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Abstract 
The paper considers the static pressure of the environment on the parallel 
pipe. The environment is elastic and homogeneous bodies. To determine the 
ambient pressure, the finite element method is used. An algorithm was devel-
oped and a computer program was compiled. Based on the compiled pro-
gram, numerical results are obtained. The numerical results obtained for two 
to five parallel pipes are compared with known theoretical and experimental 
results. 
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1. Introduction 

At present, and in the coming decades, ensuring the operational reliability of the 
linear part of multi-thread underground pipelines is and will continue to be a 
complex scientific and engineering problem. In the modern design, various 
software packages of automated design are widely used, allowing to carry out the 
engineering analysis of computer models without resorting to real experiments. 
The most common and efficient calculation method is the finite element method 
(FEM). When determining the pressure of the soil on the pipes, it is necessary to 
take into account such factors as: the number of threads, the topography of the 
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embankment, the conditions of supporting the pipes and other factors encoun-
tered in design practice. Accounting for other factors in analytical solutions is 
either extremely complex, or in general is impossible because of the difficulties 
that arise in this case of a mathematical nature. Various factors encountered in 
project practice can be accounted for using numerical methods. Recently, when 
solving various kinds of applied problems, the finite element method (FEM) is 
widely used. A number of works are known in which domestic [1] [2] [3] [4] and 
foreign authors [5] [6] successfully apply FEM to determine the soil pressure on 
a single laid extended pipe, under various conditions of its support, taking into 
account the heterogeneity of the soil composing the body mounds of constant 
height (flat deformation). 

2. Statement of the Problem by the Finite Element Method 

The most common method for calculating complex structures is the finite ele-
ment method (FEM). Its peculiarity consists in the fact that a design representing a 
continuous medium is replaced by its analog, composed both of cubes and of a 
finite number of element blocks, the behavior of each of which can be deter-
mined in advance. The interaction of the elements makes it possible to present 
an overall picture of the deformation of the system. In Figure 1, the cylindrical 
bodies in the deformed space are depicted. The stiffness characteristics of each of 
these elements are determined in advance. The stress-strain state of such a com-
plex structure can be determined with the help of FEM. The advantage of the 
method in its universality: the possibility of using elements of different types, the 
arbitrariness of the region under consideration, simple methods for constructing 
elements of high accuracy. In the variant of the method considered below, the 
method of displacements, when joining elements, the requirement of satisfying 
natural boundary conditions is not necessary. This most famous version of the 
FEM uses the formulation of the principle of possible displacements: 

1 2 0A A Aδ δ δ= + = . 

In matrix form for a three-dimensional body, it can be represented as follows: 

{ } { } { } { } { }T T Td d d d d d d
V V S

x y z q x y z p u Sσ δε δ= +∫∫∫ ∫∫∫ ∫∫ . 

The same state can have the form: 

{ } { } { } { }{ }T T Td d d d d d d
V V S

x y z u x y z p u Sσ δε δ δ= +∫∫∫ ∫∫∫ ∫∫  

Vectors of volume forces, surface forces and mixing of points of the body are 
as follows: 

{ } { } { } { } { } { }TT T, , , , , , , ,x y zq x y z p p p p u u v w= = = .          (1) 

The equilibrium conditions (1) do not depend on which material properties 
and are valid for both linear and nonlinear systems. For a linearly elastic body 
having initial deformations, the physical relationships take the form:  
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 { } [ ]{ } [ ]{ }0D D eσ ε= −                      (2) 

where [ ]D  is the matrix of elastic constants, [ ]0e  is the vector of initial defor-
mations. Moves are given in the form of polynomials in powers of х, у, z: 

{ } [ ]{ }u A α= ,                         (3) 

where [ ]A  is the matrix depending on the coordinates of the element, { }α  is 
the vector of the coefficients of the polynomial expansion of the displacement 
functions. The number of coefficients corresponds to the number of degrees of 
freedom of the element, and the coefficients themselves are associated with nod-
al displacements. If we denote the vector of node nodal displacements through 
{ }nu , then the displacement field is divided by the dependence: 

{ } [ ]{ }nu f u=                          (4) 

We use the relations between deformations and displacements. Then we get: 

{ } [ ]{ }nB uε =                          (5) 

The matrix [B], which connects deformations with nodal displacements, is 
important in the further calculation (Figure 1). The stress vector is defined by 
Equation (2), and taking into account (5) it will look like: 

{ } [ ]{ }{ } [ ]{ }0nD B u Dσ ε= −                    (6) 

Let us consider separately the left and right sides of the equilibrium condition 
(1). After substituting the deformation vector into the left side of the Equation (1), it 
will be expressed in terms of nodal displacements and some integral indicated 

 

 
Figure 1. The calculation scheme of the FEM. 
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by the symbol [ ]K : 

{ } [ ]{ } { } { } [ ][ ] { } { } [ ]{ }T TT Td d d d d dn n n n
V V

D x y z u B D B x y z u u K uδε ε δ δ= =∫∫∫ ∫∫∫  

Here [ ]K  is a matrix containing the basic information on the behavior of a 
small region of a deformed system. It is called the element stiffness matrix and is 
the main characteristic of the system in the FEM. 

On the right-hand side of Equation (1), the integrals over the volume and over 
the surface can be represented as follows: 

{ } [ ]{ } { } { }( ) { } { }

{ } [ ] [ ]{ } { } [ ] { }

{ } [ ] { }

TT T
0

T TT T
0

T T

d d d d

d d d d d d

d

n
V V

n n
V V

n
S

D u q x y z u p S

u B D x y z u f q x y z

u f p S

δε ε δ δ

δ ε δ

δ

+ +

= +

+

∫∫∫ ∫∫∫

∫∫∫ ∫∫∫

∫∫

 

These relations determine the vector (P) of external forces, reduced to the 
nodes of external forces.  

Thus, considering the matrix [ ]f  connecting the displacements at any point 
of the element with nodal displacements and the matrix [ ]B  corresponding to 
the relations between the deformations and displacements of the nodes of the 
element according to the Formula (6), the stiffness matrix [ ]K  and the vector 
of external nodal forces (F):  

[ ] [ ] [ ][ ]T d d d
V

K B D B x y z= ∫∫∫  

{ } [ ] [ ]{ } [ ] { } [ ]{ }T T
0 d d d d d d d

V V S

F B D x y z f q x y z f p Sε= + +∫∫∫ ∫∫∫ ∫∫  

For each element, the equilibrium conditions take the form: 

[ ]{ } { }nK u F=  

3. Methodology for Calculating the Static Pressure  
of Soil on Pipes 

As a computational model, by analogy with [7] [8], a weighty elastic medium 
(Figure 1) is used that contains holes and other inclusions supported by circular 
cylinders and other inclusions (foundation, heterogeneity of the ground, etc.). For 
pipes according to [9], we assume that the cylinder is welded to the medium (there 
is no slippage of the soil along the surface of the pipe). On the external contour of 
the medium, the boundary conditions have the following form [9] (Figure 1):  
• on vertical boundaries, shear stresses and horizontal displacements are either 

zero or these boundaries are free; 
• on the lower horizontal boundary adjacent to the base of the embankment 

there are no vertical and horizontal movements; 
• the upper surface is either free from external influences, or loaded with a 

surface load.  
The dimensions of the chosen area for the calculation should be optimal, be-
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cause this affects the time spent on the calculation of the FEC and, consequently, 
the efficiency of the program based on it. If the soil is an isotropic material or 
the system of the pipe-soil in question has an axis of symmetry (both in geome-
try and in material), it is possible to reduce the design area by taking only a 
symmetrical half of it. The breakdown of the chosen calculation area is carried 
out in the form of tetrahedral finite elements. In this case, the center mesh 
should thicken as it approaches the pipes; it is around the pipes that the greatest 
concentration of soil pressure occurs. To estimate the convergence of the result-
ing approximate solution corresponding to this breakdown, it is necessary to 
make a finer division of the computational domain into an exact solution. Then 
a comparison of the solutions corresponding to both breakdowns should be 
made. If they differ from each other by an amount greater than the predeter-
mined accuracy of the computations, it is necessary to make an even smaller 
third partition of the domain and the corresponding solution compare with the 
solution for the second breakdown, etc. It should be noted that with a dense ar-
rangement of pipes in the places of their contact, “singular points” arise, in a 
small neighborhood of which it is impossible to achieve the necessary accuracy 
of calculations for any smallest breakdown (elasticity theory is inapplicable at 
these points). The same points arise in the places where the pipes rest on a flat 
base. When determining the soil pressure on rigid round pipes, such as ferro-
concrete pipes in particular [10] [11], this difficulty is easily overcome by the 
following method: with the help of FEM [12], the vertical and horizontal soil 
pressure at all points of the pipe, except for the special one, is determined; a 
concentrated force is applied at a particular point, directed vertically at the point 
of support of the pipes or horizontally at their point of contact, equal in magni-
tude to the area of the diagram of the vertical and horizontal pressure of the soil 
acting on the pipes, respectively. 

We distribute the proper weight of the soil of the embankment according to 
[13] [14] along the breaking points as follows: at each node of this triangular fi-
nite element, we apply a downward concentrated force equal in weight to the 
part of the soil bounded by this element divided by the number of nodes. The 
surface load is distributed along the nodes of the upper boundary in the form of 
concentrated forces. If it is necessary to obtain the influence matrices (Green’s 
function), then it is necessary to calculate the unit concentrated force, applying it 
consistently at each node of the upper boundary. Modeling of materials of soil, 
pipes and other inclusions is carried out with the help of the corresponding val-
ues of elastic constants ( ,Е ν ) and specific gravity. This makes it possible to take 
into account the conditions of supporting the pipes, the heterogeneity and ver-
bosity of the soil of the embankment and the base, and the multitude of laying. 

4. Parametric Analysis of Stress-Strain State of Reinforced 
Concrete Underground Round Tubes 

Using the program MSK-1, the influence of the following factors on the pressure 
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distribution of the soil of the embankment around the round reinforced concrete 
underground pipes was investigated: the number of threads, the distance be-
tween the pipes, the location of the pipe (extreme, middle), the Poisson coeffi-
cient of the embankment soil, the type of pipe support, the change of the relief of 
the embankment along the pipes, length of pipes.  

The influence of the number of threads in Figures 2-4 shows the dependence 
of the maximum soil pressure on the pipes on the number of threads and the  

 

 
Figure 2. Graph of the dependence of the maximum soil pressure on the pipes on the 
number of threads and the Poisson’s ratio (v) (D = 4 m, Н = 12 mм, d = 0, γ = 16.7 kg/m3). 

 

 
Figure 3. Graphs of the dependence of the maximum soil pressure on the five-laying 
pipes (σmax) on the position of the pipe and Poisson’s ratio (v) (D = 3 m, Н = 12 m, d = 0, 
γ = 16.7 kg/m3, n = 4). 
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—single output; 
—extreme development of multiline stacking; 
—average production of multiline stacking. 

Figure 4. Dependence of the maximum pressure of rocks on the workings (σmax) on the 
number of threads (n) (D = 3 m, Н = 8 m, d = 0, γ = 16.7 kg/m3, ν = 0.3). 

 
Poisson’s ratio of the soil. At the same time, the support was firmly supported on 
a flat solid base. From Figures 2-4 it follows that the value of maxσ  for pipes 
laid in several strings is 10% - 30% less than the corresponding value for a single 
laid pipe, which is determined by [15]. In this case, the maximum soil pressure 
depends on location of the pipe. On an average pipe it is 15% - 25% less than on 
an extreme one. 

The fact that the outer tube is unloaded is less due to the fact that only one 
nearby middle pipe exerts a significant influence on its unloading, and the other 
is the outer tube, first, far from it (1.0D), and secondly, between the two outer 
tubes lies the middle tube, which is a kind of “screen”, reducing the mutual un-
loading effect of the two outer tubes. Therefore, in particular, the maximum 
pressure of the soil on the edge pipe is practically independent of the number of 
threads (in Figure 4, the value of maxσ  for pipes of two yarn stacking and the 
outer tubes of multi-threading is shown in one curve. two pipes are located on 
both sides of it, and not one, as in the case of an extreme tube).  

From Figure 3 and Figure 4 it follows that for a number of threads greater 
than three, the value of maxσ  on the middle tubes is practically independent of 
the number of threads with the concept of a “period” of pipes and explained in 
[16]. In Figure 2, it is clear that as the Poisson’s ratio rises ( 0.1, ,0.4ν =  ), the 
maximum ground pressure on the middle tube decreases, and with a decrease in 
the number of threads this decrease is stronger and amounts to, for example, 7% 
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for three-laying pipes and 1. This is explained by the fact that the greater the 
value of the coefficient v, the greater the distribution capacity of the ground en-
vironment.  

Consequently, we can assume that for a number of threads four or more, the 
value of maxσ  on the average is practically independent of the coefficient v. An 
explanation of this phenomenon is given in [17] [18]. 

As can be seen from Figure 3, as the coefficient ν increases, the difference in 
the values of maxσ  for pipelines with different number of threads decreases. 

Thus, the maximum ground pressure on the pipes of multi-thread stacking is 
less than the single one. At the same time, the maximum ground pressure on the 
outer tubes is greater than the average pressure. The pressure of maxσ  on the 
edge pipe is practically independent of the number of threads. The maximum 
soil pressure decreases with increasing number of threads and with a number of 
threads greater than three, this decrease becomes insignificant. 

Hence it follows that the difference between the maximum soil pressure on 
the outer and middle pipes of multiline stacking 3n ≥  is practically indepen-
dent of the number of threads and for densely laid pipes is 15% - 20%. In addi-
tion, with an increase in the Poisson’s ratio of soil, the value of maxσ  on the 
edge pipe is reduced. With the number of threads 4n ≥ , the value of maxσ  on 
the middle tube is practically not from the coefficient v. 

Effect of the distance between the pipes, the results of the analysis of the 
maximum ground pressure on two and three-stranded laying pipes (a) between 
them are shown in Figure 5. 

The graphs in Figure 5 show that as the distance between the pipes increases, 
the value of maxσ  increases. At 0 0.5d D≤ ≤ , the increase in maxσ  is insigni-
ficant (3%), and at 0.5 2.0d D≤ ≤  a significant increase in the maximum 
ground pressure is observed, decaying at 2.0d D ≥ . At 3.0d D ≥ , the maxi-
mum ground pressure per pipe laid in several strands corresponds to the maximum 

 

 
Figure 5. Graphs of the dependence of the maximum soil pressure (vmax) on the pipes 
from the distance in the light (d) between the filaments. (Н = 8 m, γ = 16.7 kg/m3, ν = 
0.3). 
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pressure per single laid pipe and coincides with the value determined by [19]. 
Thus, the mutual influence of multifilament stacking pipes takes place at a 

distance between us d < 3D and leads to a decrease in the maximum ground 
pressure on them compared to a single stacked pipe. The pressure of maxσ  on 
the middle and outer tube reaches a minimum value when the d = 0 pipes are 
laid closely and are respectively 0.74 and 0.85 of the maximum pressure on a 
single stacked pipe. 

On the basis of the obtained dependences of the magnitude of the distance 
between the pipes, the following formulas are derived for determining the soil 
pressure coefficients for pipes of multiline stacking: for 0 2.5d D≤ ≤  

( ) ( ) ( )20.1 0.75; 0.01 0.02 0.9c k
M MK d D K d D d D= + = + + ,      (7) 

where c
MK  and k

MK  are the coefficients that take into account the reduction of 
the maximum soil pressure, respectively, on the edge and middle multiline stack 
as compared to a single stacked pipe. 

Analysis of the influence of the distance between the pipes on the horizontal 
pressure of the soil ( sσ ) at the horizontal diameter was carried out by 
double-laying pipes, the theoretical and experimental studies carried out have 
shown that the quantity sσ  does not depend on the number of threads. In this 
case, it is necessary to distinguish the horizontal pressure of the soil on the pipe 
from the side of the adjacent pipe ( sσ ) and from the opposite (pipe-free side) 
( sσ ). 

From Figure 6, the horizontal pressure σΓ  for 0d D ≥  is a constant value 
 

 
Figure 6. Graphs of the dependence of the maximum ground pressure (vmax) on the pipes 
from the distance in the light (d) between the strands (Н = 6 m, D = 2 m, γ = 16.7 kg/m3, 
ν = 0.3). 
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and coincides with the corresponding 0σ = . At 0 2.0d D≤ ≤ , it increases in-
tensively and at 0d D =  tends to infinity. This is due to the appearance of a 
“singular” point, in which the theory of elasticity is not applicable. The sharp in-
crease in d with decreasing distance d is explained by the convergence of the two 
stress concentrates, which are the pipes. The influence of the Poisson’s ratio on 
the horizontal pressure of the soil is shown in Figure 7. It follows from the 
graphs that the values of sσ  and rσ  increase with increasing coefficient ν, 
and the horizontal pressure on the side of the adjacent tube increases more in-
tensively, i.e. increases the coefficient sσ  by a factor 2.8, and σr in 2.3 times. 

4.1. Stress State of the Soil around the Pipes 

For a more complete analysis of the soil pressure on the pipes of multi-stranding, 
the diagrams of radial ( rσ ) and tangential ( sσ ) ground pressures are considered 
for various parameters of laying multi-thread pipes on a flat solid base. 

Figures 8-10 show the diagrams (σг) for pipes which laid in one and two 
strands at a distance of d of 0.0D, 0.5D, 1.0D, 2.0D, 3.0D. All the diagrams of the 
same sign correspond to the compression pressure. It is seen from the diagrams 
that for 3.0d D<  they are asymmetric, and for 3.0d D=  are symmetric. The 
presence of the asymmetry of the diagram is due to the mutual influence of the 
multiline stacking tubes on the pressure distribution of the soil around each pipe. 
With an increase in distance 6, this effect gradually weakens and does not affect 
when 3.0d D≤ , i.е. in this case the tube of multi-strand folding of the diagram 
σs is practically symmetrical. Therefore, in the design of pipes, the deviation of 
the ordinate maxσ  from the vertical diameter can be ignored for 2.0d D> . The 
ordinate of the maximum radial pressure deviates from the pipe lock in the op-
posite direction to the location of the adjacent pipe. The analysis shows that this 
effect is manifested especially in multiline stacking at 2.0d D< . This is due to 
the fact that on one side of the end pipe is located next to it a pipe that unloads 

 

 
Figure 7. Dependence of the horizontal pressure (σг) on Poisson’s ratio (ν) (D = 2 m, d = 
2 m, H = 6 m, γ = 16.7 kg/m3, n = 2). 
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Figure 8. Diagrams of radial ground pressure on pipes of two-thread styling. 
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Figure 9. Diagrams of radial soil pressure on pipes of a two-thread styling. 

 

 
Figure 10. Diagrams of radial soil pressure on pipes of a two-wire styling. 
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the first. The opposite side is free and there is no unloading effect from this side 
the outer tube receives. 

Due to this “unbalanced unloading” of the outer tube, the value of maxσ  is 
shifted. Figure 11 shows a graph of the dependence of the deviation of the ordi-
nate maxσ  (angle β) on the parameter d. The ordinates of this biconvex curve 
decrease with increasing d. At 0 0.5d D< <  and 2.0d D> , the angle β varies 
insignificantly (actually from 15˚ to 14˚30' and from 2˚ to 0˚). The main change 
in angle β occurs at 0.5 2.0d D< < . The maximal value of the ordinate maxσ  
reaches at d = 0 (tubes laid close), minimal (00) at 3.0d D< , when each pipe 
works as a single stacked one. 

The analysis in Figures 8-10 shows that the diagrams of maxσ  on the half of 
the pipe opposite the location of the adjacent pipe (in the Figure the left half of 
the diagrams to the ordinate maxσ ) in all cases the effect of two pipes at 

3.0d D <  on the pressure distribution of the soil around of them is local and 
extends to a section up to >15˚ and <180 ˚ (in the figure, the right half of the di-
agrams). 

Figure 8, Figure 12, and Figure 13 show the diagrams of the radial pressure 
of the soil σг on a single laid pipe and on pipes laid closely in two, three, four and 
five threads. In all cases, the pressure diagrams on the outer tubes are asymme-
tric, and the average tubes (for n > 3) are explained by symmetrical unloading by 
two adjacent pipes. 

The upper part of the diagrams of the multiline stacking is slightly flattened in 
comparison with the diagram for a single laid pipe (Figure 8). This oblateness is 
greater for medium pipes than for extreme tubes, which indicates a more uni-
form distribution of pressures, their greater load. It should also be noted that the 
diagrams sσ  for the outer tubes of multiline stacking practically do not differ 
from the sσ  diagram for double-laying pipes. Thus, when constructing the di-
agram sσ  for the end pipe of multiline stacking, we can use the results of cal-
culation of double-laying pipes. 

 

 
Figure 11. Change of parameter β from d/D. 

https://doi.org/10.4236/oalib.1104671


I. I. Safarov 
 

 

DOI: 10.4236/oalib.1104671 14 Open Access Library Journal 
 

 
Figure 12. Diagrams of radial soil pressure on three-threaded pipes styling. 

 

 
Figure 13. Diagrams of radial ground pressure on a five-pipe stacking. 
 

It follows from Figure 13, b (n = 5), the diagrams for the central and neigh-
boring middle tubes practically coincide. The diagrams for the medium pipes for 
n = 4 (Figure 13(a)) and for n = 5 are also small from each other. Thus, when 
determining the pressure of the soil on the pipes of pipes of four-stranding, the 
concept of “pipe period” was also introduced there. It means a minimum num-
ber of pipes, in which the addition of another pipe from the edge practically has 
no effect on the stress-strain state of the soil around the central pipe.  

Consequently, the value of the period for the sleeves is four. Analogously, the 
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Figure 14. Diagrams of radial soil pressure σг on a single (a), gutter (b) and three-stranded pipe (D = 4 m, H = 8 m, υ = 0.3, d = 1 
m, γ = 16.7 kH/m3). 
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value of the period (T) of the pipes laid at some distance from each other was 
analyzed. The results of this analysis are presented in Table 1. 

From Table 1 it can be seen that the value of T decreases with increasing dis-
tance between the pipes. This is due to a decrease in the mutual influence of the 
pipes as the distance between them increases. 

In order to present the general picture of the distribution of the radial pressure of 
the embankment on the pipes, Figure 14 shows the lines of equal radial pressures 
for pipes laid in one, two and three threads respectively. Symmetrical arrangement 
of the line is typical for a single laid pipe (Figure 14). In addition, the lines are also 
symmetric for central tubes for odd multicultural packing in the vicinity of 1.5D 
from the center of the pipe in both directions (for example, for n = 3, Figure 14). 

For the outermost tubes, asymmetry and displacement of the vertices are ob-
served b in the opposite direction from the adjacent pipes (Figure 12). In addi-
tion, σr at n = 2 and n = 3 have less ordinates and are more flattened than for a 
single laid pipe (n = 1). 

This flattening indicates a more uniform ground pressure on multi-threaded 
pipes compared to a single-laid σr for double-laying pipes and the three-threaded 
outer tubes are almost identical. 

Figure 15 shows the diagrams of m for a single pipe and double-laying pipes 
with a distance in the light 0, ,3d =  . It is characteristic that on the half of the 
pipe free from the influence of the adjacent one (in the figure, the left half) τ 
does not depend on the parameter d and the diagram τ is the same as for the 
single pipe. The ordinates of the right half of the diagram τ for 0 3.0d D< <  
are smaller than the left one due to the unloading effect of the neighboring pipe. 
For 3.0d D> , the effect is no longer affected and the diagram τ is similar to the 
diagram for a single pipe. 

The maximum of the tangential pressures for any half of the diagram is 
achieved at 60θ =   from the vertical axis in both directions. The largest value 
of maxτ  in all cases for the outer tubes occurs on the left-hand half of the tube 
(free from the influence of the neighboring pipe) and exceeds the small tangent 
pressures on the right half of the tube by a factor of 2.2, 0d = ; by 1.55 times at 

0.5d D=  and by 1.1 times at 1.0d D= . 

4.2. Influence of the Type of Support of Pipes  

Figure 11 shows graphs of the dependence of the value of maxσ  on the support 
of pipes and the Pausson coefficient ν. In the calculation, the following conditions 
for supporting the pipes were used at the suggestion of the hydropower plant: 

- base with angle of capture 02 90α =  ; base with an angle of coverage 

02 120α =  ;  

 
Table 1. Dependence of the pipe period on the distance in the light between them. 

D/D 0 … 0.5 0.5 1.0 … 2.0 2.0 

T 4 3 2 1 

https://doi.org/10.4236/oalib.1104671


I. I. Safarov 
 

 

DOI: 10.4236/oalib.1104671 17 Open Access Library Journal 
 

- a foundation with an angle of coverage 02 120α =  , while the height of the 
foundation from the ground to the bottom point of the pipe was assumed to be 
0.2D. In addition, support was considered on a flat base. 

As can be seen from Figure 16, the largest value of maxσ  corresponds to 
support on the foundation, and the smallest on the base with a coverage angle of 

02 120α =  . For example, at 0.1ν = , the value of maxσ  for pipes supporting  
 

 
Figure 15. Diagrams of radial soil pressure on pipes of a two-thread styling. 

 

 
Figure 16. Graphs of the dependence of the maximum ground pressure (vmax) on the 
pipes from the distance in the light (d) between the strands (Н = 6 m, D = 2 mм, γ = 16.7 
кг/m3, v = 0.2). 
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the foundation is larger than the corresponding values for pipes that support a 
flat solid base by 3%. solid base with an angle of coverage 02 90α =   by 6%, the 
base with an angle of coverage 02 120α =   by 8%. This phenomenon is ex-
plained by the fact that the larger the I pipe protrudes above the surface of the 
base (together with the foundation). The more the pressure of the soil acting on 
this pipe is concentrated. We also note that, regardless of the type of support, the 
quantity maxσ  decreases with increasing coefficient υ. With an increase in the 
coefficient υ by a factor of 4, maxσ  decreases depending on the type of support 
of the pipe in 1.17 - 1.21 times. Given the slight change in maxσ , depending on 
the method of support (2% - 8%) in designing pipes based on a solid base, this 
factor can be ignored. 

Table 2 shows the dependence of the coefficient of maximum vertical soil 
pressure ( max max maxzK hσ γ= , maxh  maximum embankment height) on rein-
forced concrete pipes from the number of threads and the profile of the em-
bankment. The pipes are supported by a reinforced concrete foundation with an 
angle of coverage up to 120˚. The wall thickness of the pipes is 0.1D. 

The distance in the light between the pipes is 0.5D. Pipes are made of concrete 
of class B 25; ν = 0.15; E = 30,000 MPa; soil of the mound with elastic constants 
ν = 0.3; E = 30 MPa. 

In the first row, Table 2 shows the results for long pipes laid over a bulk of 
constant height (flat deformation). In the second row, Table 2 shows the results 
for long pipes laid under the mound with the applied length of pipes laid under 
the mound with a variable longitudinal profile in the form of a triangle with an 
angle slope β = up to 30˚. 

From Table 2 it follows that the coefficient maxK  decreases with the number 
of threads. And this fact is true both for a flat problem (the first line) and for a 
volume one (second line). 

For example, the value of maxK  for an average three-threaded pipe (n = 3) is 
35% smaller than the corresponding value for a single pipe (n = 1) in the case of 
a flat problem ( 0β =  ), and by 37%, in the case of spatial problem (30˚). 

To analyze the influence of the longitudinal relief of the embankment on the soil 
pressure on the pipes and compare the results of the planar and spatial problems, 
the maximum height of the embankment ( 30β =  ) was assumed equal to the 
height of the mound of constant height ( 0β =  ). From Table 2, the values in the 
first line differ from the corresponding values of the second row by an average of 
30%. From this it follows that taking into account the variable length of the em-
bankment height along the length of the pipe reduces the estimated ground 

 
Table 2. Dependence of the coefficient Kmax on the number of threads and the angle of 
the longitudinal profile of the mound. 

n 1 2 3 

β 1.75 1.36 1.13 

β = 30˚ 1.24 0.92 0.79 
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Table 3. Dependence of the coefficient Kmax on the length of the pipes l. 

u0 4.0 6.0 10.0 15.0 

Kmax 0.64 0.85 1.36 1.37 

 
pressure as compared with the calculation performed on the flat-deformed scheme. 
This effect was obtained for the first time. 

In this case, as follows from Table 1 this effect is slightly less pronounced for a 
single pipe (29%) and slightly stronger for two-thread (32%) and three-thread 
(30%) stacking pipes. 

Influence of length of pipes. Table 3 shows the dependence of the coefficient 
Kmax for reinforced concrete pipes of two-strand packing from their length l 
( 0β =  ). 

From Table 3 it follows that with a decrease in pipe length the coefficient Kmax 
kills. In this case, when the length 10.0l D= , its effect on Kmax is insignificant. 
Thus, the length 10.0l D=  is that boundary of applicability of the plane theory 
of elasticity (plane deformation) for extended pipelines at a constant height of 
the embankment. In the work [20] the concept of the “core”, which in our case is 
equal to 10.0D, is derived, and is the boundary between the “short” and “length” 
pipes, i.e. at 10.0l D= , the plane-deformed scheme gives an overestimate of the 

maxK  coefficient even at a constant height of the embankment. This overesti-
mate is 38% at 6.0l =  and 55% at 4.0l = . 

Thus, taking into account the length of the pipes reduces the design ground 
pressure in comparison with the calculation using a flat-deformed scheme, if 

10.0l D= . 

5. Conclusions 

1) The maximum static pressure of the soil ( maxσ ) per pipe is somewhat less 
than that of a single pipe, an average of 10% for the outer pipe and 20% for the 
middle pipe. In this case, the quantity c maxσ  increases with increasing para-
meter d, having a minimum at d = 0 (tubes stacked closely) and a maximum at d 
= 3.0, which coincides with the corresponding value for a single tube. 

2) The pressure maxσ  decreases with increasing Poisson’s ratio ν  of the soil. 
The greatest value of maxσ  corresponds to supporting on the foundation, and 
the smallest to a profiled base with a large angle of coverage. Pressure maxσ  on 
the outer tube and on the middle pipe is practically independent of the number 
of threads. 

3) The horizontal static pressure ( sσ ) of the soil located between the pipes 
decreases with increasing parameter d, reaching a minimum at 3.0d D= , 
equals to the corresponding value for a single pipe. The horizontal pressure of 
the soil ( rσ ) on the outermost pipe from the opposite side of the adjacent pipe is 
equal to the horizontal pressure on a single pipe and does not depend on the pa-
rameter d. With a pipe spacing of 0.5 3.0D d D≤ ≤ , the value of rσ  28% is 
more than sσ . The values of rσ  and sσ  increase directly in proportion to 
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the height of the embankment and decrease with decreasing Poisson’s ratio of 
the soil. 

4) Diagrams of the radial and tangential static pressure of the soil for the outer 
tubes of multiline stacking ( 3n ≥ ) and double-laying pipes practically coincide. 
The diagrams of the radial soil pressure are asymmetric for the outer tubes, and 
are practically symmetrical for the middle ones. The angle of this deviation de-
pends on the parameter d and at 0 3d D≤ ≤  which varies respectively from 15˚ 
to 0˚. 

5) The values of the maximum radial and horizontal pressure of the soil on a 
single pipe, obtained in accordance with the [21] and the FEM for an extended 
embankment, having a constant height (flat deformation) are in good agreement. 
This gives grounds for using FEM to calculate multicell pipes in the design prac-
tice. 

6) The account of the variable along the length of the pipe of the height of the 
embankment reduces the design ground pressure as compared with the calcula-
tion performed on the flat-deformed scheme. This effect is more pronounced for 
multi-threaded pipes and weaker for a single pipe [22]. 

7) Allowance for the length of the pipes reduces the estimated ground pres-
sure as compared with the calculation using a flat-deformed scheme, if their 
length is 10.0l D≤  [23]. 
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