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Abstract 
New organic dyes (D1, D2, and D3) containing a phenanthrothiadiazole unit 
as a π-conjugated system, a triarylamine as an electron donor, and a cyanoa-
crylic acid moiety as an electron acceptor were synthesized.  The optical and 
electrochemical properties of dyes D1, D2, and D3 were investigated, and 
their performance as sensitizers in solar cells was evaluated. Dye-sensitized 
solar cells based on dye D3 produced a photon-to-current conversion effi-
ciency of 5.23% (Jsc = 9.70 mA/cm2, Voc = 0.77 V, ff 0.70) under 100 
mW/cm2 simulated AM 1.5 G solar irradiation.  
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1. Introduction 

Dye-sensitized solar cells (DSSCs) have attracted significant attention in recent 
years due to their high efficiency, low cost, and facile fabrication [1]. The sensi-
tizer is one of the key components in these cells for high power conversion effi-
ciency. Attention has recently focused on metal-free organic sensitizers (D-π-A 
moleculars) because they present many advantages, such as high molar extinc-
tion coefficients, low cost, simple preparation process, and environment friend-
liness [2] [3] [4] [5]. D-π-A dyes based on triphenylamine moieties with various 
π-conjugated bridges, such as thiophene [6] [7] [8] [9], benzene [10]-[15], Cou-
marin [16], thienothiophene[17] [18] [19], benzo[b]thiophene [20] [21], phe-
nothiazine [22], or dibenzosilole [23], have been developed for DSSCs to achieve 
high conversion efficiencies. The π-conjugated bridge has a great influence on 
photoelectronic properities of the D-π-A dyes.  

How to cite this paper: Yu, X.Q., Wang, 
Y., Huang, T.Y., Ci, Z.H. and Bao, M. 
(2018) Performance Improvement of Dye- 
Sensitized Solar Cell by Phenanthrothia-
diazole Unit-Based π-Conjugated Bridge. 
Journal of Materials Science and Chemical 
Engineering, 6, 25-34. 
https://doi.org/10.4236/msce.2018.67004 
 
Received: May 7, 2018 
Accepted: July 1, 2018 
Published: July 4, 2018 

http://www.scirp.org/journal/msce
https://doi.org/10.4236/***.2018.*****
https://doi.org/10.4236/***.2018.*****
https://doi.org/10.4236/***.2018.*****
http://www.scirp.org
https://doi.org/10.4236/msce.2018.67004


X. Q. Yu et al. 
 

 

DOI: 10.4236/msce.2018.67004 26 Journal of Materials Science and Chemical Engineering 
 

This study presents three new organic dyes (D1, D2, and D3) with phenanth-
rothiadiazole unit as a π-conjugated bridge, different arylamine moieties as elec-
tron donors, and a cyanoacetic acid as electron acceptor (Figure 1). The study 
also investigates the photophysical, electrochemical, and photovoltaic properties. 

2. Experimental 
2.1. General Analytical Measurements 

All chemicals were used as received from commercial sources without 
purification. Solvents for chemical synthesis, including toluene, dichlorome-
thane (DCM), MeOH and tetrahydrofuran (THF), were purified by distillation. 
High-resolution mass spectra were recorded on either a Q-TOF or a GC-TOF 
mass spectrometer. 1H and 13C NMR spectra were recorded on either a Varian 
Inova-400 spectrometer (400 MHz for 1H; 100 MHz for 13C) or a Bruker Avance 
II-400 spectrometer (400 MHz for 1H; 100 MHz for 13C). 

2.2. Fabrication of DSSCs 

A screen-printing technique was used to fabricate the TiO2 films. First, the paste 
was deposited on a fluorine-doped tin oxide conductive glass (FTO, Asahi Glass 
Co., Ltd.; sheet resistance: 10 ohm/sq). The film was then sintered at 450˚C for 
30 min in atmospheric air, immersed in 40 mM TiCl4 solution for 30 min at 
70˚C, rinsed with water and ethanol, and sintered at 500˚C for 30 min. The film 
was dipped into D1, D2, and D3 dye solutions (0.6 mM in THF) for 18 h after 
cooling to 80˚C. Finally, dye-sensitized TiO2 photoelectrodes (thickness: 12 μm) 
were obtained. The organic electrolyte was composed of 0.06 M LiI, 0.03 M I2, 
0.1 M guanidinium thiocyanate, 0.6 M 1-propyl-3-methylimidazolium iodide 
(PMII), and 0.5 M t-butyl-pyridine in acetonitrile. The active area of the DSSCs 
was 0.36 cm2. DSSCs devices were assembled with counter electrodes (thermally 
platinized FTO) using a thermoplastic frame (Surlyn, thickness: 60 μm). 

2.3. Measurements 

Absorption and emission spectra were respectively recorded by HP8453 (USA) 
and PTI700 (USA) instruments. Electrochemical measurements were carried out  
 

 
Figure 1. Molecular structures of dyes D1, D2, and D3. 

N
S

N

N
COOH

NC

D1, R = H
D2, R = nBu
D3, R = OMe

R

R

https://doi.org/10.4236/***.2018.*****
https://doi.org/10.4236/***.2018.*****
https://doi.org/10.4236/***.2018.*****


X. Q. Yu et al. 
 

 

DOI: 10.4236/msce.2018.67004 27 Journal of Materials Science and Chemical Engineering 
 

on a BAS100W (USA) electrochemistry workstation. The irradiation source for 
photocurrent–voltage (J–V) measurements was an AM 1.5 solar simulator 
(16S-002, Solar Light Co.Ltd., USA). The incident light intensity was 100 
mW/cm−2 and calibrated against a standard silicon solar cell. The J–V curve was 
obtained by the linear sweep voltammetry (LSV) method using an electrochem-
ical workstation (LK9805, Lanlike Co. Ltd., China). Incident photon-to-current 
conversion efficiency (IPCE) measurements were performed on a Hypermono-
light instrument (SM-25, Jasco Co. Ltd., Japan). 

3. Results and Discussion 
3.1. Synthesis 

Dyes D1, D2, and D3 were synthesized following the steps depicted in Scheme 
1. 

3-1, (yellow solid, 53% yield), mp 167˚C - 168˚C. 1H NMR (400 MHz, CDCl3) 
δ 9.02 (s, 1H), 8.31 - 8.27 (m, 2H), 8.09 (d, J = 8.4 Hz, 1H), 7.97 (dd, J = 8.8, 1.7 
Hz, 1H), 7.43 (dd, J = 8.8, 2.4 Hz, 1H), 7.35 - 7.31 (m, 4H), 7.21 (d, J = 8.0 Hz, 
4H), 7.13 (d, J = 7.2 Hz, 2H). 13C NMR (100 MHz, CDCl3) δ 153.1, 152.2, 148.3, 
147.1, 138.3, 134.7, 130.9, 129.6, 127.4, 126.7, 125.2, 124.6, 124.5, 124.4, 124.1, 
117.7, 92.3. HRMS (EI, m/z): calcd. for C26H16N3SI, 529.0110 [M]; found, 
529.0107. 

3-2, (yellow solid, 62% yield), mp 154˚C - 155˚C. 1H NMR (400 MHz, CDCl3) 
δ 9.00 (d, J = 2.0 Hz, 1H), 8.25 - 8.22 (m, 2H), 8.07 (d, J = 8.8 Hz, 1H), 7.95 (dd,  

 

 
Scheme 1. The synthetic routes of D1, D2, and D3. 
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a) 1 (976 mg, 2.0 mmol), 2 (2.0 mmol), CuI (38 mg, 0.2 mmol), 1,10-Phenanthrolinemonohydrate (72 mg, 0.4 mmol), KOH (898 mg, 
16.0 mmol), toluene (20 mL), 120 oC, 24 h, N2. b) 3 (2.0 mmol), 4-bromobenzaldehyde (450 mg, 3.0 mmol), Pd(PPh3)4 (116 mg,
0.1 mmol), K2CO3 (2.0 M, 2.0 mL), THF (10 mL), 80 oC, 24 h, N2. c) 4 (1.0 mmol), cyanoacetic acid (94 mg, 1.1 mmol),
ammonium acetate (20 mg, 0.25 mmol), acetic acid (5. 0 mL), 120 oC, 5 h.
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J = 8.8, 2.0 Hz, 1H), 7.38 (dd, J = 8.8, 2.4 Hz, 1H), 7.15 - 7.10 (m, 8H), 2.61 (t, J = 
8.0 Hz, 4H), 1.67 - 1.59 (m, 4H), 1.45 - 1.35 (m, 4H), 0.96 (t, J = 7.3 Hz, 6H). 13C 
NMR (100 MHz, CDCl3) δ 153.1, 152.2, 148.7, 144.7, 138.9, 138.1, 134.6, 131.0, 
129.7, 127.3, 126.5, 125.4, 124.5, 124.3, 124.0, 123.6, 116.4, 92.1, 35.3, 33.8, 22.7, 
14.2. HRMS (EI, m/z): calcd. for C34H32N3SI, 641.1362 [M]; found, 641.1356. 

3-3, (yellow solid, 49% yield), mp 207˚C - 208˚C. 1H NMR (400 MHz, CDCl3) 
δ 8.98 (d, J = 1.6 Hz, 1H), 8.19 (d, J = 9.2 Hz, 1H), 8.11 (d, J = 2.8 Hz, 1H), 8.04 
(d, J = 8.8 Hz, 1H), 7.93 (dd, J = 8.4, 1.6 Hz, 1H), 7.29 (dd, J = 9.2, 2.8 Hz, 1H), 
7.19 - 7.15 (m, 4H), 6.92 - 6.88 (m, 4H), 3.85 (s, 6H). 13C NMR (100 MHz, 
CDCl3) δ 156.7, 150.3, 124.5, 120.2, 116.3, 108.6, 106.9, 104.4, 95.2, 94.5, 94.0, 
90.1, 87.9, 82.9, 79.6, 23.0. HRMS (EI, m/z): calcd. for C28H20N3O2SI, 589.0321 
[M]; found, 589.0314. 

4-1, (yellow solid, 80% yield), mp 173˚C - 174˚C. 1H NMR (400 MHz, 
d6-DMSO) δ 10.10 (s, 1H), 8.85 (s, 1H), 8.70 (d, J = 8.8 Hz, 1H), 8.65 (d, J = 9.2 
Hz, 1H), 8.18 (dd, J = 8.6, 1.9 Hz, 1H), 8.12 (d, J = 8.4 Hz, 2H), 8.06 (d, J = 8.4 
Hz, 2H), 8.02 (d, J = 5.6 Hz, 2H), 7.45 - 7.41 (m, 4H), 7.23 (d, J = 8.3 Hz, 6H). 
13C NMR (100 MHz, d6-DMSO) δ 193.3, 153.0, 148.4, 146.8, 145.0, 144.9, 136.3, 
135.9, 130.8, 130.7, 130.5, 129.2, 128.4, 127.9, 126.4, 126.2, 126.0, 125.1, 124.6, 
123.9, 123.6, 115.7. HRMS (EI, m/z): calcd. for C33H21N3OS, 507.1405 [M]+; 
found, 507.1414. 

4-2, (yellow solid, 92% yield), mp 134˚C - 135˚C. 1H NMR (400 MHz, CDCl3) 
δ 10.10 (s, 1H), 8.96 (s, 1H), 8.46 (d, J = 8.4 Hz, 1H), 8.33 - 8.29 (m, 2H), 8.04 - 
7.97 (m, 5H), 7.41 (dd, J = 8.8, 2.0 Hz, 1H), 7.17–7.11 (m, 8H), 2.62 (t, J = 8.0 
Hz, 4H), 1.67 - 1.60 (m, 4H), 1.45–1.36 (m, 4H), 0.97 (t, J = 7.3 Hz, 6H). 13C 
NMR (100 MHz, CDCl3) δ 192.1, 153.6, 153.5, 148.7, 146.0, 144.7, 139.0, 137.7, 
135.5, 131.9, 130.6, 129.7, 128.4, 127.7, 127.5, 125.4, 124.7, 124.5, 124.3, 123.7, 
116.4, 35.3, 33.8, 22.7, 14.2. HRMS (EI, m/z): calcd. for C41H37N3OS, 619.2657 
[M]+; found, 619.2653. 

4-3, (yellow solid, 80% yield), mp 107˚C - 108˚C. 1H NMR (400 MHz, CDCl3) 
δ 10.01 (s, 1H), 8.95 (s, 1H), 8.44 (d, J = 8.8 Hz, 1H), 8.29 (d, J = 9.2 Hz, 1H), 
8.16 (d, J = 2.8 Hz, 1H), 8.03–7.95 (m, 5H), 7.34 (dd, J = 8.8, 2.8 Hz, 1H), 7.21 - 
7.17 (m, 4H), 6.93 - 6.89 (m, 4H), 3.84 (s, 6H). 13C NMR (100 MHz, CDCl3) δ 
192.0, 156.7, 153.6, 153.5, 149.1, 146.0, 140.1, 137.4, 135.4, 131.9, 130.5, 128.3, 
127.6, 127.4, 125.3, 124.7, 124.5, 123.6, 123.4, 121.8, 115.1, 114.2, 29.9. HRMS 
(EI, m/z): calcd. for C35H25N3O3S, 567.1617 [M]+; found, 567.1619. 

D1, (red solid, 68% yield), mp 214˚C - 215˚C. 1H NMR (400 MHz, d6-DMSO) 
δ 8.73 (s, 1H), 8.57 (d, J = 9.2 Hz, 1H), 8.53 (d, J = 9.2 Hz, 1H), 8.32 (s, 1H), 8.14 
(d, J = 8.4 Hz, 2H), 8.02 (d, J = 8.4 Hz, 1H), 8.02 (d, J = 8.4 Hz, 2H), 7.94 (d, J = 
2.4 Hz, 1H), 7.44 - 7.40 (m, 4H), 7.29 (dd, J = 8.8, 2.4 Hz, 1H), 7.23 - 7.21 (m, 
6H). 13C NMR (100 MHz, d6-DMSO) δ 163.7, 153.2, 152.9, 152.5, 148.1, 146.8, 
143.0, 137.4, 131.7, 131.5, 131.4, 130.6, 130.4, 128.8, 127.7, 126.9, 126.1, 126.0, 
125.1, 125.0, 124.7, 124.5, 123.5, 123.3, 117.4, 115.5. HRMS (ESI, m/z): calcd. for 
C36H22N4O2S, 574.1463 [M]+; found, 574.1459. 
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D2, (red solid, 76% yield), mp 131˚C - 132˚C. 1H NMR (400 MHz, 
d6-DMSO ) δ 8.77 (s, 1H), 8.57 (d, J = 8.8 Hz, 1H), 8.50 (d, J = 9.2 Hz, 1H), 8.37 
(s, 1H), 8.18 (d, J = 8.4 Hz, 2H), 8.11 (d, J = 8.4 Hz, 1H), 8.06 (d, J = 8.3 Hz, 2H), 
7.89 (d, J = 2.5 Hz, 1H), 7.23 - 7.10 (m, 9H). 13C NMR (100 MHz, d6-DMSO) δ 
163.4, 152.8, 152.3, 152.0, 147.3, 143.7, 142.8, 138.4, 135.9, 131.2, 130.6, 129.3, 
126.8, 126.0, 125.4, 124.0, 122.8, 116.3, 113.4, 103.5, 34.4, 33.0, 21.9, 13.7. HRMS 
(ESI, m/z): calcd. for C44H38N4O2S, 686.2715 [M]+; found, 686.2710. 

D3, (red solid, 57% yield), mp 190˚C - 191˚C. 1H NMR (400 MHz, 
d6-DMSO ) δ 8.62 (s, 1H), 8.47 (s, 1H), 8.39 (s, 1H), 8.05 - 7.83 (m, 6H), 7.72 (s, 
1H), 7.20 (d, J = 8.4 Hz, 4H), 7.09 (d, J = 8.8 Hz, 1H), 7.00 (d, J = 8.8 Hz, 4H), 
3.80 (s, 6H). 13C NMR (100 MHz, d6-DMSO) δ 119.1, 115.6, 114.7, 111.6, 102.4, 
100.6, 97.1, 93.6, 89.7, 88.8, 86.8, 86.7, 85.6, 84.2, 77.5, 76.6, 18.0. HRMS (ESI, 
m/z): calcd. for C38H26N4O4S, 634.1675 [M]+; found, 634.1667. 

3.2. Absorption Properties of the Dyes in Solution 

UV-vis absorption spectra of three dyes in CH2Cl2/CH3OH (10/1) solution are 
depicted in Figure 2. All dyes in solutions gave two distinct absorption bands: 
one relatively weak band in the near-ultraviolet region (300 nm to 340 nm) that 
corresponds to the π–π* electron transition and another with a strong absorp-
tion in the visible region (370 nm to 450 nm). The bands can be assigned to an 
intramolecular charge transfer between the triarylamine donating unit and the 
cyanoacrylic acid anchoring moiety, thereby producing an efficient 
charge-separated state. The absorption data of D1 (384 nm, 26,960 M−1∙cm−1), 
D2 (395 nm, 27007 M−1∙cm−1) and D3 (397 nm, 25625 M−1∙cm−1) are shown in 
Table 1. 
 

 
Figure 2. Absorption spectra of D1, D2, and D3 in CH2Cl2/CH3OH (10/1). 
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Table 1. Optical and electrochemical properties of D1, D2, and D3 dyes. 

Dye 
Absorptiona Emissiona Oxidation potential 

Λmax 
[nm] 

ε at λmax 
[M−1∙cm−1] 

Λmax 
[nm] 

Eox[V]b 
(versus NHE) 

E0-0 [V]c 
(Abs/Em) 

ELUMO [V] 
(versus NHE) 

F1 384 26960 510 1.22 2.52 −1.30 

F2 395 27007 523 1.14 2.43 −1.29 

F3 397 21625 527 0.94 2.44 −1.50 

aAbsorption and emission spectra were measured in CH2Cl2/CH3OH (10/1), with a concentration of 1.0 × 
10−5 M at room temperature. bThe oxidation potential of the dyes was measured under the following condi-
tions: working electrode, Pt; electrolyte, 0.1 M tetrabutylammonium hexafluorophosphate, n-Bu4NPF6 in 
THF; scan rate, 0.1 V/s. Potentials measured vs Fe+/Fe were converted to NHE by addition of +0.63 V. cThe 
E0-0 energies were estimated from the intercept of the normalized absorption and emission spectra. 

3.3. Electrochemical Properties 

The redox behavior of these dyes was studied by cyclic voltammetry (Figure 3). 
The cyclic voltammograms of D1, D2, and D3 were measured in a solution of 
0.1˚M n-Bu4NPF6 in CH2Cl2/CH3OH (10/1). A three-electrode cell containing a 
Pt-coil working electrode, a Pt wire counter electrode, and a Ag/AgCl reference 
electrode was employed. The ferrocene/ferricenium redox couple was used as an 
internal reference. The examined highest occupied molecular orbital (HOMO) 
levels and the lowest unoccupied molecular orbital (LUMO) levels were col-
lected, as shown in Table 1. HOMO values (0.94 V to 1.22 V vs. NHE) were 
more positive than the I−/I3− redox couple (0.4 V vs. NHE), thus suggesting that 
the oxidized dyes can thermodynamically accept electrons from I− ion in 
iodide/triiodide electrolyte for regeneration. Electron injection from the excited 
sensitizers to the conduction band of TiO2 should be energetically favorable be-
cause of the more negative LUMO values (−1.29 V to −1.50 V vs. NHE) com-
pared with the conduction band edge energy level of the TiO2 electrode (at ap-
proximately −0.5 V vs. NHE). Table 1 shows that the introduction of the me-
thoyl and methyl groups on arylamine can change the HOMO–LUMO energy 
gaps of the dyes narrowly. These results clearly demonstrate that dyes D1, D2, 
and D3 are potentially efficient dyes for DSSCs. 

3.4. Photovoltaic Performance 

The action spectrum, or the IPCE as a function of wavelength, was measured to 
evaluate the photoresponse of the photoelectrode in the whole spectral region. 
D1, D2, and D3 sensitizers were used to manufacture solar cell devices. Figure 4 
shows the IPCE obtained with 0.06 M LiI, 0.03 M I2, 0.1 M guanidinium thi-
ocyanate, 0.6 M PMII, and 0.5 M tert-butyl-pyridine in acetonitrile as redox 
electrolyte. The three dyes can efficiently convert visible light into photocurrent 
in the region of 300 nm to 600 nm. A solar cell based on D3 showed the highest 
IPCE value of 75% at 491 nm. In addition, the cell exhibited a broad IPCE spec-
trum with IPCE values (>70%) ranging from 390 nm to 520 nm. The IPCE spec-
tra of D1 and D2 were slightly low, with a maximum IPCE of 68% at 450 nm 
and 69% at 445 nm, respectively. 
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Figure 3. Cyclic voltammograms of D1, D2, and D3. 
 

 
Figure 4. IPCE spectra f based on D1, D2, and D3. 
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Figure 5. J-V curves based on based on D1, D2, D3, and N719. 
 
Table 2. Photovoltaic Performance based on D1, D2, D3, and N719a. 

Dye Jsc/mA cm−2 Voc/mV ff η/% 

D1 9.41 0.73 0.67 4.60 

D2 8.52 0.73 0.69 4.29 

D3 9.70 0.77 0.70 5.23 

N719 15.04 0.72 0.69 7.47 

aThe DSSCs had an active area of ~0.36 cm2 and used an electrolyte composed of 0.06 M LiI, 0.03 M I2, 0.1 M 
guanidinium thiocyanate, 0.6 M 1-propyl-3-methylimidazolium iodide (PMII), and 0.5 M t-butyl-pyridine in 
acetonitrile. 

 
factor of 0.70, thereby yielding an overall conversion efficiency (η) of 5.23%. 
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15.04 mA/cm−2, a Voc of 0.72 V, and a ff of 0.69. The conversion efficiency of D3 
reached 70% of the N719 cell efficiency. 

4. Conclusion 

In summary, three new organic dyes (D1, D2, and D3) containing a phenanth-
rothiadiazole unit as a π-conjugated system, a triarylamine as an electron donor, 
and a cyanoacrylic acid moiety as an electron acceptor were designed and syn-
thesized for DSSCs. DSSCs based on D3 produced a photon-to-current conver-
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sion efficiency of 5.23% (Jsc = 9.70 mA/cm−2, Voc = 0.77 V, ff = 0.70) under 100 
mW/cm2 simulated AM 1.5 G solar irradiation. Compared with the D1 and D2 
based cells, D3 showed higher Jsc values, reflecting its better sunlight-harvesting 
ability. The application of phenanthrothiadiazole unit in organic photovoltaic 
solar cell is ongoing in our laboratory. 
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