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is given. By constructing the energy’s integral, a priori estimate for the solu-
tion of the initial boundary value problem is obtained. Difference scheme is

constructed and an a priori estimate for its solution is obtained. Numerical
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Hyperbolic systems of conservation laws describe in a non-viscous approxima-

tion the phenomena that arise when flowing around aerodynamic forms, in

rocket nozzles, gas jets, propagation of polluting gases in the atmosphere and
nuclear explosions [1]. To date, various methods have been developed in Eule-
rian coordinates for the numerical solutions of these systems. Description of the
most common methods can be found in [2]-[8].
It is possible to divide the existing numerical methods for solving quasilinear
partial differential equations of the hyperbolic type into two large groups:
o First group is the methods that essentially use the solution of the Riemann
problem but do not use the approximate solution.

e Second group is called Riemann solvers (RS method). The most complete
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description of RS methods for solving hyperbolic problems of various di-
mensions is available in [6] [9].

Numerical methods for solving hyperbolic equations that do not use the solu-
tion of the Riemann problem are called Non-Riemann-Solvers (NRS). Some
known NRS are homogeneous difference schemes with artificial viscosity [2]
[10] [11] [12], conservative difference schemes [2] [4] [11], total variation dimi-
nishing (TVD) schemes [4] [6] [7], finite volume schemes [13] and compact dif-
ference schemes [3] [5] [14]. In numerical solutions obtained by both RS and
NRS methods, shock waves are smeared on several intervals of the spatial computa-
tional grid, while the thickness of the transition zone remains approximately con-
stant in time. Early methods of second-order accuracy such as the Lax-Wendrof
method [15] and McCormack method [16], as well as the third-order Rusanov
scheme [17], Burshtein-Mirin scheme [18], Balakin scheme [19], Warm-
ing-Kutler-Lomax schemes [20] were obtained by expanding the grid functions
into Taylor series. However, on the other hand, early schemes of high accuracy
are characterized by the presence of parasitic oscillations of the numerical solu-
tion in the surrounding area of strong discontinuities. During the last 30 years,
some methods have been developed for reducing the amplitude of these oscilla-
tions. Descriptions of some of these methods can be found in [6]. Such mono-
tonic and quasi-monotonic schemes of high accuracy are highly in accurate as
compared with the first-order schemes for numerical simulation of multidimen-
sional problems with many interacting shock waves and contact discontinuities.

TVD schemes are proposed in [21] and they are used as the main tool of cal-
culators working in the field of supersonic aerodynamics. The main advantages
of TVD-schemes are the absence of the unphysical oscillations on the disconti-
nuities and the fulfillment of the condition of non-decreasing entropy. As
known, in TVD-schemes the transition to first-order accuracy schemes is carried
out with the aim of monotonic numerical solution, but as a result of this, intense
smearing of the discontinuous occurs. Bona et al [22] proposed the total varia-
tion bounded (TVB) schemes with third and fifth orders accuracy. However, the
replacement of the TVD condition by the TVB condition led to the appearance
of significant parasitic oscillations of the numerical solution in the surrounding
area of strong discontinuities, as it was clearly shown in Bona et al [22]. In [23],
comparisons were made between the existing RS and NRS methods for solving
the Euler equations on a large number of one and two dimensional test prob-
lems. It was found that the accuracy of both RS and NRS methods were compa-
rable.

It should be noted that all of the above-mentioned schemes are basically for
solving the Cauchy problems [24] [25]. However, it is known [26] [27] that in
spite of the stability of the difference Cauchy problem, the initial boundary value
difference problem may not be stable. Therefore it is essential to take into ac-
count the boundary conditions. As a fundamental factor in the construction and

investigation of difference schemes [26] [27] [28] [29] [30], we shall require the
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adequacy of the difference model to the original differential problem. The dif-
ference model for a hyperbolic system was constructed in such a way that it
eventually allowed the derivation of difference analogs of the a priori estimate of
the solution of the original differential problem. The latter circumstance seems
to be an extremely important fact, since in numerical calculations approximate
solution tends to be the solution of the original differential problems.

In the present paper, we select a class of quasi-linear hyperbolic systems that
allow the construction of the energy integrals. The aim of our work is to con-
struct the difference schemes for which the discrete analogue of the energy inte-
grals is valid. We obtain a global—a priori estimate of the solutions, and con-
struct the corresponding difference schemes. It is an attempt to systematically
expound the technique of constructing the difference analogue of the energy in-
tegrals and its application in the study of the stability of difference schemes in

computational practice.

2. Differential Problem

In this section we give a differential statement of the problem, for which then in
the next section we construct a difference scheme. In addition, we investigate
some properties of the solution of the differential problem. We start with the de-
finition of a hyperbolic system according to [26].

Definition 1. (Godunov [26]) Let 4,B,C,D be symmetric matrices and
matrix A be positive defined. Assume that all elements A4,B,C,D and fare suf-

ficiently smooth functions of ¢,x,y,z,u, then system of equation
A(t,x,y, z,u)a—u+ B(t,x,y,z,u)a—u+ C(t,x,y,z,u)a—u+ D(t,x,y,z,u)a—u
ot Ox oy 0z

:f(t7x7y7z7u)

is called a symmetric #hyperbolic system.

Symmetric hyperbolic systems might have important relationship with their
solutions. These relations that generalize the law of conservation of energy for
the solution of acoustics or Maxwell’s equations, is called energy integrals. It
plays a fundamental role in the construction of the whole theory of symmetric
systems.

Consider the quasilinear systems of the form

Aa—u+Ba—u+C6—u+D6—u:O, (1)
ot Ox oy oz

where
A= A(t,x,y,z,u), B =B(t,x,y,z,u),
C=C(t,x,y,z,u),D=D(t,x,y,z,u)
and
A=A",B=B", C=C", D=D".

Suppose that the system allows the following form
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0/ « 0 [ 0 [ 0 [,

Since the matrices A4,B,C,D are symmetry, Equation (2) can be written as

£ (o) + 2 (Bu) +-2-(Cu) +-2-(Du)

0. 2%
Ox oy oz (2

Applying the dot product to the system (1)-(2) with vector uyields
(Aa—u,uj—i-(g[Au],uj—i-(Ba—u,uj+[i[8u],uj
ot ot ox ox
+ C@u u |+ —[Cu] u +(Da—u,uj+(g[Du],uj=0.
oy’ Oy oz oz
Using the fact that 4=4",B=B",C=C",D =D, we transform each terms as
follows
(Aa—u uj (E[Au],uj=[a—u,Au)+[g[Au],uj
ot ot ot ot
Au ﬁ_uj (E[Au],uj =2(Au,u).
ot ot ot

(Bg—u,uj+(a%[Bu],uj:§(Bu,u),

(279

Similarly

X

(C%,u]+[%[€u],uj:%(Cu,u),
(DZ—Z,M}+(§[DL{],MJ=£(Du,u).

Z

Then (2**) becomes
0

E(Au,u)+%(Bu,u)+§(Du,u)+%(Cu,u):0. (3)

We consider some region G lying inside the domain of existence of the solu-
tion u bounded by a piecewise smooth surface S. Integrating Equation (3) over
G, gives

I_[” { (Au,u) +i(3u u)+£(Cu u)+i(Du u) |drdxdydz =0

Ox oy 0z

The integral on the left can be transformed into a surface integral by the mul-

tidimensional divergence theorem
cmss[r(Au,u)+ E(Bu,u)+n(Cu,u)+ {(Du,u)]ds =0,

where (7,£,7,{) the unit vector of the outer normal to the surface S. The

integral identity (Vorozhtsov [1])
@S([TA+§B+77C+§D]u,u)ds =0,

is called the energy integral for a symmetric system.

DOI: 10.4236/am.2018.97055 792 Applied Mathematics


https://doi.org/10.4236/am.2018.97055

R. D. Aloev et al.

Problem 1. Consider the initial-boundary value problem for system (1)-(2) in
the region G= {(t,x,y,z) 0<t<T;0<x< l,|y| < oo,|z| < oo} with periodic

boundary conditions

u(t,O,y,z):u(t,l,y,z), B|X:0 =B|_, (4)
where T,/ are positive real numbers, and for any fixed ¢,x,

(Cl/l H)W)O (Du M)W)O (5)
with the initial data =0,

u(O,x,y,z)zuo(x,y,z), 0<x<l, |y|<oo, |z|<oo. (6)

and u,(x,y,z) isa given function such that
J j IM( O X, Y, Z,U, (x V,z ))uo (x,y,z),uo (x,y,z))dzdydx<+oo.

Let us consider the solution of the symmetric t-hyperbolic system (1)-(2) in

the domain G, and obtain the energy integrals
cﬂjﬁs([rA+§B+77C+§D]u,u)ds =0.

It is convenient to apply this identity not to the whole region G, but only
t, <t<t,,bounded by the planes ¢=¢,7=¢, then we obtain

1h © ®

1T T+ () et
+t.|%.l[ T (Cuu)|”, drdxdz +tﬁ T (Du,u)[” dedxdy =0,
40— 40—

1

where /(¢ m (Au,u)dxdydz .

From this equality, using the periodicity of the boundary conditions (4) and
(5), we deduce the following equality

1(t,)=1(t), Vt,t,,0<t, <t<t,<T. (7)

Suppose that the matrix Bhas a special canonical form:

B=diag(kl,kz,---,k”+,—kn++l,~--, k. ) nten =nk >0,i=1,--

n +n

Such a diagonal form of the matrix B is essentially used when specifying the
boundary conditions for the following problems.
Problem 2. Let us consider the initial-boundary value problem for system

(1)-(2) in the region G with boundary conditions for x=0

u' =Su”, 0<t<T, < oo, |Z|<OO (8)

and for x=/

u" =Ru", 0<t<T, |y|<oo, |z|<oo 9)

and with the initial data (6). It is assumed that the condition (5) is satisfied. Note
that
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T T
I 17 I i
uz(u U ) , u =(u1,u2,--~,u+) , u =(u
n

S=S(u,t,y,z), R =R(u,t,y,2),

T
uz’...’un) ,

nte’

are the rectangular matrices of dimension n" xn~ and n” xn', respectively.
The boundary conditions (8) given on the boundary x=0 are said to be dis-
sipative at the points of this boundary if vector function (u,,u,,--,u,) satisfies

the following inequality [26]
—(Bu,u)| >0.

x=0
The boundary conditions (9) given on the boundary x=/ are said to be dis-

sipative if at the points of this boundary the vector function (u,,u,, --,u,) sa-

tisfies the following inequality [26]
(Bu,u)| , >0.

x=

For the solution of the initial boundary value problems (1), (2), (6), (8), (9),
we obtain the following equality

1h © ®

I(fz)_l(tl ) +I J I [—(Bu,u)L:O +(Bu,u)|le:|dtdydz
1T (o) sz J (Du)]” gy =0
1 0 —o0 40—

From this and using dissipative boundary conditions together with

—(Bu,u)| OZO, (Bu,u)| 120,

x=A X=i
we obtain the inequality

I(t,)<I(1,), Vt,6,:0<t, <t<t,<T.

Remark: As an example, we consider a system of equations describing the
three-dimensional motion of a gas, under the assumption that the gas is in vis-
cid, not thermally conductive, and is in a state of local thermodynamic equili-
brium. In [27], it is shown that for the defined conditions the three-dimensional

system of equations of gas dynamics could be represented in the form (1) (2).

3. Difference Scheme with Limiter

In this section, we describe a difference scheme, which can be used to approx-
imately solve a dissipative boundary value problem. Then we obtain the esti-
mates for the solutions of difference equations which is analog to estimates of
energy integrals.
Let us consider the difference grid points
Ly=m-At, x,=i-Ax, y,=j-Ay,z,=k-Az,
m=0,---,M, i=0,1,---,N,
M-At=T, N-Ax=1,

JlL|k| = 0,1, 400,

where Af,Ax,Ay,Az are step size of the difference grid. For the value of the so-

lution at the difference grid points, we introduce the following notation
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u(m-At,i-Ax,j-Ay,k-Az)zuij'f;c =u.

We assume that A4 is a unit matrix. The difference model for problem (1) (2)

with initial-boundary value (6), (8), (9) is formulated as follows

v o) o)

s Jutys ][ B () )
C* (e )=, )
”+1/2 ,+1/2J [ 1/2 I/ZJ}
C(fon ) (1 —u)
S e } - [CT* (42 Ju e }}
D (uf ) (w2, )
{7 (s Y |- [ D7 (b il )
+1U (12 D (1082 ) (s —10)

+ rZU{[DTf (u,f+1/z)uf+./z] —[DT— (uffl/z)u,ﬁ{w}} =0; (10)
m=0,1--,M-1; i=0,1,--,N=1; |j],|k|={0,1,---+ o0},

—
a
7

+
N
c
<
>~
=
)
S—

and
gy = e =1y m= 0,1 M| ][k = {0,140},
G ) S G TRy
(B”(”l/z)”l/z ”o) ( (”l/z)”n’fzn”n)» (11)

(€7 (s )ttt ) +(CT (i )1t foot )~ O Wik,

(57 ) {0 (o o). v
u3k=u0(i~Ax,j-Ay,k~Az), i=0,1,---,N, )
|| |k|= 0,1+, +00,U = diag (u,, 1y, +,u, ),

where
B(u)=B" (u)+B (), B (1)>0, B (u)<0,
Cu)=C"(u)+C (u), C*(u)20, C"(u)<0

(
D(u)=D"(u)+D"(u), D" (u)20, D" (u)<0,

ueR", r,=At/Ax, r,=At/Ay, r, = At/Az,

<

B—B(ui,.k,m-At,z-Ax,yAy,k'Az),

with B™",B™,C™,C"",D"",D"" are the corresponding transpose matrices.

Here we have omitted the indices which is not having shifts relative to the points
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(m-At,i-Ax, j-Ay,k-Az)

m+l _ om+l ., m . m . m
u= ”,ka U =Uy s Uy U s Ujy = Uy Upy) = Uy

We consider the following reconstruction

1 1 1
+1/2 u+2‘P(R)(u u;_ ) Rl/z—u 2‘1‘(12 ](u+1 u)

T S S N T}

1 1 1
”lf+1/2 :u+_\P(Rk)(u_uk—l)’ u/il/z =u-—-¥|— (”/m _”):
2 2

¥ (R) = diag(y v (R,)),

o2 ()

R _( )+1 (q) ( )m ( ) R (uq)k+1_(uq)k
8 ) e, ) |

where ¥ :R — R isa continuous function which is called limiter.

Theorem: The solutions of the finite-difference scheme (10)-(12) is stable in

N-1 +0 40

energetic norm \/T where /[ —AxAyAzz z Z( Uy s z/k)

i=l j=—00 k=—w
Proof: Now we prove that the difference model (10)-(12) admits the presence
of difference analog of the dissipative energy integral. This gives us the possibili-
ty to get the energetic estimation (the difference analog a priori estimation (7)),
from which follows stability of the difference Scheme (10)-(12). We multiply the
T
system (10) by the vector E = (1, 1, -,1)

([U"’+1 +U](um+1 —u),E)

(v
(v
(v
(v
o, (Ut (102 (-, )-)
(v
(vl
(v
(vl
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+r (U ”k+1/2 ”k+1/2:| [D” (”1\51/2)”1&1/2 :|}=E)
+7r (U “/m/z ”k+1/2 ”k+1 —u),E)
+7 U ”k +1/2 uk+l/2:| [DT? (”5—1/2 )”/f-]/z ]} ,E) =0,

m=0,1---,M~1; i=0,1---,N=1; |j].]k|={0,1,--,+o0}.
We transform each summand to give
) ([U"”‘ +U J(u —u)E) = ([u'"‘ —u][u! +u]) = (" ") = (u0);
2) (U(uf,l/z)B*(u,.{l/z)(u—u,.,l),E)
(U (e =[5 (s )
= (B () (=) 0t )
({[B”( etk | = BT (2 ) 71/2]}#)
=([u=w 1. B7 (uf o Jul )
o[ e[ i)
= (0B (u vz) ) = (1 BT (2 )2
=(B" (utys Jut oot ) (B (2 )yt )-
3) (U (ufy) B (uly) (0 —u),E)
+(U BTGl )l ] [BT’(ui’fl/z)uﬁl/z]},E)
( A (”+1 u), ”+1/z)
({[BT (st o || B (s Ju Iil/zJ}’”)
(1™ (e o)
({[ e )i 1/2} [ B (uf
=( i) ”Rl/z) ( B" (”Rl/z )
( J-(&7 (u

BT

eyt )= (87
4 (u(u —1/2)C+( 1/2)(”‘” )’E)
( CT* (N [CD( 1/2)”4-‘/2}}’}5)
(€ )€ oo )
5) (v (“./41/2)0 (“.f+1/2)(”f+1 ~u).£)
(U {[CT‘ (252 )ufﬂ/z] - [CT_ ) ]} E)
( ]

(
¢ (”fﬂ/z )ufﬂ/z U ) - (CT (”f-vz )”f—l/z ’ M);

+
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6) (Ui 1/2)D+(”ff l/z)(“—”k )-E)
( “(ut) uk+l/2 [DT* (u,f_l/z)u,f_l/z]},E)
= (D7 (f )utfagorte) = (D7 (1t )utf oot )
7) (U (wf) D (112 ) (10 —10) E)
( { “(ufan)uln |- D7 (”k—l/z)”f—vz]}’E)
(b~ (ukﬂ/z)um,ukﬂ)_(fo (uf o)

Taking all these transformations into account, we obtain

() = (o) + [(B”( e )= (BT (w2 Jut oo )

(B (e oot )= (BT (i o) [ [ (€7 (i o)
(O (s oty )+ (€7 (s oty ) = (€7 ()l yoe) | 13)

e [(D7 (b Yttt = (D7 (s )by

(D7 (o Yt ) = (D7 (f Jul o) | =0.

We multiply both sides of the Equation (13) by AxAyAz and sum up over

i=1---,N—-1,over jfrom -0 to +owo andover kfrom -0 to +ow

N-1 +o  +oo N-1 40 +o

AxAyAzz Z Z( + '”“) AxAyAzz z Z (u u)

i=1 j=—o0k=—x i=l j=—o0k=—0

N-1 40+

+AXA)’AZZ z z |: +1/2 1/2 (BTJr (”il/z)“ﬁl/u“m)

i=l j=—00 k=-0

( +1/2 +1/2u+1) (BT_ 1/2 1/2 ]
+AxAyA221: +Z kz [(Cﬂ /+1/2 ,+1/2 ) (CT 1/2 1/2 ,1)
R —
(CT /+1/2 J+1/2 ,+1) ( 1/2 e ”):|
N-1 +0 +o
+AXA)’AZZ Z Z |:(DT+ ”k+1/2 ”k+1/2 ) (Dﬂ ”k 12 uk 2o Ui 1)

i=l j=-00k=—0

+(DT7 (”k+1/2 )”k+1/2 sUpi ) - (DP (”151/2 )”1571/2 7”):|

Then, using the following relations

-1 40+

1 AxAyAzzz > (B (s uhot) = (B (e oot )

=—0 k=—0

+(BT7 (Mi+1/2)”[+1/2’u[+1) ( —]/2 Y2 u):|

+00 +00

—AxAyAzZ Z [(B” ”N 12 ”N Y2 Un- (BT+ ”1/2 ”1/2 uo)

j=—w k=

)-
+(BT (uN—l/Z)uN—l/ZﬂuN) B'" ”1/2 ”1/2 ul):| 0
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N-1 +o +w

2) AXAJ’AZZ Z Z [( ( j+1/2) ,L'+1/2>”)_(CT+ (ujL‘fl/2)u/L'fl/2’uj*1)

i=l j=—00 k=—o0

T- R T—-( R R .
(C ( Ujnn ) UjiasUjy ) - (C (uj—l/Z )”./—1/2 > ”)j| =0;
N-1 +o  +0

3) AXA)’AZZ Z Z r [(D” (”lfﬂ/z )ulfu/zau) - (DT+ (ulf—l/2 )ulf—l/puk—l)

i=l j=—o0 k=—c0

+ (DT_ (”/ﬁl/z )”/il/z’“kn ) - (DT_ (”/f—l/z )”/f-l/z 7”):| =0;

we have
N-1 4o 400 N-1 400 +oo
AxAyAzz1 > ]Z ( il '"“) A)cAyAzz1 > ]Z (u,u),m=0,
i=l j=—o0 k=-o0 i=l j=—o0 k=-0
Hence
I.,=1, m=0,- M-I, (14)

which means the stability of the difference scheme (10)-(12) in the energetic
norm \/E is established.
4. Numerical Example

Example 1. As an example, we consider the Burger’s hyperbolic equation given
by:

u,+uu, =0.
We introduce the following notations

2 . B dr
F) =" £ w)= 1 )1 (), Lz 0, Lo<o )

m+l m A + L + L — R - R
u  =u _Et[f (”m/z ) - f (ui—l/Z ) + f (”i+1/z ) - f (”i-l/z )]

Consider the following reconstruction:

—>0ueR

r —>+0

U2 :“?+%W(Ri’n)(”im_uﬁl)’

m m
R _ 1 1 m M Rm _ ui+1 _ui
Uiy = ‘// R Ui —U; ) I =—0 e

1 Xi+1/2
where uf zELH//Z u(&,kAr)dé .
When W =0 corresponds to the scheme of the first order, y =1 is the one
sided upwind scheme of second order. Consider the following modification of
the obtained scheme

4

um - +mr><[(f+ (ui€1/2)'(ui _uifl))+(|:f+ (”iﬁl/z)_er (uiL—l/Z )Ju)
+(f_ (ui]j»l/Z)'(u[Jrl —u,-))+([f_ (ui}il/z)—f_ (ui[fl/z)}u)} =0, r :At/Ax.

(15)

We now prove that the difference scheme (15) admits the availability of dif-
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ference analogue of the energy integral. Multiplying the system (15) by

[u””‘ + u] :
el o[ ]
(7 () =)+ (L1 ()= 1 () -] | =0
Using formulas of difference differentiation, we obtain the following identity
(7 () ) ([ )= () )
= £ (a1 (b Y
(7w o =) ([ () ) )
= 1 (ufys ) = £l )
Taking into account all of these transformations, we have
(4 =) +g,, A (b Ju= s (k)
(o = S (ulyo Ju} =o0.

Multiply both sides of the (16) by Ax and sum up over i from - to +owo,

(16)

and noting that the function u tends to zero at infinity and denoting the quantity
AxY ()’ by I, we obtain the equality
- I,.,-1,=0.

From this it is easily follows the energetic estimate

1,=1,, m=1,---\M (17)

which means stability of the difference scheme in the norm \/E .

Example 2. Consider the following Cauchy problem

u, +(u2/2) =0, —o<x<o, >0,

lu| - 0, (18)

x>0

1, x<0,
”(X’O):{o x> 0.

Rewrite the difference scheme (15) in the following form

U = +W;,X|i(f+ (uiL—l/Z)(u —ui_l))+(|:f+ (u,-L_H/z)_f+ (uiL-l/Z ):|u)

u +u

(1 (o =) ([ ()= (o) o)}

In solving the difference scheme (19) we apply the iteration method with re-

(19)

spect to the nonlinear coefficients

(1 ()= )) ([ ) () o) ]
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We have carried out a posteriori error analysis of the proposed scheme. Table
1 presents the exact and numerical solutions at points (z,,x,) for the Cauchy
problem (18).

Figures 1-4 exhibits the graphical results of the exact and numerical solutions.
Comparisons between numerical and exact solutions are presented in Figures
1-4. It can be concluded that the scheme with limiter well modulates the jump.
All results are obtained in Mathcad.

Table 1. Exact and numerical solution for problem (18).

” 0 0.04 0.08 0.12
X;
Approx. 0 1 1 1
0 Exact 0 1 1 1
Approx. 0 0.707 1 1
0.03
Exact 0 1 1 1
0.06 Approx. 0 0.569 0.823 1
Exact 0 0.667 1 1
0.09 Approx. 0 0.481 0.700 0.882
Exact 0 0.481 0.700 0.882
0.12 Approx. 0 0.419 0.612 0.779
Exact 0 0.333 0.667 1
0.15 Approx. 0 0.373 0.545 0.696
Exact 0 0.267 0.533 0.800
0.18 Approx. 0 0.336 0.492 0.630
Exact 0 0.222 0.444 0.667
0.21 Approx. 0 0.307 0.449 0.576
Exact 0 0.19 0.381 0.571
0.24 Approx. 0 0.282 0.413 0.530
Exact 0 0.167 0.333 0.500
0.27 Approx. 0 0.261 0.383 0.492
Exact 0 0.148 0.296 0.444
0.3 Approx. 0.244 0.357 0.459
Exact 0 0.133 0.267 0.400

Figure 1. Exact solution of the problem of (18).
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Figure 3. Red circle and solid blue lines are the exact and nu-
merical solutions respectively for = 0.4.
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Figure 4. Red circle and solid blue lines are the exact and nu-
merical solutions respectively for 7= 1.4.
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5. Conclusion

The class of three-dimensional quasilinear hyperbolic systems is studied. The
formulation of initial boundary value problem for this class of quasilinear
hyperbolic systems in two variants is given. A priori estimate of the solution of
initial boundary value problem is obtained by constructing an energy integral.
Difference scheme with limiter is constructed and a priori estimate for its solu-
tion is obtained. Numerical results for the developed schemes show agreement

with exact solution.
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