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Abstract 

This paper introduced a way of fractal to solve the problem of taking count of 
the integer partitions, furthermore, using the method in this paper some re-
currence equations concerning the integer partitions can be deduced, includ-
ing the pentagonal number theorem. 
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1. Introduction 

A partition of a positive integer n is a way of writing n as a sum of positive in-
tegers. The number of partitions of n is given by the partition function ( )p n . In 
the history of researching the expression of ( )p n , the methods such as generat-
ing functions and complex analysis are widely used. The fractal can not only de-
scribe lots of the natural phenomena, but also work in the recurrence equations. 
In this paper a new method of fractal will be used to deduce some recurrence 
equations concerning the integer partitions, including the pentagonal number 
theorem.  

2. Preliminaries 

It is well known that the Mandelbrot set [1] is generated by the recurrence equa-
tion 2

1 Cn nZ Z+ = + , where nZ  is a complex number and C is a complex con-
stant [1] [2]. In this paper let us call the recurrence equation 2

1 Cn nZ Z+ = +  [2] 
the generator of the Mandelbrot set. Next we should find the generator of the 
integer partition functions. It is defined that ( ) 0p m =  if 0m <  and (0) 1p = . 
Let us call the value m in ( )p m  the tab of ( )p m . Here let us write an equation 
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below,  

( ) { (0)} { (1)} { (2)} { ( )} { ( 1)}p n p p p p i p n= + + + + + + −  ,      (1) 

where { ( )}p i  is called a parcel here. 
To accomplish the proof of the main theorem in the next section, some con-

ceptions are required. Let us call the elements in the symbol { } and the symbol 
itself a parcel. Every parcel may generate other parcel(s). Let us call a parcel 
which has generated its child-parcel(s) a father-parcel. A parcel has a fa-
ther-parcel if it is generated by other parcel. 

Let us define that a parcel is surrounded with the symbol { } if it has not gen-
erated its child-parcel(s), otherwise the parcel and its child-parcel(s) are sur-
rounded with the symbol [ ], let us call the elements in the symbol [ ] and the 
symbol itself a cell. The symbol [ ] has the same meaning with the brackets in 
arithmetic. In this paper the symbol [ ] is different from the symbol   , x   
denotes a rounding down function which will be used later. The child-parcel(s) 
are the repeated count in their father-parcel, they should be subtracted from 
their father-parcel. Here let us define that a parcel will lost the symbol { } out of 
itself if it has generated its child-parcel(s). Next we should find the expression of 
every parcel.  

3. Deducing the Generator 

Definition 1 
( )nΩ  is a function that can let n be written as an arbitrary partition. 

For example, (15) 7 8Ω = +  is an expression of the partitions of integer 15. 
The number of representations of ( )nΩ  is ( )p n . 

Definition 2 
m is called a fixed number if ( )n m n m= +Ω − , where m cannot be divided. 
Let us assume the sum of the child-parcel(s) that a parcel will generate is  

0
{ ( )}

i
p i

λ

=
∑ , we should find the λ  in it. 

The Main Theorem 
In a cell, let λ  denote the quantity of the child-parcel(s) that a parcel { ( )}p τ  

will generate, let n denote the tab in its father-parcel, then 2 nλ τ= − . 0λ =  if 
2 0nτ − ≤ . 

Proof 
When n is an odd number, let t and { ( )}p n t−  be bijection. When 

1 / 2t n≤ < , let t be a fixed number, the count of partition mapped t is ( )p n t− , 
here let us sign it { ( )}p n t−  because ( )p n t−  has repeat count. 

Let us divide n into t and n t− , let ( )iξ  denote the number in the section 
[ , ]t n t− , where t i n t≤ ≤ − . Because ( )t i nξ+ ≤ , let ϕ  denote the largest 

( )iξ , we have n tϕ = − .                                           (2) 
/ 2n t n tϕ = − > >  because / 2t n< . Now let us regard ϕ  as the fixed 

number, the partition count of ( )n t n tϕ ϕ= + +Ω − −  can be mapped as 
( )p n t ϕ− −  because it has been counted when ϕ  is a fixed number. Using 
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formula (2) we have ( ) { (0)}p n t pϕ− − = . 
Also, we can regard every number in the section ( , )t ϕ  as a fixed number.  
Therefore, in the section [ , ]t ϕ , every number can be mapped by order as  

{ ( )} { (0)}p n t pϕ− − =  ↔  ( )n t n tϕ ϕ= + +Ω − − ,  

{ ( ( 1))} { (1)}p n t pϕ− − − =  ↔  ( 1) ( ( 1))n t n tϕ ϕ= − + +Ω − − − ,  

{ ( ( 2))} { (2)}p n t pϕ− − − =  ↔  ( 2) ( ( 2))n t n tϕ ϕ= − + +Ω − − − ,  

   
{ ( ( 1))} { ( 2 1)}p n t t p n t− − + = − −  ↔  ( 1) ( ( 1))n t t n t t= + + +Ω − − + ,  

where “ ↔ ” is a symbol of bijection. 
Then let us calculate the count of the equations above, we have 

2 1 0 1 2n t n tλ = − − − + = − . 

Thus, 
2 2( ) 2n t n n nλ τ τ= − = − − = −  because n tτ = − . 

When / 2n t n≤ ≤ , there is no number in the section [ , ]t n t− , thus 0λ =  
because 2 0n t− ≤  if (2 ) 0nτ − ≤ . 

In the situation of even, the process of analysis is as same as odd. This con-
cludes the proof of the main theorem. 

For example, let us use the generator to calculate (10)p . Let us regard 
(10)p  as a father-parcel, using the main theorem (or it can be called the gene-

rator), at first, every parcel has not generated its child-parcel(s), so they are sur-
rounded by the symbol { }, next, every parcel generates its child-parcel(s) and 
has become a cell, the child-parcel(s) are arranged by order according to their 
tabs, their first child-parcel should be (0)p . The quantity of the child-parcel(s) 
that a parcel will generate is given by the main theorem. Therefore the tab of the 
last child-parcel equals the quantity of the child-parcel(s) minus 1. The process 
of generating will be continued until there is no parcel can generate its 
child-parcel(s). We can “zoom in” (10)p  entirely with 5 steps, which are 
shown below.  

p(10)=
9

0
{ ( )}

i
p i

=
∑   

=p(0)+p(1)+p(2)+p(3)+p(4)+p(5)+[p(6)−{p(0)}−{p(1)}]+[p(7)−{p(0)}  
−{p(1)}−{p(2)}−{p(3)}]+[p(8)−{p(0)}−{p(1)}−{p(2)}−{p(3)}  
−{p(4)}−{p(5)}]+[p(9)−{p(0)}−{p(1)}−{p(2)}−{p(3)}−{p(4)}  
−{p(5)}−{p(6)}−{p(7)}]  

=p(0)+p(1)+p(2)+p(3)+p(4)+p(5)+[p(6)−p(0)−p(1)]+[p(7)−p(0)−p(1)  
−p(2)−p(3)]+[p(8)−p(0)−p(1)−p(2)−p(3)−p(4)−[p(5)−{p(0)}  
−{p(1)}]]+[p(9)−p(0)−p(1)−p(2)−p(3)−p(4)−[p(5)−{p(0)}]−[p(6)  
−{p(0)}−{p(1)}−{p(2)}]−[p(7)−{p(0)}−{p(1)}−{p(2)}−{p(3)}  
−{p(4)}]]  

=p(0)+p(1)+p(2)+p(3)+p(4)+p(5)+[p(6)−p(0)−p(1)]+[p(7)−p(0)−p(1)  
−p(2)−p(3)]+[p(8)−p(0)−p(1)−p(2)−p(3)−p(4)−[p(5)−p(0)−p(1)]]  
+[p(9)−p(0)−p(1)−p(2)−p(3)−p(4)−[p(5)−p(0)]−[p(6)−p(0)−p(1)  
−p(2)]−[p(7)−p(0)−p(1)−p(2)−p(3)−[p(4)−{p(0)}]]]  
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=p(0)+p(1)+p(2)+p(3)+p(4)+p(5)+[p(6)−p(0)−p(1)]+[p(7)−p(0)−p(1)  
−p(2)−p(3)]+[p(8)−p(0)−p(1)−p(2)−p(3)−p(4)−[p(5)−p(0)−p(1)]]  
+[p(9)−p(0)−p(1)−p(2)−p(3)−p(4)−[p(5)−p(0)]−[p(6)−p(0)−p(1)  
−p(2)]−[p(7)−p(0)−p(1)−p(2)−p(3)−[p(4)−p(0)]]]  

=42.                                                     (3) 

One can note that the equation above has the feature: self-similarity, of course, 
this is the property of the fractal. 

On the one hand ( )p n  can be “zoomed in” on a form as 
1

0
( ) { ( )}

n

i
p n p i

−

=

= ∑ ,  

on the other hand, in fact, for ( )p n , the last term { ( 1)}p n −  in ( )p n  can be 
mapped as the sum of n integer 1, there is only one way to express { ( 1)}p n − , 
so the last term can be 1. Thus ( )p n  can be “zoomed in” on a form as  

2

0
( ) { ( )} 1

n

i
p n p i

−

=

= +∑ . 

Also, for p(10), it can be “zoomed in” entirely with 4 steps, we have  

p(10)=
8

0
{ ( )}

i
p i

=
∑ +1  

=p(0)+p(1)+p(2)+p(3)+p(4)+p(5)+[p(6)−{p(0)}−{p(1)}]+[p(7)−{p(0)}  
−{p(1)}−{p(2)}−{p(3)}]+[p(8)−{p(0)}−{p(1)}−{p(2)}−{p(3)}  
−{p(4)}−{p(5)}]+1  

=p(0)+p(1)+p(2)+p(3)+p(4)+p(5)+[p(6)−p(0)−p(1)]+[p(7)−p(0)−p(1)  
−p(2)−p(3)]+[p(8)−p(0)−p(1)−p(2)−p(3)−p(4)−[p(5)−{p(0)}  
−{p(1)}]]+1  

=p(0)+p(1)+p(2)+p(3)+p(4)+p(5)+[p(6)−p(0)−p(1)]+[p(7)−p(0)−p(1)  
−p(2)−p(3)]+[p(8)−p(0)−p(1)−p(2)−p(3)−p(4)−[p(5)−p(0)−p(1)]]+1  

=42.                                                     (4) 

It is easy to find that ( )p n  also can be “zoomed in” on a form as  
3

0
( ) { ( )} / 2 1

n

i
p n p i n

−

=

= +   +∑  if we have gotten the content which will be dis-

cussed later. Also p(10) can be “zoomed in” entirely with 3 steps, we have  

p(10)=
7

0
{ ( )}

i
p i

=
∑ +10/2+1  

=p(0)+p(1)+p(2)+p(3)+p(4)+p(5)+[p(6)−{p(0)}−{p(1)}]+[p(7)−{p(0)}  
−{p(1)}−{p(2)}−{p(3)}]+10/2+1  

=p(0)+p(1)+p(2)+p(3)+p(4)+p(5)+[p(6)−p(0)−p(1)]+[p(7)−p(0)−p(1)  
−p(2)−p(3)]+10/2+1  

=42.                                                     (5) 

In the fact that ( )p n  can be “zoomed in” entirely with fewer steps if we can 
find some proper functions and exchange the terms in ( )p n  for these func-
tions. 

4. The Application of the Generator 

Now let us reach an agreement that the main theorem in the section above is 
called the generator. As an example, let us use the generator to calculate ( )p n  
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in a finite range. Here the last term { ( 1)}p n −  can be mapped as the sum of 
( 1)n −  integer 1 to add up, there is only one way to express { ( 1)}p n − , so the 
last term is 1. 

Let us assume 2 12n≤ ≤ , at first we have  

p(n)={p(n−n)}+ ∙∙∙ +{p(n/2)}+{p(n−x)}+ ∙∙∙ +{p(n−2)}+1.      (6) 

We should calculate x first. { ( )}p n x−  is the first parcel that will generate its 
child-parcel(s), / 2n x n− > , then / 2x n n< − , therefore, 6x < . 

The tabs in the equation from left to right are arranged from small to large, 
therefore x should has the largest value in the range. Thus we know 5x = . 

Using the generator, we know the quantity of child-parcel(s) that a parcel will 
generate, also we know the first child-parcel should be (0)p  and the 
child-parcel(s) are arranged by order according to their tabs. The quantity of the 
child-parcel(s) that a parcel will generate is given by the generator, therefore the 
tab of the last child-parcel equals the quantity of the child-parcel(s) minus 1. 

( / 2 ) ( 6)p n p n  = −  because the number / 2n   in ( / 2 )p n   and the 
number ( 5)n −  in ( 5)p n −  should be continuous, we have  

p(n)={p(n−n)}+ ∙∙∙ +{p(n/2)}+{p(n−5)}+ ∙∙∙ +{p(n−2)}+1  
=p(n−n)+ ∙∙∙ +p(n−6)  
+[p(n−5)−p(n−12)−p(n−11)]  
+[p(n−4)−p(n−12)−p(n−11)−p(n−10)−p(n−9)]  
+[p(n−3)−p(n−12)−p(n−11)−p(n−10)−p(n−9)−p(n−8)−[p(n−7)  
−p(n−12)]]  
+[p(n−2)−p(n−12)−p(n−11)−p(n−10)−p(n−9)−p(n−8)−p(n−7)  
−[p(n−6)−p(n−12)−p(n−11)]−[p(n−5)−p(n−12)−p(n−11)  
−p(n−10)−p(n−9)]]+1.                                          (7) 

Given a nonnegative integer n, now let us use the generator to calculate ( )p n  
directly. 

Example: Calculate (11)p  and (12)p  by using the generator. 

p(11)=p(0)+p(1)+p(2)+p(3)+p(4)+p(5)+[p(6)−p(0)]+[p(7)−p(0)−p(1)−p(2)]  
+[p(8)−p(0)−p(1)−p(2)−p(3)−p(4)]+[p(9)−p(0)−p(1)−p(2)−p(3)  
−p(4)−[p(5)−p(0)]−[p(6)−p(0)−p(1)−p(2)]]+1  

=56,                                                     (8) 

p(12)=p(0)+p(1)+p(2)+p(3)+p(4)+p(5)+p(6)+[p(7)−p(0)−p(1)]+[p(8)−p(0)  
−p(1)−p(2)−p(3)]+[p(9)−p(0)−p(1)−p(2)−p(3)−p(4)−[p(5)−p(0)]]  
+[p(10)−p(0)−p(1)−p(2)−p(3)−p(4)−p(5)−[p(6)−p(0)−p(1)]−[p(7)  
−p(0)−p(1)−p(2)−p(3)]]+1  

=77.                                                     (9) 

Let us calculate ( 1)p n −  when 2 12n≤ ≤ , this is a preparing work for the 
next chapter. The process of analysis is as same as ( )p n  above.  

p(n−1)={p((n−1)−(n−1))}+ ∙∙∙ +{p((n−1)/2)}+{p(n−1−5)}+ ∙∙∙ +  
{p(n−1−2)}+1  
=p(n−n)+ ∙∙∙ + p(n−7)  
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+[p(n−6)−p(n−12)]  
+[p(n−5)−p(n−12)−p(n−11)−p(n−10)]  
+[p(n−4)−p(n−12)−p(n−11)−p(n−10)−p(n−9)−p(n−8)]  
+[p(n−3)−p(n−12)−p(n−11)−p(n−10)−p(n−9)−p(n−8)−[p(n−7)  
−p(n−12)]  
−[p(n−6)−p(n−12)−p(n−11)−p(n−10)]]+1.                         (10) 

5. Deducing Some Recurrence Equations 

Now let us consider the Equation (7) and (10), let ( ) ( 1)p n p n− − , we have  

( ) ( 1) ( 2) ( 12) ( 5) ( 7)p n p n p n p n p n p n= − + − + − − − − − .        (11) 

That is the pentagonal number theorem [3]-[8] when 2 12n≤ ≤ . 
Let us change the tail of the Equation (7) or (10) to get some new results. 
It is easy to prove that when n is an even number, the count of the integer 

partitions which 2 is the largest number equals / 2n , when n is an odd number, 
it equals ( 1) / 2n − . 

{ ( 2)}p n −  can be exchanged for / 2n   because { ( 2)}p n −  equals the 
count of the integer partitions which 2 is the largest number. 

Therefore, p(11) and p(12) can be calculated as follows: 

p(11)=p(0)+p(1)+p(2)+p(3)+p(4)+p(5)+[p(6)−p(0)]+[p(7)−p(0)−p(1)−p(2)]  
+[p(8)−p(0)−p(1)−p(2)−p(3)−p(4)]+(11−1)/2+1  

=56,                                                    (12) 

p(12)=p(0)+p(1)+p(2)+p(3)+p(4)+p(5)+p(6)+[p(7)−p(0)−p(1)]+[p(8)−p(0)  
−p(1)−p(2)−p(3)]+[p(9)−p(0)−p(1)−p(2)−p(3)−p(4)−[p(5)−p(0)]]+ 
12/2+1  

=77.                                                    (13) 

Now we can see that if  we let 
3

0
( ) { ( )} / 2 1

n

i
p n p i n

−

=

= +   +∑  and let 

3

0
( 1) { ( )} 1

n

i
p n p i

−

=

− = +∑ , in fact, in a larger range, when 2 24n≤ ≤ , after being  

“zoomed in” entirely both for ( )p n  and ( 1)p n − , making ( ) ( 1)p n p n− − , we 
have  

( ) ( 1) ( 6) ( 8) ( 20) ( 21) ( 22)p n p n p n p n p n p n p n= − + − + − + − + − + −  
2 ( 23) 2 ( 24) ( 11) 2 ( 13) ( 14) ( 15)p n p n p n p n p n p n+ − + − − − − − − − − −   

( 16) ( 17) ( ) / 2p n p n n k− − − − + −  (k = 0 if n is even, k = 1 if n is odd).  (14) 

Let 
3

0
( ) { ( )} / 2 1

n

i
p n p i n

−

=

= +   +∑  and let  

4

0
( 1) { ( )} ( 1) / 2 1

n

i
p n p i n

−

=

− = +  −  +∑ , when 2 24n≤ ≤ , after being “zoomed in”  

entirely both for ( )p n  and ( 1)p n − , making ( ) ( 1)p n p n− − , we have  

( ) ( 1) ( 3) ( 12) ( 14) ( 16) ( 18)p n p n p n p n p n p n p n= − + − + − + − + − + −  
( 20) ( 7) ( 9) ( 11) ( 13)p n p n p n p n p n k+ − − − − − − − − − +  (k = 1 if n is even, k = 

0 if n is odd).                                                    (15) 

https://doi.org/10.4236/apm.2018.86036


M. Zhang 
 

 

DOI: 10.4236/apm.2018.86036 630 Advances in Pure Mathematics 

 

Let 
1

0
( ) { ( )}

n

i
p n p i

−

=

= ∑  and let 
2

0
( 1) { ( )}

n

i
p n p i

−

=

− = ∑ , when 2 24n≤ ≤ , after  

being “zoomed in” entirely both for ( )p n  and ( 1)p n − , making  
( ) ( 1)p n p n− − , we have  

( ) 2 ( 1) ( 6) ( 8) ( 12) ( 15) ( 3)p n p n p n p n p n p n p n= − + − + − + − + − − −   
( 5) ( 7) ( 13) ( 16) ( 24)p n p n p n p n p n− − − − − − − − − − .                (16) 

Let 
2

0
( ) { ( )} 1

n

i
p n p i

−

=

= +∑  and let 
3

0
( 1) { ( )} 1

n

i
p n p i

−

=

− = +∑ , also when  

2 24n≤ ≤ , after being “zoomed in” entirely both for ( )p n  and ( 1)p n − , 
making ( ) ( 1)p n p n− − , we have  

( ) ( 1) ( 2) ( 12) ( 15) ( 5) ( 7)p n p n p n p n p n p n p n= − + − + − + − − − − −  
( 22)p n− −  (the pentagonal number theorem).                      (17) 

6. Conclusions  

All the recurrence equations appearing above are deduced by the generator 
which has been deduced in this paper. The pentagonal number theorem is a spe-
cial case between them, in fact, we can get more recurrence equations. 

There is an inference that the count of the kinds of the recurrence equations 
like above whose form is ( ( ), ( 1), , (0)) ( ) 0F p n p n p G n− + =  should be infi-
nite, where 0 1( , , , )nF x x x  is a simple equation and ( )G n  is a function of n. 
It is because of that the count of the terms that the equation ( )p n  has can be 
infinite if n is infinite; in the first step of “zooming in” ( )p n , every term of the 
second half of the equation ( )p n  can be exchanged for a function ( )G n  free-
ly. 
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