
Applied Mathematics, 2018, 9, 691-701 
http://www.scirp.org/journal/am 

ISSN Online: 2152-7393 
ISSN Print: 2152-7385 

 

DOI: 10.4236/am.2018.96047  Jun. 29, 2018 691 Applied Mathematics 
 

 
 
 

Numerical Experiments Using MATLAB: 
Superconvergence of Conforming Finite, 
Element Approximation for Second Order, 
Elliptic Problems 

Anna Harris1*, Stephen Harris2, Camille Gardner1, Tyrone Brock1 

1Department of Mathematics and Computer Science, University of Arkansas at Pine Bluff, Pine Bluff, USA 
2US Food and Drug Administration, National Center for Toxicology Research, Jefferson, USA 

 
 
 

Abstract 
The superconvergence in the finite element method is a phenomenon in 
which the finite element approximation converges to the exact solution at a 
rate higher than the optimal order error estimate. Wang proposed and ana-
lyzed superconvergence of the conforming finite element method by 
L2-projections. The goal of this paper is to perform numerical experiments 
using MATLAB to support and to verify the theoretical results in Wang for 
the superconvergence of the conforming finite element method (CFEM) for 
the second order elliptic problems by L2-projection methods. MATLAB codes 
are published at https://github.com/annaleeharris/Superconvergence-CFEM   
for anyone to use and to study. 
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1. Introduction 
Finite element method (FEM) is based on the premise that an approximation to 
any complex engineering problem can be reached by subdividing the problem 
into smaller and more manageable elements. Using FEMs partial differential 
equations that describe the behavior of structures can be reduced to a set of li-
near equations that can easily be solved using the standard techniques of matrix 
algebra. FEM is used in virtually every engineering discipline. The aerospace, 
automotive, biomedical, chemicals, electronics, energy, geotechnical, manufac-
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turing, and plastics industries routinely apply finite element analysis. In addi-
tion, it is used not only for analyzing classical static structural problems, but also 
for such diverse areas as mass transport, heat transfer, dynamics, stability, and 
radiation problems. 

The main objective of the superconvergence using various FEMs is to improve 
the accuracy of the existing approximation solution by applying certain 
post-processing techniques that are easy to implement. To obtain the supercon-
vergence of FEMs, several methods have been proposed in the literature in the 
last thirty years. The method of local averaging has been a popular and useful 
technique in the study of superconvergence [1]-[9]. The underlying assumption 
of the existing superconvergence technique is that the finite element mesh has 
some special properties such as uniformity [7], local point-symmetry [8] [10], 
local translation-invariance [1] [8], or orthogonality [5] [11] [12] [13]. 

Zienkiewicz and Zhu [14] [15] introduced the patch recovery technique which 
provides some superconvergence for the gradient of the finite element solution 
by using a discrete least-squares fitting on a local patch with high order polyno-
mials. The method of Zienkiewicz and Zhu has been computationally proved to 
be robust and efficient and to produce some superconvergence for the gradient 
of the finite element solution. 

Wang proposed and analyzed superconvergence of the conforming finite ele-
ment method (CFEM) by L2-projections. The main idea behind the L2-projections 
is to project the finite element solution to another finite element space with a 
coarse mesh and a higher order of polynomials. 

The objective of this paper is to investigate the theoretical results in [16] for 
the conforming finite element approximations for second-order elliptic prob-
lems by L2-projection methods and to support the theoretical results with nu-
merical experiments using MATLAB. 

This paper is organized as follows. In Section 2, we present a review for the 
conforming finite element method for the second-order elliptic problem. In Sec-
tion 3, we investigate the theoretical results in [16], the superconvergence of 
CFEM for the second-order elliptic problem by L2-projection methods. In sec-
tion 4, we perform numerical experiments to support the theoretical results in 
[16]. Numerical experiments of superconvergence of CFEM are performed in 
MATLAB and its codes are posted at  
https://github.com/annaleeharris/Superconvergence-CFEM for anyone to use 
and to study. 

2. CFEM for the Second-Order Elliptic Problem 
Consider the second-order elliptic problem with the homogeneous Dirichlet 
boundary condition which seeks ( )1u H∈ Ω  satisfying 

in ,
0 on ,

u f
u
∆ = Ω
= ∂Ω

                        (1) 

where ∆  is the Laplacian operator, Ω  is a bounded, connected, and open 
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subset of R2, ∂Ω  is a Lipschitz continuous boundary, and a given function f is 
the external force. 

A variational formulation of (1) seeks ( )1
0u H∈ Ω  such that 

( ) ( ) ( )1
0, , , ,a u v f v v H= ∀ ∈ Ω                   (2) 

where 

( ) ( ), , da u v u v u v
Ω

= ∇ ∇ = ∇ ⋅∇ Ω∫  

Let h  be a quasi-uniform, i.e., it is regular and satisfies the inverse assump-
tion [17], triangulation of Ω  with ( ) , hdiam K h K≤ ∈  and let ( )rP K  be 
the space of polynomials of degree at most r with 0r ≥  on K. Assume that the 
polynomial space in the construction of hV  contains ( ) , 1kP K k ≥ . Define the 
finite element space hV  associated with h  as 

( ) ( ){ }1
0 : , .h k hKV v H v P K K= ∈ Ω ∈ ∀ ∈  

The finite element space hV  is assumed to satisfy the following approxima-
tion property for any ( )1mu H +∈ Ω : 

( ) 1
1 1inf , 0 .

h

m
mv V

u v h u v Ch u m k+
+∈

− + − ≤ ≤ ≤             (3) 

The finite element approximation problem (2) seeks h hu V∈  such that 

( ) ( ), , , ,h ha u v f v v V= ∀ ∈                     (4) 

where 

( ) ( ), , d .h h ha u v u v u v x
Ω

= ∇ ∇ = ∇ ⋅∇∫  

A well known error estimate for the finite element approximation solution 

hu  is the following: 

11
inf ,

h
h v V

u u C u v
∈

− ≤ −                       (5) 

where C is a constant independent of the mesh size h. 
Then from (3) and (5) we arrive at the following error estimate: 

11
.k

h ku u Ch u
+

− ≤  

To apply the superconvergence of finite element approximation, we assume 
that domain Ω  is so regular that it ensures a , 1sH s ≥ , regularity for the solu-
tion of (2). In other words, for any ( )2sf H −∈ Ω  the problem (2) has a unique 
solution ( )1

0u H∈ Ω  satisfying the following a priori estimate: 

( )2
2 , , 1.s

s su C f f H s−
−

≤ ∀ ∈ Ω ≥                   (6) 

where C is a constant independent of data g. 

3. Superconvergence of CFEM 

Let τ  be another finite element partition with coarse mesh size τ where 
h τ . Assume that τ and h have the following relation: 

( ), 0,1 .hατ α= ∈  

Let Vτ  be any finite element space consisting of piecewise polynomial of de-
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gree r associated with the partition τ . Define Qτ  to be the L2-projection from 
( )2L Ω  onto the finite element space Vτ . The finite element space Vτ  is de-

fined by 

( ) ( ){ }2 : , .rKV v L v P K Kτ τ= ∈ Ω ∈ ∀ ∈  

For the superconvergence of CFEM, the following theoretical results can be 
found in [16]. 

Lemma 1 Assume that the second-order elliptic problems (2) holds (6) with 
1 1s k≤ ≤ +  and ( )2sV Hτ

−⊂ Ω . Then there exists a constant C independent of 
h and τ such that 

1
,h hQ u Q u Ch u uσ

τ τ− ≤ −                        (7) 

where ( ) ( )1 min 0,2 , 0,1s sσ α α= − + − ∈  and hτ  . 
Theorem 1 Assume that (6) holds true with 1 1s k≤ ≤ +  and  

( )2sV Hτ
−⊂ Ω . If ( ),h hu u x y=  is the finite element approximation of the exact 

solution ( ),u u x y=  of (2), then there exists a constant C independent of h and 
τ such that 

( )1
1 1 ,r k

h r ku Q u Ch u Ch uα σ
τ

+ +
+ +

− ≤ +                (8) 

where ( )1 min 0,2s sσ α= − + − . 
Theorem 2 Assume that (6) holds true with 1 1s k≤ ≤ +  and 

( )2sV Hτ
−⊂ Ω . If hu  is the finite element approximation of the exact solution 
( ) ( ) ( )1 1 1

0
k ru H H H+ +∈ Ω Ω Ω   of (2), then there exists a constant C inde-

pendent of h and τ such that 

( ) 1 1 ,r k
h r ku Q u Ch u Ch uα σ α

τ
+ −

+ +
∇ − ≤ +           (9) 

where ( )1 min 0,2s sσ α= − + − . 
From (8) and (9) α is selected to optimize the error estimates: 

( )
1 .

1 min 0,2
k s

r s
α + −
=

+ − −
                       (10) 

4. Numerical Experiments of Superconvergence of CFEM by 
L2-Projection Methods 

In this section, we confirm the theoretical results in [16] with numerical experi-
ments for second-order elliptic problems. Assume that the exact solution of the 
second-order elliptic problem has sH  regularity for some 1 2s≤ ≤  and for 
simplicity, assume 1k = , 2s = , and 2r =  which gives 2

3
α =  using the α 

Formula (10). 
Then according to the theoretical results in [16], the best possible error esti-

mates using the results (8) and (9) are given by 
( ) ( )1 1 min 0,2 2

1 1 3
r k s s

h r ku Q u Ch u Ch u Ch uα α
τ

+ + − + −
+ +

− ≤ + ≤        (11) 

and 

( ) ( )
4

1 min 0,2 3
1 1 3 .k s sr

h r ku Q u Ch u Ch u Ch uα αα
τ

+ − − + −
+ +

∇ − ≤ + ≤       (12) 
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From the result (11), we do not see any superconvergence in L2 norm. How-
ever, from the result (12), we have some superconvergence for the gradient error 
estimate. 

The finite element partition h  is constructed by dividing the domain into 
an 3 3n n×  rectangular mesh then dividing the rectangular mesh with the posi-
tive slope to form two triangles. The coarse finite element partition τ  is also 
constructed by dividing the domain into an 2 2n n×  rectangular mesh then di-
viding the rectangular mesh with the positive slope to form two triangles. The 
finite element space hV  consists of the space of the linear polynomials ( )1P K  
associated with the partition h  and the dual finite element space Vτ  consists 
of the space of the quadratic polynomials ( )2P K  associated with the partition 

τ . The finite element spaces hV  and Vτ  are defined by 

( ) ( ){ }1
0 1: ,h hKV v H v P K K= ∈ Ω ∈ ∀ ∈  

and 

( ) ( ){ }2
2: , .KV v L v P K Kτ τ= ∈ Ω ∈ ∀ ∈  

The numerical approximation is refined as 3h n−= , where 2,3, ,6n = 
. 

Thus, the length of , 2, ,6n h nτ = ⋅ =   and each τ element contains 2n h  ele-
ments. Using the difference in mesh size and a higher degree of polynomials we 
shall produce some superconvergence of CFEM for the second-order elliptic 
problems. 

Example 1 Let the domain [ ] [ ]0,1 0,1Ω = ×  and the exact solution is as-
sumed to be 

( ) ( )cos 0.5π sin π .u y y x=  

From Table 1, we observe that applying L2-projections to the existing numer-
ical solution reduced the errors in L2 norm and in H1 norm. Surface plots of nu-
merical solutions, hu  in fine meshes and hQ uτ  in coarse meshes, are shown in 
Figure 1. In L2 norm the error convergence rate of hu Q uτ−  and the error 
convergence rate of hu u−  are similar to the theoretical convergence rate, 
which is shown as ( )2O h  (see Figure 2). However, in H1 norm the error con-
vergence rate of 1hu Q uτ−  is higher than the optimal error convergence rate of 

1hu u−  and the error convergence rate of the numerical example, ( )1.42O h , 
 

Table 1. Numerical error approximation results using CFEM in Example 1, 
( ) ( )cos 0.5π sin πu y y x= . 

iter h ( )hu u∇ −  hu u−  ( )hu Q uτ τ∇ −  hu Q uτ−  

1 2−3 0.1196e−0 0.7787e−2 0.5207e−1 0.7456e−2 

2 3−3 0.3555e−1 0.6966e−3 0.8137e−2 0.6649e−3 

3 4−3 0.0150e−1 0.1241e−3 0.2481e−2 0.1184e−3 

4 5−3 0.7680e−2 0.3255e−4 0.1014e−2 0.3108e−4 

5 6−3 0.4445e−2 0.1090e−4 0.4906e−3 0.1040e−4 

 ( )rO h  0.9990 1.9941 1.4117 1.9953 
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(a)                                        (b) 

Figure 1. Surface plots of approximation solution using CFEM in Example 1, 
( )cos 0.5π sin(π )u y y x= . (L): Surface plot of hu . (R): Surface of plot of hQ uτ . 

 

 
(a)                                        (b) 

Figure 2. Error convergence rates using CFEM in Example 1, 
( )cos 0.5π sin(π )u y y x= . (L): 2L  norm error. (R): 1H  norm error. 

 
exceeds its theoretical error convergence rate, which is shown as ( )1.33O h . As 
we expect from the theoretical results (11) and (12), the numerical example 
shows some superconvergence in H1 norm but not in L2 norm. The numerical 
Example 1 supports the theoretical results in [16] and confirms the supercon-
vergence of CFEM for second-order elliptic problems. 

Example 2 Let the domain [ ] [ ]0,1 0,1Ω = ×  and the analytical solution to the 
problem is given as 

( ) ( )1 1 .u x x y y= − −  

From Table 2, we confirm that the numerical Example 2 supports the theo-
retical results in [16]. In L2 norm the error convergence rate of hu Q uτ−  is 
similar to the error convergence rate of hu u−  which is about the same as the 
theoretical result in (11), which is shown as ( )2O h  in Figure 3. The error 
convergence rate of 1hu Q uτ−  is about ( )1.42O h  and the error convergence 
rate of 1hu u−  is about ( )O h . In H1 norm the exact solution u clearly has 
some superconvergence. Figure 4 shows the surface plot of hQ uτ  in coarse 
meshes and the surface plot of hu  in fine meshes. The numerical Example 2  
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(a)                                        (b) 

Figure 3. Error convergence rates using CFEM in Example 2, ( ) ( )= 1 1u x x y y− − . (L): 
2L  norm error. (R): 1H  norm error. 

 

 
(a)                                        (b) 

Figure 4. Surface plots of approximation solution using CFEM in Example 2, 
( ) ( )= 1 1u x x y y− − . (L): Surface plot of hu . (R): Surface plot of hQ uτ . 

 
Table 2. Numerical error approximation results using CFEM in Example 2, 

( ) ( )1 cos 1.5πu x x y y= − . 

iter h ( )hu u∇ −  hu u−  ( )hu Q uτ τ∇ −  hu Q uτ−  

1 2−3 0.2227e−1 0.1441e−2 0.9193e−2 0.1378e−2 

2 3−3 0.6632e−2 0.1287e−3 0.1427e−2 0.1227e−3 

3 4−3 0.2799e−2 0.2295e−4 0.4332e−3 0.2185e−4 

4 5−3 0.1433e−2 0.6017e−5 0.1763e−3 0.5732e−4 

5 6−3 0.8294e−3 0.2015e−5 0.8504e−4 0.1919e−5 

 ( )rO h  0.9985 1.9945 1.4173 1.9958 

 
also supports the theoretical results in [16] and confirms the superconvergence 
of CFEM for second-order elliptic problems. 

Example 3 Let the domain [ ] [ ]0,1 0,1Ω = ×  and the analytical solution to the 
problem is given as 

( )( ) ( )1 1 sin 2π .u y y x x= − −  
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From Table 3, the numerical approximation results show that after the 
post-processing all the errors are reduced. The exact solution in L2 norm of 

hu Q uτ−  has the similar error convergence rate as hu u− , which shown as 
( )2O h . In L2 norm, there is no improvement with the post-processing tech-

nique. See Figure 5, in H1 norm L2-projection method improved the conver-
gence rate, which is shown as ( )1.3O h  for ( )hu Q uτ τ∇ − . Figure 6 shows 
surface plots of hQ uτ  and hu . The numerical Example 3 confirms the theoret-
ical results in [16]. 

Example 4 Let the domain [ ] [ ]0,1 0,1Ω = ×  and the exact solution is as-
sumed to be 

( ) ( )sin 2π cos 1.5π .u x x y y=  

From Table 4, we confirm that the numerical Example 4 supports the theo-
retical results in [16]. In L2 norm the error convergence rate of hu Q uτ−  is 
similar to the error convergence rate of hu u−  which is about the same as the 
theoretical result, ( )2O h . However, in H1 norm the exact solution u has some 
 

 
(a)                                        (b) 

Figure 5. Error convergence rates using CFEM in Example 3,  
( )( ) ( )= 1 1 sin 2πu y y x x− − . (L): 2L  norm error. (R): 1H  norm error. 

 

 
(a)                                        (b) 

Figure 6. Surface plots of approximation solution using CFEM in Example 3, 
( )( ) ( )= 1 1 sin 2πu y y x x− − . (L): Surface plot of hu . (R): Surface plot of hQ uτ . 
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superconvergence. The error convergence rate of 1hu Q uτ−  is about 34% faster 
than the error convergence rate of 1hu u−  and meets the theoretical minimum 
error convergence rate, ( )1.33O h . See Figure 7, in L2 norm there is no difference 
in error convergence rates but in H1 norm applying L2-projection methods to the 
existing numerical approximations improved the errors and produced some su-
perconvergence. Figure 8 shows surface plots of the numerical approximations 
of (2) before and after the post-processing. 
 
Table 3. Numerical error approximation results using CFEM in Example 3,  

( ) ( ) ( )1 1 sin 2πu y y x x= − − . 

iter h ( )hu u∇ −  hu u−  ( )hu Q uτ τ∇ −  hu Q uτ−  

1 2−3 0.1162e−0 0.7440e−2 0.8059e−1 0.7070e−2 

2 3−3 0.3444e−1 0.6787e−3 0.1389e−1 0.6415e−3 

3 4−3 0.1452e−1 0.1211e−3 0.4342e−2 0.1144e−3 

4 5−3 0.7439e−2 0.3178e−4 0.1787e−2 0.3000e−4 

5 6−3 0.4305e−2 0.1064e−4 0.8670e−3 0.1005e−4 

 ( )rO h  0.9999 1.9880 1.3726 1.9899 

 
Table 4. Numerical error approximation results using CFEM in Example 4,  

( ) ( )sin 2π cos 1.5πu x x y y= . 

iter h ( )hu u∇ −  hu u−  ( )hu Q uτ τ∇ −  hu Q uτ−  

1 2−3 0.3537e−0 0.2256e−1 0.2900e−0 0.2165e−1 

2 3−3 0.1069e−0 0.2138e−2 0.5074e−1 0.2042e−2 

3 4−3 0.4480e−1 0.3828e−3 0.1585e−1 0.3654e−3 

4 5−3 0.2294e−1 0.1004e−3 0.6526e−2 0.9585e−4 

5 6−3 0.1327e−1 0.3365e−4 0.3165e−2 0.3210e−4 

 ( )rO h  0.9962 1.9762 1.3686 1.9779 

 

 
(a)                                        (b) 

Figure 7. Error convergence rates using CFEM in Example 4,  
( ) ( )sin 2π cos 1.5πu x x y y= . (L): 2L  norm error. (R): 1H  norm error. 
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(a)                                        (b) 

Figure 8. Surface plots of approximation using CFEM in Example 4,  
( ) ( )sin 2π cos 1.5πu x x y y= . (L): Surface plot of hu . (R): Surface plot of hQ uτ . 

 
With numerical experiments we support the theoretical results in [16] and 

confirm the superconvergence of CFEM for second-order elliptic problems. 

5. Conclusion 

The L2-projection to the existing numerical approximation hu  produced some 
superconvergence in H1 norm, convergence rate 1.3≥ , but did not affect the 
convergence rate in L2 norm. With the numerical experiments we can conclu-
sively support the theoretical result and confirm the superconvergence of CFEM 
for second-order elliptic problems by L2-projection method. 
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