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Abstract 
Drought events across the world are increasingly becoming a critical problem 
owing to its negative effects on water resources. There is need to understand 
on-site drought characteristics for the purpose of planning mitigation meas-
ures. In this paper, meteorological drought episodes on spatial, temporal and 
trend domains were detected using Standardized Precipitation Index (SPI) 
and Effective Drought Index (EDI) in the upper Tana River basin. 41 years 
(1980-2016) monthly precipitation data from eight meteorological stations 
were used in the study. The SPI and EDI were used for reconstruction of the 
drought events and used to characterize the spatial, temporal and trend dis-
tribution of drought occurrence. Drought frequency was estimated as the ratio 
of a defined severity to its total number of events. The change in drought 
events was detected using a non-parametric man-Kendall trend test. The main 
drought conditions detected by SPI and EDI are severe drought, moderate 
drought, near normal, moderate wet, very wet and extremely wet conditions. 
From the results the average drought frequency between 1970 and 2010 for 
the south-eastern and north-western areas ranged from 12.16 to 14.93 and 
3.82 to 6.63 percent respectively. The Mann-Kendall trend test show that 
drought trend increased in the south-eastern parts of the basin at 90% and 
95% significant levels. However, there was no significant trend that was de-
tected in the North-western areas. This is an indication that the south-eastern 
parts are more drought-prone areas compared to the North-western areas of 
the upper Tana River basin. Both the SPI and the EDI were effective in de-
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tecting the on-set of drought, description of the temporal variability, severity 
and spatial extent across the basin. It is recommended that the findings be 
adopted for decision making for drought-early warning systems in the river 
basin. 
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1. Introduction 

Drought is a natural phenomenon associated with deficit of water availability 
resulting from low precipitation compared to long term average [1] and can be 
described on s spatial domain [2]. Drought has become more frequent and se-
vere in arid and semi-arid lands (ASALS) than in humid areas. Drought is a dis-
aster which affects large areas and for a longer period compared to other natural 
disasters such as floods. Globally, drought has become more common with a 
number of countries experiencing drought of different characteristics. Different 
regions experience droughts which have different spatial and temporal characte-
ristics. It is critical to detect spatial, temporal as well as trend characteristics of 
different droughts such as the meteorological droughts for a well-coordinated 
mitigation planning. The meteorological drought which is the most commonly 
known drought is associated with long time intervals of significantly low or no 
precipitation and increased air temperature. The deficiency in rainfall leads into 
low infiltration, decreased runoff and ground water recharge. On the other hand, 
high air temperatures lead to changes in wind characteristics such as increased 
wind velocity, low Relative Humidity (RH) and increased evapo-transpiration (ET). 

1.1. Indices for Met-Drought 

A number of drought indices have been developed and applied in met-drought 
assessment over the years. Some of these indices include Aggregated Drought 
Index (ADI) [3], Standardized Precipitation Index (SPI) [4] [5], Palmer Drought 
Severity Index (PDSI) and Z-Index [6], Effective Drought Index (EDI) [7], 
Keetch-Byram Drought Index (KBDI) [8], Hybrid Drought Index (HDI) [9], 
Vegetation Drought Response Index (VegDRI) [10], Recconnaissance Drought 
Index (RDI) [11], Rainfall Anormally Index (RAI) [12], Drought Severity Index 
(DSI) [13], National Rainfall Index (NRI) [14] and Drought frequency index 
(DFI) [15]. Among the mereorological drought indices, the SPI and EDI have 
generally been used more than most of the other drought indices because they 
require precipitation as a single input variable. 

1.2. Standardized Precipitation Index 

The Standard Precipitation Index (SPI) was developed by [4] to quantify the 

https://doi.org/10.4236/ojmh.2018.83007


R. M. Wambua et al. 
 

 

DOI: 10.4236/ojmh.2018.83007 85 Open Journal of Modern Hydrology 
 

precipitation deficit and monitor drought conditions within Colorado, USA. The 
SPI is used to categorize the different drought classes as described in [4]. For 
calculation of SPI, long-term historical precipitation record of at least 30 years is 
integrated into a probability distribution function which is then transformed in-
to a normal distribution function. The SPI requires less input data compared to 
most other drought indices and this makes it flexible for wide applications [16] 
[17]. The SPI has several advantages which make it more applicable in many 
river basins. First, it requires only the precipitation as the input data. This makes 
it ideal for river basins that do not have extensive hydrological data records. Se-
condly, its evaluation is relatively easy since it uses precipitation data set only. 
Thirdly, it is a standardized index and this makes it independent of geographical 
location as it is based on average precipitation values derived from the area of 
interest. In addition, the SPI exhibits statistical consistency, and has the ability to 
present both short-term and long-term droughts over time scales of precipita-
tion variation [18]. However, the SPI has some disadvantages in its use as a 
drought assessment tool. First, it is not always easy to find a probability distribu-
tion function to fit and model the raw precipitation data. Secondly, most river 
basins do not have reliable time-series data to generate the best estimate of the 
distribution parameters. In addition, application of SPI in arid and semi-arid 
lands of time-series of less than three months may give inaccurate values. 

To overcome the challenge of simulating and modelling the data for SPI out-
puts, application of different probability distribution functions may be employed. 
These include the Gamma, Pearson type III, Lognormal, Extreme Value and 
Exponential distribution functions [19]. However, the Gamma probability dis-
tribution function is preferred in hydrological studies. In hydrology, it has an 
advantage of fitting only positive and zero values since hydrological variables 
such as precipitation, and runoff are always positive or equal to zero as lower 
limit values [20] [21]. The Gumbel and Weibull distribution functions are used 
for study of extreme hydrological variables. The Gumbel distribution function is 
used for frequency analysis of floods, while the Weibull distribution function is 
used to analyze low flow values observed in rivers. SPI has been found to per-
form differently for various time scales. For time scales shorter than 6 months, 
there is insignificant autocorrelation while for time scales greater than 6 months, 
the autocorrelation increases significantly [22]. 

1.3. Effective Drought Index 

The effective drought index (EDI) uses effective precipitation which is the ac-
cumulation of selected portions of the days before the estimated time period [19]. 
It estimates droughts more accurately than many other indices in terms of on-set, 
detection, spatial and temporal analysis. When compared with seven other 
drought indices in Iran, [23] found that EDI is more accurate and consistent in 
the study of drought. 

The study of drought characteristics such as spatial, temporal, trend is at-
tracting great attention in river basins due to the adverse effects whenever they 
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occur. There is need to understand drought spatial, temporal and trend charac-
teristics for its prioritized integration in planning for timely mitigation measures. 
In this paper therefore, meteorological drought on spatial, temporal and trend 
domains was detected using Standardized Precipitation Index (SPI) and Effective 
Drought Index (EDI) for the upper Tana River basin with a view for its incorpo-
ration in drought early warning systems. 

2. Materials and Methods 
2.1. Study Area 

The upper Tana River basin has an area of 17,420 km2 as presented in Figure 1 
and is the focus of this study. The basin lies between latitudes 00˚05' and 01˚30' 
south and longitudes 36˚20' and 37˚60' east. The upper Tana River basin lies 
between latitudes 00˚05' and 01˚30' south and longitudes 36˚20' and 37˚60' east. 

The basin has forest land resources located along the eastern slopes of Mount 
Kenya and Aberdares range which are crucial in controlling hydrological 
processes of the basin [24]. This basin is located in a fragile ecosystem with all 
agro-ecological zones of Kenya. The Tana River tributaries originate from the 
slopes of Mount Kenya and Aberdares range. The basin constitutes a very im-
portant resource in Kenya such as being a water supply source, hydro-power 
generation and agricultural production. 

2.2. Standardized Precipitation Index 

The Standardized Precipitation Index (SPI) was used to quantify precipitation 
deficit within the basin as a representation of drought condition as defined by 
[4]. The first step involved fitting the precipitation data into a probability distri-
bution function and then computation of the SPI values. The computed SPI val-
ues were used in drought assessment and classification. In the first step, the 
gamma distribution function was adapted since it fits well in time series precipi-
tation data [25]. The gamma distribution is expressed in terms of its probability 
density function as: 

( ) ( )
11, , e for , , 0xf x x xα β

αα β α β
β α

− −= >
Γ

          (1) 

where; α = the shape parameter, β = scale parameter, x = the precipitation 
amount (mm), Γ(α) = the value taken by gamma function and x  = mean rain-
fall (mm). 

The Γ(α) is the value defined by the Gamma function which is determined by 
applying an integral function according to [11] expressed as: 

( ) 1

0

e dyx x
α

αα − −Γ = ∫                     (2) 

where; Γ(α) = the value taken by gamma function, x = the precipitation amount 
(mm) and α = the shape parameter. 

The Gamma function in Equation (2) was evaluated both by the numerical 
method and use of tabulated values using the selected shape parameter α. A  
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Figure 1. Map of the upper Tana River basin. 

 
maximum probability was then used to estimate the optimal values of α and β 
using Equations (3) and (4): 

1 41 1
4 3

A
A

α
 

= + +  
 

                      (3) 

x
β

α
=                              (4) 

where; α = the shape parameter, β = scale parameters, x  = mean precipitation 
(mm) and A = sample statistic. 

The sample statistic is defined as: 

( ) lnln xA x
n

= −                       (5) 

where; x  = the precipitation average (mm) and n = the number of observa-
tions 

The calculated values were in turn used to compute the cumulative probability 
for non-zero rainfall using Equations (6) and (7) respectively: 

( ) ( ) ( )
1

0 0

1, , , , d e d
x x

xf x f x x x xα β
αα β α β

β α
− −= =

Γ∫ ∫         (6) 

where; α= the shape parameter, β = scale parameter and x = the precipitation 
amount (mm) 

The Equation (6) above was reduced to: 
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( ) ( )
1

0

1, , e d for
x

t xf x t t tαα β
α β

−= =
Γ ∫                (7) 

where; Γ(α) = the value taken by gamma function, x = the precipitation amount 
(mm), β = scale parameter and t = the time period 

The Gamma function was applied for values of precipitation x > 0 for the pre-
cipitation time series of the upper Tana River basin. In case of non-zero values, 
cumulative probability of both zero and non-zero values were computed. This 
probability is represented by a function H(x) defined as: 

( ) ( ) ( )1 , ,H x q q F x α β= + −                  (8) 

where; H(x) = Cumulative probability and q = probability of zero precipitation 
When m was taken as the number of zero entries in the time series precipita-

tion data, then the q value was estimated by the ratio m/n. The cumulative 
probability was then transformed into a standard normal distribution function. 
This gave values of the mean and variance of the SPI as zero and one respectively. 
This step was carried out using approximate transformation functions adapted 
from [26]. These functions given in Equations (9) and (10) are expressed as: 

( )
2

0 1 2
2 3

1 2 3

for 0 0.5
1

c c k c kSPI k H x
d k d k d k

 + +
= − − < ≤ 

+ + + 
        (9) 

( )
2

0 1 2
2 3

1 2 3

for 0.5 1.0
1

c c k c kSPI k H x
d k d k d k

 + +
= + − < < 

+ + + 
       (10) 

where; c0 = 2.515517, c1 = 0.802853, c2 = 0.010328, d1 =1.432788, d2 = 0.189269, 
d3 = 0.001308 

The parameters were used to compute the SPI and were adapted from [19]. 
The value of k in Equations (9) and (10) was determined from the functions 
given as: 

( )
( )2

1ln for 0 0.5k H x
H x

 
 = < ≤
 
 

                 (11) 

( )
( )2

1ln for 0.5 1.0
1

k H x
H x

 
 = < <
 − 

              (12) 

In this study, the SPI values were calculated using a monthly time step and the 
threshold ranges adapted from [25] ranging from extreme drought to extremely 
wet conditions. 

2.3. Effective Drought Index 

The effective drought index (EDI) was computed using monthly time step data 
for the weather stations within the study area according to [27]. The computa-
tion of the EDI was done through four steps. The first step involved the calcula-
tion of the effective precipitation parameter EPp of the current month using the 
relation: 
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1

1

m

mN
i
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m

PE
ED

m
=

=

 
 
 =
 
 
 

∑
∑                      (13) 

where; EPp = effective precipitation parameter (mm), m = total period before the 
current month, PEm = the precipitation in m − 1 months before the current 
month (mm) and N = duration of summation of the precipitation. 

The mean EP is computed annually to represent the climatological characte-
ristics of water resources. For practical application of MEP a 5-months running 
mean is applied in this computation [28]. Then the deviation time series EP 
from the mean EP was computed using the relation: 

DEP EP MEP= −                      (14) 

where; DEP = deviation of time series EPp from mean effective precipitation pa-
rameter (mm) and MEP = mean effective precipitation parameter (mm) 

From the EPp, both the mean and the standard deviations of the monthly val-
ues were determined. The resulting time-series EP was used as inputs to calcu-
late its deviation from the mean. Then the return to normal precipitation (RNP) 
values was determined using the relation adopted from [29]: 

1
DEPRNP

N

=
 
 
 

∑
                       (15) 

where; RNP = return to normal precipitation (mm) 
N = previous period (months) 
From the calculated RNP, the EDI was derived from the relation: 

( )
RNPEDI

Std RNP
=                       (16) 

where; Std (RNP) = Standard deviation of a particular months RNP values 
Using the computed EDI values, the severity of the drought was categorized 

based on the thresholds and classification (ranging from extreme drought to ex-
treme wet conditions) adopted from [30]. 

2.4. Mann-Kendall Trend Test for Drought Conditions 

A test-statistic can be used to detect a shift in the mean of values [31]. [32] Iden-
tified trend in time series water quality while [33] used a non-parametric statistic 
detect change point of a temporal data. To test for the trend in drought severity, 
a non-parametric Mann-Kendall trend test was applied. The method was se-
lected for this study because the capacity to test for increasing, decreasing or no 
trend [34] as required by this study.  The data for the upper Tana River basin 
was evaluated using ordered time series in Figure 2. The data sets were orga-
nized in form of 1 2 3, , , , jx x x x  n-data points where xi represent data point at 
time j. Then the Mann-Kendall statistical trend S was determined using the rela-
tion: 
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Figure 2. Process for computation of the time series SPI. 

 

( )
1

1 1

n n

i k
k j k

S sign x x
=

= = +

 
= − 

 
∑ ∑                      (17) 

The right hand side of the Equation (17) was simplified using Equation (18) 
given as:  

( )
( )
( )
( )

1 if 0

0 if 0

1 if 0

j k

j k j k

j k

x x

sign x x x x

x x

 − >
− = − =

− − <

                 (18) 

The probability linked to the Mann-Kendall statistic S and the selected n-data 
were determined to quantify the level of significance of the trend. The VAR(S) 
was calculated and then the normalized test statistic Z was computed using the 
following equations: 

( ) ( ) ( )( )1 2 5
1 2 5

18t

t t t
VAR S n n n

− + 
= − + − 

 
∑          (19) 
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( )

( )

1 if 0

0 if 0
1 if 0

S S
VAR S

Z S
S S

VAR S

− >

= =
 + <


                      (20) 

where; VAR(S) = the variance of the data set and n = the number of data points 
Equation (20) which was adapted from [35] was used to qualify the drought 

trend in the basin as: no trend, increasing trend and decreasing trend when S = 0, 
S > 0 and S < 0 respectively. In order to determine whether or not the drought 
trend in the upper Tana River basin was significant or insignificant, significance 
levels at 90% and 95% were used. At these significance levels, the null hypothesis 
of no trend was rejected when 1.645Z >  and 1.96Z >  respectively where 
the values of Z were adapted from [36]. 

3. Results and Discussions 

3.1. Time Series SPI 

The results for monthly time series SPI and the spatial characteristics of drough-
ts in the upper Tana River basin are presented. The results spatial maps are 
based on the partitioned basin into four elevations bands; low, lower-middle, 
middle and high elevations. The results of plotted drought conditions on 
monthly time series graphs are illustrated using the graphs for meteorological 
stations Sagana FCF (ID 9037096), Kerugoya DWO (ID 9037031), Nyeri (ID 
9036288) and Naro-moru (ID 9037064) as presented in Figures 3-6. 

Both time series SPI and precipitation were plotted for ease of comparison as 
given in Figures 3-6 for the four meteorological stations. The area exhibits sig-
nificant time series and spatial variability in the monthly precipitation. For in-
stance, from Figures 3-6, the maximum monthly precipitation for Sagana FCF, 
Kerugoya DWO, Nyeri and Naro-moru meteorological stations is 600, 50, 700 
and 800 mm respectively. This highly variable precipitation was used to derive 
the SPI values. The results show that the SPI varies with the monthly precipita-
tion within the study period and across the river basin. For all the stations, ex-
treme drought events based on SPI were detected using SPI for the periods 
1972-1974, 1983-1984, 1987-1988, 1999-2000 and 2011 within which the 
monthly SPI values were consistently below −2.00. The SPI is used to detect the 
occurrence of drought (negative values of SPI) or the wetness (positive values of 
SPI) in a river basin. The other drought conditions detected by SPI for the upper 
Tana River basin as defined in the SPI criterion that includes: severe drought, 
moderate drought, near normal, moderate wet, very wet and extremely wet con-
ditions. Results of SPI time series within the upper Tana River basin show ex-
treme wetness for 1985-1886, 1992, and 1998 with SPI values being relatively 
above +2.00. 
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Figure 3. Time series SPI and precipitation for Sagana FCF meteorological station. 

 

 
Figure 4. Time series SPI and precipitation at Kerugoya DWO meteorological station. 

 

 
Figure 5. Time series SPI and precipitation for Nyeri meteorological station. 

 

 
Figure 6. Time series SPI and precipitation for Naro-moru meteorological station. 

0
200
400
600
800
1000
1200
1400
1600-4

-2
0
2
4
6
8

10

Pr
ec

ip
ita

tio
n 

(m
m

) 

SP
I 

Duration (months) 

Precipitation SPI

https://doi.org/10.4236/ojmh.2018.83007


R. M. Wambua et al. 
 

 

DOI: 10.4236/ojmh.2018.83007 93 Open Journal of Modern Hydrology 
 

3.2. Spatially Distributed Drought Severity Based on SPI 

Drought severities for the upper Tana River basin were computed and mapped 
using the Kriging approach for the selected years; 1970, 1980, 1990, 2000 and 
2010. From Figure 7, it is observed that the spatial drought distribution in the 
south-eastern areas of the basin exhibit drought severities ranging from 2.044 to 
2.835 and from 4.416 to 5.207. In addition, the results show that the north- 
western parts of the basin experienced drought severity values of 1.822 to 2.463 
and 3.745 to 4.384 for 1970 and 2010 respectively. These results indicate that the 
south-eastern parts of the basin exhibit the highest drought severities while the 
north-western areas have the lowest. The spatial variation of drought is compa-
rable with the drought distribution generated in other river basins for instance 
by [37] in the Tel river basin and [6] in the upper Seonath sub-basin. 

Based on the SPI, the areal-extend of drought severities increased in both the 
South-eastern and North-western areas from 4868.7 km2 to 6880 km2, and 
6163.9 km2 to 6985.5 km2 from 1970 to 2010 respectively. Between 1970 and 
1980, the drought areal-extend is almost the same but a significant increase oc-
curred between 1980 and 2010. 

From Figure 8(a), the results show that the average drought frequency be-
tween 1970 and 2010 for the South-eastern and North-western areas ranged 
from 12.16 to 14.93 and 3.82 to 6.63 respectively. The drought characteristics 
were also subjected to Mann-Kendall trend test across the basin. Results of the 
Mann-Kendall test show that drought trend increased in the South-eastern parts 
of the basin at 90% and 95% significant levels. However, the results given in 
Figure 8(b) shows that there was no significant trend that was detected in the 
North-western areas. This is an indication that the South-eastern parts are 
drought-prone areas compared to the North-western areas of the upper Tana 
River basin. 

3.3. Monthly Time Series EDI 

Monthly time series of EDI for meteorological stations Nyeri (ID 9036288), Ke-
rugoya DWO (ID 9037031), Sagana FCF (ID 9037096) and Naro-moru (ID 
9037064) are presented in Figures 9-12. 

The results of the monthly time series EDI show that this index can be used to 
detect both the drought and wetness for different years. Typical droughts as 
presented by this index include the extreme droughts represented by the nega-
tive values of −2.5, −2.2, −2.2, −2.5, −2.5, and −2.5 for the years 1972, 1973, 1992, 
1994, 2000 and 2010 respectively. At the same time, the index was used to detect 
the wet conditions of the basin where positive values of +3.0, +3.0 and 4.3 for the 
years 1986, 1989 and 1998 respectively as illustrated by Figures 9-12 indicate 
wetness. 

3.4. Spatially Distributed Drought Severity Based on EDI 

From the results of spatial distribution of drought based on EDI shown in Fig-
ures 13(a)-(e), it is observed that the drought severity values differ slightly from  
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Figure 7. (a)-(e): Spatially distributed drought severity based on SPI. 

 

 
Figure 8. (a) and( b): Frequency of severe drought and its trend based on SPI. 
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Figure 9. Time series EDI and precipitation for Nyeri meteorological station. 

 

 
Figure 10. Time series EDI and precipitation for Kerugoya DWO meteorological station. 

 

 
Figure 11. Time series EDI and precipitation for Sagana meteorological station. 

 
those determined using the SPI. It is also noted that the drought severity values 
in South-eastern areas of the basin range from 3.850 to 4.486 and 4.804 to 5.584 
in 1970 and 2010 respectively. Based on the spatially distributed EDI from 1970 
to 2010, drought severity has shown some significant increase as per the Figure 13. 
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Figure 12. Time series EDI and precipitation for Naro-moru meteorological station. 

 

 
Figure 13. (a)-(e): Spatially distributed drought severity based on EDI. 

 
based on EDI is generally higher than the SPI, both indices exhibit similar trends 
in terms of spatial distribution, frequency and Mann-Kendall trend test as given 
in Figure 14(a) and Figure 14(b). 

4. Conclusion 

Different spatial and temporal drought conditions; severe drought, moderate 
drought, near normal, moderate wet, very wet and extremely wet conditions 
were detected using SPI and EDI for the Upper Tana River basin. The findings 
indicate that the South-eastern parts are more drought-prone areas compared to  
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Figure 14. Spatially distributed (a) drought frequency based on SPI and (b) Mann-Kendall trend test of drought based on SPI. 

 
the North-western areas of the upper Tana River basin. This is because in the 
South-eastern areas of the basin, spatial drought distribution exhibit drought 
severities ranging from 2.044 to 2.835 and from 4.416 to 5.207. In addition, the 
results show that the North-western parts of the basin experienced drought se-
verity values of 1.822 to 2.463 and 3.745 to 4.384 for 1970 and 2010 respectively. 
From the results the average drought frequency between 1970 and 2010 for the 
South-eastern and North-western areas ranged from 12.16 to 14.93 and 3.82 to 
6.63 respectively.  The Mann-Kendall trend test showed that drought trend in-
creased in the South-eastern parts of the basin at 90% and 95% significant levels. 
The trend showed that there was no significant trend that was detected in the 
North-western areas. This study can be applied in other river basins and the re-
sults compared with the present findings. 
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