no 
accurate and appropriate reservoir characterization which can cause the lose of 
the important values of reserves estimations and hydrocarbon production, etc. 
[1]. In particular, the water saturation has significant effects on shale reservoir 
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performance [2] [3]. Accurate estimation of water saturation is accounted as one 
of the most challenging computations associated with petrophysical properties. 
In reservoir characterization, the determination of water saturation is a key step 
for the prediction of future reservoir performance in terms of production. Fur-
thermore, the value of water saturation is needed in calculations related to the 
original oil and gas place so that the difference in water saturation calculated 
may lead to considerable differences in these volumes. The importance of water 
saturation has become more apparent when the reservoirs refer to rocks with 
low porosity and permeability such as shale and tight formations. As a result, the 
shales make up a large proportion of the rocks with many challenges and com-
plexities. The availability of detrital clay minerals in pores, reservoir heteroge-
neities in the directions vertically and laterally, considerable formation thickness, 
over-pressures condition, the existence of free water zone independently, and 
the intercalation and co-existence of source rocks with reservoir rocks could be 
accounted as main differences between the shale tight and conventional reser-
voirs [4]. 

Over the years, many attempts have been carried out for accurate calculation 
of formation water saturations. Furthermore, there are few studies to estimate 
water saturation of shale and tight reservoirs. Fertl and Hammack [5] conducted 
a comparative study of the different methods to calculate water saturation of 
shaly sandstone reservoirs utilizing the actual field data. The comparative analy-
sis conducted by them indicated the practical applications of these different 
techniques to the interpretation of shaly pay sands. 

Al-Blushi et al. [6] proposed some predictive models to calculate water satura-
tion based on log data. They used artificial neural network (ANN) methodology 
to develop their model for two Middle Eastern sandstone reservoirs. The results 
indicated that the model developed based on ANN strategy is capable to predict 
water saturation of Middle Eastern reservoirs studied. Kenari and Mashohor [7] 
used machine learning approach to propose an intelligent model for the predic-
tion of water saturations. To this end, they used well log data from un-cored well. 
The results revealed that the intelligent method employed is accurate and rapid 
for the prediction of water saturation. Amiri et al. [8] developed an ANN model 
to estimate water saturation in tight and shale gas reservoir. They also used the 
imperialist competitive algorithm as optimization methodology to couple with 
the ANN algorithm. The results demonstrated that the model developed based 
on the neural network and imperialist competitive algorithms outperform the 
conventional method compared in their study.  

As a result, the previously published models available in the literature fail to 
cover a wide range of petrophysical properties to estimate water saturation. 
Furthermore, the literature models have not been proposed on the basis of large 
numbers of water saturation data points. As a result, the prediction of water 
saturation by the literature models requires time-consuming calculations, read-
ing graphs, optimization of the coefficients, etc. Therefore, the development of 
simple-to-use predictive models as well as empirically derived methods is needed. 
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In this study, a large and extensive data bank is used, including more than four 
thousands petrophysical data points for the development of a reliable artificially 
intelligent based model which is based on the least square support vector ma-
chine (LSSVM) and an empirically derived method using gene expression pro-
gramming (GEP) algorithm. Additionally, the most important error parameters 
are calculated to visualize the accuracy of the models proposed in this study as 
well as graphical error analysis including scatter diagram and contour map.  

2. Database 

A literature survey on the previously published researches demonstrated that 
true formation resistivity (Rt), porosity induced by neutron log (PHID), porosity 
induced by density log (PHIN), effective prosity from density log (PHIDE), 
effective prosity from neutron log (PHINE), effective porosity induced by 
density and neutron logs (PHIDNE), effective porosity (PHIE), total porosity 
(PHIX), bulk density (RHOB), photoelectic (PE), and volume of shale from 
gamma ray (Vsh) are known as the most effective parameters for the calculation 
of water saturation (Sw) [6] [7] [8] [9] [10]. Therefore, a large and comprehensive 
data bank including the petrophysical properties noted above is provided in this 
study in order to develop reliable models for accurate estimation of water 
saturation of shale and tight gas reservoirs. To this end, the core and well log 
data [8] from 12 wells of Mesaverde group tight reservoir located in the largest 
Western US has been applied for the model development. More than 4000 data 
points has been considered from one of the tight gas sand basins in this study. 
These data show that Sw does not have a strongly linear relationship with 
individual parameter: PHIE, Vsh, Rt, PHIN, PHIDE, PHIDNE. Therefore, all of 
the paramters are correlated with collectively. The petrophysical properties 
which have the highest effects on the water saturation data available in the data 
bank are considered as input parameters for the model development. Table 1 
summarizes the ranges of the most effective petrophysical properties as well as 
water saturation data available in the data bank provided. 

 
Table 1. Ranges of data used for the prediction of water saturation data of shale and tight 
reservoirs using the models developed in this study. 

Parameter Rt/(Ω∙m) PHIN/1 Vsh/% PHIDE/1 PHIDNE/1 PHIE/1 Sw/1 

Min. 6.463 0.037 0 0 0 0 0.095 

Avg. 29.983 0.158 0.562 0.038 0.035 0.029 0.801 

Max. 323.999 0.57 1 0.5 0.45 0.297 1 

Type Input Input Input Input Input Input Output 

3. Development of Models 
3.1. Least Squares Support Vector Machine Model 

Least squares support vector machines are least squares forms of support vector 
machines (SVM), which are a set of associated supervised learning methods that 
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investigate data and identify patterns, and that are used for sorting and regres-
sion analysis offered by Suykens et al. [11] [12] [13]. In LS-SVM a linear ap-
proximation is prepared in kernel induced feature space. By considering a data 
set ( ),  ,  1, 2, ,i ix y i N= � , with input data ix R∈  and output data iy R∈ , the 
regression model can be established as follows [13] [14] [15]: 

( )T 1 2 ,, , ,k k ky w x b e k N= ∅ + + = �                 (1) 

In these equations w characterizes the linear regression (regression weight), T 
is symbolic of the transpose matrix, e is training items regression error, b is the 
model linear regression intercept, and shows the feature map. The cost function 
of LSSVM algorithm, QLSSVM is calculated below [12] [13] [14].  

T 2
LSSVM

1

1
2

n

k
k

Q w w eγ
=

= + ∑                      (2) 

 γ  is the relative weight of the regression errors summation compared to the 
regression weight. By assistance of Lagrange function, the regression weight 
normally is showed as follows [16] [17]. 
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w xα
=

=∑                           (3) 

In which kα  is defined as. 

  2k keα γ=                           (4) 

With the assumption of linear regression between independent and dependent 
LSSVM variables, Equation (1) can be re-written as [14] [16]. 

T

1
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=

= +∑                         (5) 

With the subsequent equation the Lagrange multipliers, kα  can be consid-
ered as [12] [13] [17]. 
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                       (6) 

By means of Kernel function the first linear regression equation will be 
changed into a nonlinear form [15] [16] [17]. 

( ) ( )
1

,
n

k k
k

f x K x x bα
=

= +∑                     (7) 

In the above equation, ( ), kK x x  represents the Kernel function, made by in-
ner product of the vectors ( )x∅  and ( )kx∅  [13] [16]. 

( ) ( ) ( )T, k kK x x x x=∅ ∅⋅                     (8) 

Radial basis function (RBF) is the utmost used relation for calculating the 
Kernel function [14] [17]. 

( )
2
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k

x x
k x x
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                   (9) 
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Here 2σ  is a decision variable. Its optimisation is controlled by an external 
procedure during model’s internal computations. The mean square error (MSE) 
definition for the LSSVM can be defined as follows [16] [17]. 

( )pred exp1

s

MSE
n

i
S S

n
=

−
=
∑                    (10) 

where S is the water saturation, pred. and exp. stand for the predicted, and ex-
perimental or actual data, respectively, and ns is the initial population number 
[16] [17]. 

3.2. Gene Expression Programming 

Ferreira [18] developed an intelligent evolutionary algorithm called gene expres-
sion programing (GEP) which is able to construct symbolic models mathemati-
cally. In GEP approach, control parameters, function set, fitness function, ter-
minal set, and termination condition are recognized as the key components [19]. 
Those parse trees are known as expression trees (ETs) for the GEP algorithm 
[20]. Hence, the nature of gene expression programming authorities the evolu-
tion of more complex programs composed of various substructures or subpro-
grams so-called GEP genes. For illustrating the mathematical performance of the 
GEP methodology in developing symbolic models, a simple GEP-based equation 
counting a chromosome composed of two genes connected together by a multi-
plication fitness function is expressed as follows: 

( ) fu v
l

 × +  
 

                        (11) 

where u, v, f and l express the input variables for estimating the target variable 
(water saturation), and ÷, × and + stand for the fitness functions. 

3.3. Model Development 

For developing predictive models to estimate the water saturation data using two 
modelling strategies viz. the LSSVM and GEP algorithms, the same input vari-
ables including PHIE, Vsh, GR, Rt, PHIN, PHIDE, PHIDNE have been consid-
ered. The database gathered should be randomly divided into two sub-sets. The 
first sub-set is called “Training” and the second is “Test” set which have been 
applied to develop models and check the prediction performance, respectively. 
Around 80 % of the entire data is assigned to the training set, and the rest is al-
located to the test set. In this study, two important statistics error parameters 
have been used through a comprehensive error analysis in order to visualize the 
accuracy and performance capability of the developed models for the water 
saturation prediction. The statistical error parameters implemented in this study 
are squared correlation coefficient and average absolute relative deviation 
(AARD) as follows: 

exp rep./pred 

1 exp

1AARD% 100
n

i

X X
n X=

−
= ×∑               (12) 
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In the first stage, the LSSVM algorithm was coupled with an optimization 
strategy known as coupled simulated annealing (CSA) [21] [22] [23] for obtain-
ing the optimum values of the LSSVM parameters (γ and σ2). As a result, the 
values tuned by the CSA technique for the LSSVM model in order to estimate 
the water saturation data are σ2 = 1.4181 and γ = 328.2432. To propose a new 
empirically derived equation based on the GEP algorithm, three genes with 30 
chromosomes are applied as a starting condition. Additionally, the AARD is 
considered as the accuracy function so that the optimal form of the newly de-
veloped model has the lowest AARD. Furthermore, a function set including 
power, cube root, ×, ÷, – and + is selected during applying the GEP methodol-
ogy. The final model obtained by the GEP algorithm developed in this study is a 
simple-to-use equation with lowest possible coefficients as follows: 

wS A B C= + −                        (14) 

sh

sh

PHIE 3.0748
PHIE PHIDNE

PHIE 5.7408
VA

V
− +

= + +
− +

            (15) 

sh t

1.6173
4.0235PHIN 1.6173

B
V R

=
+ −

                (16) 

( )( )
1
3

shPHIE PHIDE PHIDE PHIDNE 8.5575C V= − × +        (17) 

where Sw denotes the water saturation, PHIDNE stands for the effective porosity 
induced by density and neutron logs, PHIDE indicates the effective porosity 
from density log, PHIN shows the porosity induced from neutron zoned, PHIE 
is the effective porosity, Vsh expresses the volume of shale from gamma ray, and 
finally Rt stands for the true formation resistivity. 

As a result, the optimal condition to apply the equations above is the range 
of the petrophysical properties used which have previously been summarized 
in Table 1. Furthermore, another important condition to develop the equa-
tions above is that some input parameters i.e. Vsh, PHIDE, PHIDNE, PHIE 
have a minimum value of zero and should not be in the denominator indi-
vidually. Therefore, this condition is considered to develop the equations pre-
sented above. Although the equation proposed in this study is also applicable 
for calculating water saturation of conventional reservoirs, the equations pro-
posed in this study have been developed based on the data from shale and tight 
reservoirs. 

4. Results and Discussion 

The error parameters calculated for the LSSVM model and the new method 
(Equation (14)) are AARD= 3% and R-squared= 0.96, and AARD= 10.6 and 
R-squared = 0.77. Table 2 also summarizes some calculated water saturation 
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data by the predictive models developed in this study based on the LSSVM and 
GEP algorithms as well as the absolute relative deviation (ARD) for each data 
point studied. The results obtained indicate that the water saturation values 
characterized by the GEP and LSSVM models are in satisfactory agreement with 
the actual data. For further comparison of the performance of the models devel-
oped in this study graphically, scatter diagrams (crossplot) of the data predicted 
versus actual data of water saturation are sketched. Figure 1 and Figure 2 illus-
trate the output values obtained from the LSSVM model and the newly proposed 
equation against the actual data of water saturation, respectively. As is shown 
clearly in the Figure 1 and Figure 2, the data corresponding to the developed 
models are almost around the unit slope line (Y = X), revealing there is accept-
able agreement between the models predictions and the actual data of data of 
water saturation.  

 
Table 2. The water saturation data calculated by the models developed in this study at the different petrophysical properties. 

Rt/(Ω∙m) PHIN/1 Vsh/1 PHIDE/1 PHIDNE/1 PHIE/1 Sw/1 LSSVM LSSVM ARD New Method New Method ARD 

11.2522 0.27511 1 0 0 0 1 1.00 0.27 1.00 0.39 

10.2244 0.30458 1 0 0 0 1 1.00 0.00 1.00 0.47 

10.0831 0.30795 1 0 0 0 1 1.00 0.16 1.00 0.43 

12.6846 0.24391 1 0 0 0 1 1.00 0.00 1.00 0.38 

13.7581 0.21807 1 0 0 0 1 1.00 0.13 1.00 0.07 

16.0662 0.18945 1 0 0 0 1 1.00 0.46 1.00 0.14 

20.0791 0.16955 1 0 0 0 1 1.00 0.34 0.98 1.68 

42.3458 0.10567 0.55381 0.03636 0 0 0.78798 0.80 0.96 0.80 0.89 

39.7585 0.11076 0.56332 0.04821 0.00595 0.00595 0.73624 0.72 2.77 0.73 0.78 

37.3472 0.11451 0.51135 0.06638 0.02423 0.02423 0.6802 0.70 2.30 0.66 3.42 

28.6273 0.12697 0.65267 0.09144 0.02602 0.02602 0.64359 0.63 1.76 0.65 1.17 

28.5779 0.1255 0.66401 0.08862 0.02236 0.02236 0.65461 0.64 2.31 0.67 2.12 

29.0527 0.12163 0.60497 0.1013 0.03547 0.03547 0.62585 0.63 0.59 0.60 3.49 

29.8872 0.11417 0.59226 0.09137 0.02807 0.02807 0.66372 0.67 0.80 0.64 3.65 

29.5548 0.11734 0.61305 0.08331 0.02222 0.02222 0.68381 0.66 2.79 0.67 1.86 

29.2953 0.12034 0.58618 0.08827 0.02971 0.02971 0.66611 0.66 1.07 0.64 3.88 

29.8534 0.11828 0.64503 0.13148 0.04734 0.04734 0.54482 0.51 7.00 0.51 5.66 

30.621 0.12051 0.73746 0.12583 0.03331 0.03331 0.54123 0.57 5.38 0.57 5.12 

32.8421 0.11708 0.67132 0.12041 0.03672 0.03672 0.54446 0.54 1.25 0.56 2.02 

36.0467 0.10965 0.55381 0.10376 0.03815 0.03815 0.58221 0.62 6.05 0.57 2.73 
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Figure 1. Graphical comparison (crossplot) between the results obtained by the LSSVM 
model developed in this study and the actual data of Sw. 

 

 
Figure 2. Graphical comparison (crossplot) between the results obtained by the new 
method proposed in this study and the actual data of Sw. 

 
Figure 3 and Figure 4 reveal the absolute relative deviation contours of the 

water saturation predicted by the LSSVM model and the newly proposed equa-
tion, respectively. It is evident from the figures that the models developed in this 
study are able to predict water saturations of shale and tight reservoir in the 
dataset range particularly two important parameters of true resistivity and effec-
tive porosity induced by density and neutron logs. However, the model developed 
in the current study could not predict the water saturation with high accuracy in 
the PHIDNE range of 0.1 - 0.3, and Rt range of 0 - 100. From the results obtained, 
it could be concluded that the methods proposed in this study (the LSSVM and 
GEP) can be reliable alternatives for the previously published models available in 
the literature as they may fail to cover a wide range of petrophysical properties to 
estimate water saturation, and also require time-consuming calculations, reading 
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graphs, optimization of the coefficients, etc. As a result, the accuracy and future 
applicability are two main advantages of the models developed in this study. The 
LSSVM model could predict the water saturation data with higher accuracy than 
the new equation proposed. On the other hand, the equation proposed based on 
the GEP algorithm is more simple-to-use so that it can be used for future calcu-
lations and soft wares related to water saturation and reservoir characterization. 
Therefore, a combined application of both LSSVM and GEP algorithms is rec-
ommended in order to accurately predict water saturation of shale and tight res-
ervoirs. 
 

 
Figure 3. Absolute relative deviation (ARD) contour of water saturation data for the de-
veloped LSSVM model in the ranges of true resistivity and effective porosity induced by 
density and neutron logs. 

 

 
Figure 4. Absolute relative deviation contour of water saturation data for the new pro-
posed method in the ranges of true resistivity and effective porosity induced by density 
and neutron logs. 
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5. Conclusion 

The current study aimed to propose reliable models for the prediction of water 
saturation of shale and tight gas reservoir. The modelling approaches imple-
mented in this study were the gene expression programming, and least squares 
support vector machine. The results obtained in the current study indicated that 
the two methods developed in this study could be applied for the characteriza-
tion water saturation of shale reservoirs. The R-squared error values of 0.96 and 
0.77 (average absolute relative deviation (AARD) of 3% and 10.6%) were ob-
tained for the LSSVM model and the newly proposed equation, respectively. As a 
result, the methods proposed by gene expression programming in this study is a 
capable alternative for the previously published models which require complex 
and time-consuming calculations. 
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