000:0 Scientific

R h
#3% Fibenmg

Journal of Applied Mathematics and Physics, 2018, 6, 1346-1362
http://www.scirp.org/journal/jamp

ISSN Online: 2327-4379

ISSN Print: 2327-4352

Two New Integrable Hierarchies and Their
Nonlinear Integrable Couplings

Hui Chang, Yuxia Li*

College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, China

Email: *yuxiali2004@sdust.edu.cn

How to cite this paper: Chang, H. and Li,
Y.X. (2018) Two New Integrable Hierar-
chies and Their Nonlinear Integrable
Couplings. Journal of Applied Mathematics
and Physics, 6, 1346-1362.
https://doi.org/10.4236/jamp.2018.66113

Received: May 15, 2018
Accepted: June 25, 2018
Published: June 28, 2018

Copyright © 2018 by authors and

Scientific Research Publishing Inc.

This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Abstract

By introducing an invertible linear transform, a new Lie algebra G is obtained
from the Lie algebra A. Making use of the compatibility conditions of the re-
spective isospectral problems, a generalized NLS-MKdV hierarchy and a new
integrable soliton hierarchy are achieved by using the trace identity or the
variational identity. Then, two special non-semisimple Lie algebras H and
G are explicitly conducted. As an application, the nonlinear continuous in-
tegrable couplings of the obtained integrable systems as well as their
bi-Hamiltonian structures are established, respectively.
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1. Introduction

Integrable equations are a significant research topic of classical integrable sys-
tems. Thereinto, integrable coupling, as an extension of the integrable equation,
was formulated and initialized with the clarity of the inner relationship between
Virasoro algebras and hereditary operators [1] [2]. A few methods were pre-
sented by using perturbations [1] [2], enlarging spectral problems [3] [4] [5],
creating higher-dimensional loop algebras [6] [7], constructing a new algebraic
system [8] [9] [10], and making use of semi-direct sums of specific Lie algebras,
for instance, the orthogonal Lie algebra so(3,R), to construct some soliton
hierarchies and their integrable couplings [11]-[16]. Much richer mathematical
structures behind integrable couplings were explored, such as Lax pairs with
several spectral parameters [17] [18] [19], integrable constrained flows with

higher multiplicity [20] [21], local bi-Hamiltonian structures in higher dimen-
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sions and hereditary recursion operators of higher order [22] [23]. A lot of com-
plex physical phenomena can be explained by all kinds of coupling systems [24].
Therefore, integrable couplings have attracted more and more attention from
researchers in engineering and mathematical theory.

Thereinto, the nonlinear integrable couplings are a charming subject, which

can be achieved by using an extended Lie algebra. First, an isospectral problem

$.=U,U=U(u)=e,+ue +ue, +--+ue,e,pe A, (1)
and its auxiliary condition
¢ =V (u)g,V=V(u)e 4, (2)
admit a zero curvature equation
U =v.-[U,r], (3)
Le., a Lax integrable system
u, =K (u), (4)

where u = (ul,uZ,---,uS )T , A isthe corresponding loop algebra of a Lie algebra

A. Next, take enlarged spectral matrices

_ (U U, _ (v
U= and V = , ©)
0 U+U, 0 V+V7,

inwhich U and V7 derive from (1) and (2), respectively, where
~ ~ T
U.=U,(v)edV, =V (v)ed, v=(v1,v2,---,vp) and u consist of u and v.

Then an enlarged zero curvature equation

=V -0V ], (6)

Le.,

{Ut = Vx _[U’V]’ (7)

Uc,t :VC,X _[UC’V]_[U’VC]_[UNI/C]a

is a nonlinear integrable coupling of (3), because the commutator [U,,V,] can
generate nonlinear terms.

In this paper, a new four-dimensional Lie algebra A is firstly presented, and
another one G is obtained through an invertible linear transformation. A gene-
ralized NLS-MKdAV hierarchy and a new integrable soliton hierarchy are
achieved by using the Loop algebras A and G of Hand Gin Section 2. Two
special non-semisimple Lie algebras H and G are determined programmat-
ically, and its associated nonlinear continuous integrable couplings and their
bi-Hamiltonian structures are established in Section 3. Finally, concluding re-

marks are given, as well as some proposals for the future work.
2. Two New Hamiltonian Hierarchies

2.1. Two Lie Algebras
A Lie algebra H = span{hl.}?

_, is presented
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1 0 -1 1 0 1 0 1 0 0 1 0
h=0 -2 0 h={0 -2 Ok=1 0 -1|,h,={-1 0 1|, (8)
-1 0 1 1 0 1 0 -1 0 0 -1 0

with
] = 0. ] = 4, [, ] = o
[hz,h3]:2h4,[h2,h4]:2h3,[}5,h4]:—2hl.
An invertible linear transformation can be established as follows:
4
L:H—>G,g[=IZ:I:Bh[ and B=(b,), ,det(B)#0, (10)
Specially, taking
1 0 0 O
L Ly o
2 2 ; .
B= 0 0 l l a(glagzsg3sg4) :B(hl’h2’h3’h4) > (11)
2 2
o o L _1
2 2
results in a new Lie algebra G—Span{g }41,where
1 0 -1 0 0 -1 01 0 00 O
g=l0 -2 0lg=0 0 0|g=/0 0 Ofg,=1 0 -1, (12)
-1 0 1 -1 0 0 0 -1 0 00 O
equipped with
8,8,1=0,18,85|=485,|81,84 | =484,
[ 1 2] [ 1 3] 3[ 1 4] 4 (13)

[gz’gs] :gzv[gz’g4]:_g4a[g3’g4] =&

In what follows, the corresponding loop algebras A and G of the Lie al-
gebras H and G are introduced, respectively. Let H ={h|heC[/1]®H},
¢ ={g\geC[/1]®G} , where a loop algebra C[A]®H is defined by
span{/ik"”h |ne Z,k,ie N,he H} and C[A1]®G is homoplastically defined
by Span{lk"”g |ne Z,k,ie N,he H} , C[A] represents a set of Laurent po-
lynomials in 1. Taking /h,(n,i)= hj/lk"”, j=1,2,3,4, the commutator relations

of H are
[hl , n, ] O[hlml,h3n]] 4h(6‘u,5)
[ (mi).hy (n. )] =4hy (&6, ). [ n]] 2h,(£,,.5,;);
[ (m,0), 1y (m, /)] =20 (2,6, )[%ml n)]==2h(z,6,), 19
B m+n,l+j<k, 5 - l+],l+]<k,
S T  mansLiv sk 7 ivj—ki+ >k

Similarly, the commutator relations of the loop algebra G have
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[gl(m,i),gz(n,j)}:o, |:g1(m’i)’g3(n’j)]:4g3(gi~f’5i~f)’
[gl(m,i),g4(n,j)}=—4g4(8,3j,5,3j),[g2(m,i),g3(n,j)}=g3(8i,j,c2,j),

(g2 (mi).2i (m /)] ==gi(2.,:6,,).[& (mi).gi(n )] = & (&,6,), (19
:{m+n,i+j<k, :{i+j,i+j<k,

&, . .
Yoo lmtn+Li+j>k Y i+ j-ki+j>k

Note that the commutator operations in loop algebras G and W are closed.

In the following section, one endeavor to deduce two soliton hierarchies by us-

ing the two Lie algebras.

2.2. Two New Integrable Hierarchies

2.2.1. Generalized NLS-MKdV Hierarchy
Let k=1,i=0, H isreduced tothe simplest loop algebra

i{v] = span{h/. (n)}

4
Jj=1

where £, (n)=h,A". Considering the spectral matrix

@, =Up,U =hy(1)+qh (0)+rhy(0)+sh, (0), (16)
and setting
W =3 (a,h(-m)+b,h(-m)+c,h,(-m)), (17)

the stationary zero curvature equation

w,=[U,w], (18)

admits the recurrence relations for W as follows:

a,, =—2rc, +2sb,,

b, =2c,,, +4qc, —4sa,, (19)
¢, =2b,., +4qb, —4ra,.
Note that
P =(W) =3 (a,h (n—m)+ b (n—m)+c,h,(n—m)),
v =amw - Vf";:o
Then (18) can be reset below:
Vo = -[up ] (20)

A direct calculation has -V + [U, Vf")] =2¢,,hy(0)+2b,,h, (0) . Taking

+x n+l

y = Vf") +A,,A, =a,h (0) , the zero curvature equation

u,=r"-[ur], 1)
leads to the following integrable hierarchy
r,=-2c,, +4sa,,,
s, ==2b,, +4ra,,, (22)
qx = an+1x5
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that is
r bn+1 bn 0 2 2S
u=\s|=J -, |=J|--, |, J=| 2 0 2r|, (23)
q), 2a,,, 2a, -2s 2r 0
where
—2q+4ro’'s 0 +4r07'r 0 —2q 2 r
2 2
0 -1 -1 0
L= —E—4s8 s —2q-4s0"r 0|= - -2q -s|, (24)

—%6']1’8 -807'sq 207's0-807'rq 0

and /,, = —%6']1”6 -807'sq,l,, =20"'s0-80""rq.

Taking ¢ =0 and the modified term A, =0, the system (23) reduces to the
NLS-MKTYV hierarchy [25]. Therefore, (23) is named a generalized NLS-MKdV
hierarchy.

2.2.2. A New Integrable Hierarchy
Letting k=1,i=0 of G results in a loop algebra a:span{gj (n)}4 ,

J=1

deg ( g, (n)) =n, ne N . Considering the following spectral

?.=Up,U =g, (1) +q,8, (0) +rg, (0) +5,8, (0), (25)
and setting
W= (a,8 (-m)+b,g; (-m)+c,g,(-m)), (26)
m=0

the stationary zero curvature W, =[U,,W;] admits the recurrence relations
Ay =16, — Slbm’

b,.=b, +4qb, —4na

m+1

(27)

mo
Coe = _Cm+l - 4q1 Cm + 4S1 am :

mx

n

Note that V,S") = (/1”W, )+ = Z(amg, (n—m)+b,g,(n—m)+c,g,(n —m)) ,
m=0
and taking y :(/1"W] )+ +A,, A, =a,,8 (0), the zero curvature equation

U, = Vl(”) - [UUVI(")J leads to the integrable hierarchy

X

rl _zcn+l + 4slan+l cn+l cn
U, =8 | = _2bn+] +4r1an+l =J bn+1 =JL bn > (28)
ql t an+1x 4an+1 4an
where
0 -1 g -0-2¢, 0 s,
=1 0 =s|, L= 0 0-2gq, n
- 0 —407'R0+160"'rq, —407'5,0+1607's,q, 89 7'rs,
2
(29)
DOI: 10.4236/jamp.2018.66113 1350 Journal of Applied Mathematics and Physics
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2.3. Bi-Hamiltonian Structures of (23) and (28)

In this section, the bi-Hamiltonian structures of soliton hierarchies (23) and (28)
are established. Firstly, the bi-Hamiltonian structure of (23) is obtained by ap-
plying the trace identity.

Letting
a b+c —a
V=|b-c -2a -b+c ,a=Za"/1",b:2b"/1",c=ch/1", (30)
—a —b —c a n>0 n>0 n>0

the bilinear forms (V,U,)=4a, (V,U,)=4b, (V,U,)=-4c, <V,Uq>=861
can be obtained by the calculation of (A, B) =tr(4B) (Aand Bare square ma-
trices). Substituting these results into the trace identity
(0/ou)(r,U,)=(47 (8/04) A7) (.U, ) resultsin
o _, 0 T
—(4a)=A"7—A7 (4b,—4c,8a) . 31
g (4a) =47 7 4 (b ~dea) Gy
Comparing of the coefficients of 4™ these both sides of the above equa-

tions, one has

5%(% )=A"7 a%ﬂ (b,,—c,,2a,) . (32)

To fix the y, taking n=1 into (32) results in y =0. Therefore, the
bi-Hamiltonian structure of (23) can be obtained below:
oH oH

T +1 a +2
u =(r,s, =J—"==JL—" where,H, , =—"*. (33)
! ( q)’ ou Su " on+l

It is easy to prove JL =L'J . Therefore, the hierarchy (33) is integrable in the
Liouville sense.
Next, the bi-Hamiltonian structure of (28) is derived by using the trace iden-

tity. Letting

a b -a
Vi=| ¢ -2a —c|,a= Zanl",b = Zb"l",c = chxl", (34)
n>0 n>0 n>0
-a -b a

the bilinear forms (Vl,UM> =2a, (VI,UU> =2c, <V1,UIS> =2b, <V1,U1q> =8a
are computed, and ;(Za) =17 %ﬂ/ (2(:,2b,8a)T can be obtained similarly.
u
Comparing the coefficients of A™" in the both side of the above equation
yields
o _, 0 T

—(a,,)=A7"—4"(c,,b,,4a,) . 35
51/!( ’Hl) ol ( n>“n ) ( )

To fix the y, substituting n=1 into (35) results in y =0. Therefore, the

bi-Hamiltonian structure of (28) can be established as follows:

oH OH a
u,=(1r.5,,q,), =J,—"L=J L —", where, H,, =2 (36)
ou ou n+1
DOI: 10.4236/jamp.2018.66113 1351 Journal of Applied Mathematics and Physics
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It is easy to prove J,L, = L,J,. Therefore, the hierarchy (36) is integrable in
the Liouville sense.
3. Nonlinear Integrable Couplings of Soliton Hierarchies
3.1. Extension of Lie Algebras

6
~, itis an extension of the Lie algebra H, where

Letting H = span{
0)— (h O)—- (h O
th(o Jali i)
’% s

(H

37
0 — — 0 »h G7)
e = g = .
0 hg 0 &
Taking H, —spa hy by, E , 1-_1 span{hs,hé,h7 hg} yields
H=H ®H, H=H,=H,H.H,]|cH, (38)

which is a critical factor for generating nonlinear integrable couplings of integr-
able hierarchies. In order to seek a nonlinear integrable coupling of (23), a loop

algebra of the Lie algebra H reads

I:I—span{ (n) |y (n)=2"h.ne Z.h e H,i=1,2,3,4,5,6,7.8)

Similarly, letting G =span{g, }l_iI , where

gzgl 0 §=g2 0 §=g3 0 §=g4 0
1 Og1’2 ng,3 0g3’4 0g4’

(39)
§=0g1§=Og2§=0g3§0g4
Tlo g )7 Lo g)T 0 g7 Lo g,
Taking é,:span{§1,§2,§3,§4}, ézzspan{g_5,§6,§7,§8} results in
G-G,00,6,26,26[0.6,]<6. o)

And G=span{g,(n)|g,(n)=A"g.ne 2,5 G.i=1,23,4567.8 is the
corresponding loop algebra of G, which is enslaved to derive a integrable

coupling of (28).

3.2. Nonlinear Continuous Integrable Couplings

3.2.1. Nonlinear Integrable Coupling of the Generalized NLS-MKdV
Hierarchy
An enlarged spectral matrix associated with the loop algebra H is introduced

as follows:

p u+v —-p

o =Up,U vou U 2 (41)
= . = N = - - —U + )
Pe=0 0 U+U, ey poomy

-p  —uU-v D

Le. 17:!72(1)+ql_11( )+rhj( )+sh (0 )+pl75(0)+ul77(0)+vl_18(0), where U is
defined by (16). Assume that

DOI: 10.4236/jamp.2018.66113
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W= z (am}_Ll (—m) + bm}_% (—m) + cmi_z4 (—m) + dmlf_z5 (—m) + emi;7 (—m) + f»ﬁg (—m)),

m=0

the stationary zero curvation W, = [U ,VI_/] admits the recurrence relations

a,, =-—2rc, +2sb,,
b, =2c,. +4qc, —4sa,,
cmx = 2bm+l + 4qu - 4ram’

(42)
d,. ==2(r+u) f, +2vb, —2uc, +2(s+v)e,,
e =2f i —4(s+v)d, +4(p+q) [, +4pc, —4va,,
fo=2 —4(r+u)dm +4(p+q)e, +4pb, —4ua,.

Choosing the initial values as a,=a=const#0, d,=pf=const#0 ,

bO:c():eO:ﬂ): N 70=bm :d =em§:0=

=0 mlg=0 mliz=0

Juliig=0, (42) uniquely vyields all differential polynomial functions
a,,b,,c,.d, e, and f, ,m=>0.Thefirst few sets are
b, =2ar,c, =2as,a, =0;b, =as, —4aqr,c, = ar, —4aqs,a, = a(s2 —rz);
b :%arxx —2a(gs), —2ags, +8aq’r +2ar (s2 —rz),
c :%asm —2a(qr), —2aqr, +8aq’s + 2as(s2 - rz),
a3=a(srx—rsx)—4aq(s2—r2);
d=0,e =2au+2p(r+u), fi =2av+2B(s+v);
e2:avx+ﬁ(s+v)x—4au(p+q)—4ﬂ(r+u)(p+q)—4apr,
f2=aux+ﬁ(r+u)x—4av(p+q)—4,3(s+v)(p+q)—4aps,
d2=2a(sv—ru)+a(v2—u2)+ﬁ(s+v)2—,3(r+u)2;

1 1
zo{gum—8rq2—2r(s2—r2)+4sxq+2sqx}+5ﬁ(r+u)xx
—2(a+ﬁ)[(s+v)(p+q)]v—2(a+ﬂ)(s+v)x(p+q)
+2(a+ﬂ)(r+u)[ (p+q)2 (r+u) (s+v)2J,

nga[%v —8sq” —2s( 2 r2)+4rq+2rql} ;ﬁ(s+v)xx
—2(a+ﬁ)[(r+u)(p+q)ll—2(a+ﬁ)(r+u) (p+q)
+2(a+ B)(s+v)[ 4(p+a) +(s+v) ~(r+u)’ ],
d, —a(su —SuU+vu, —vu+vr,—v r)+ﬁ(r+u) (s+v) ﬂ(r+u)(s+v)x
+4(a+ﬁ)(r+u) (p+q)— (a+/)’)(s+v) (p+q)+4aq(s2—r2).
(43)
Note that
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A direct calculation reads
_I7+(:) + |:l7, VJr(n):I = 26n+1}73 (0) + 2bn+1}_l4 (O) + 2en+1}77 (O) + 2bn+lz8 (O)

Taking 7" =V +A,,A, =a, b (0)+d,, h(0), the zero curvature equa-

n+1""s
tion
g, = -[a.7"], (45)
leads to the following integrable hierarchy
r -2¢,,, +4sa,.,
s -2b,,, +4ra,,,
a
= Z Tl -2f, +4ra,, Tzlsdm +avd | (46)
\J —2e,, +4ua,, +4rd ,, +4ud
p), d,.,

If u=v=p=0, the system (46) is reduced to (23). According to the concept
of nonlinear integrable couplings [26] [27] [28], (46) is a nonlinear integrable
coupling of (23).

3.2.2. Nonlinear Integrable Coupling of the Hierarchy (28)
An enlarged spectral matrix associated with the loop algebra g is given below:

u _

o U, U, by 1 D

. =Up,U = 0 U +U, U=l —2p v |, (47)
- Y b

that is,
U =2 (1)+qg(0)+rg(0)+58,(0)+ pgs(0)+ug, (0)+vg(0)
where U, is defined by (25). Assume that
W= 2 (a,8 (-m)+b,8 (-m) +,&, (-m)
+d, 8 (-m)+,Z (-m)+ 1,8 (-m),

the stationary zero curvature equation ¥, :[Ul,l/l_/l} admits the recurrence

relations
amx = rlcm - Slbm’
bmx = bm+1 + 4qlbm - 4riam s
cmx = _cm+l - 4qlcm + 4S1am >

dmx :(rl +ul)er _vlbm +ulcm _(Sl +V1)em: (48)

e, =e. —4(r, +u,)dm +4(p1 +q1)em +4pb, —4ua,,

mx

f;nx = _f;n+1 _4(S1 +Vl)dm _4(p1 +ql)fm _4plcm +4Vlam’
Choosing the initial dataas a, =a =const #0, d, = =const#0, b, =c, =
c d a0 = Sulig =05

=0 :brr'|gl=0 =Cn =0 =ln =0 =€ m=0
the above-mentioned recursion relation uniquely engenders all differential po-
d,,e, and f,,m>0. The first few sets are listed

m>~"m?>

e, = f, =0, and presuming a,

lynomial functions a,,b,,c

as follows:

DOI: 10.4236/jamp.2018.66113
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b =4an,c, =4as,,a, =0;c, = —4as, —16aq,s,,a, = -4asy,

b, = 4ar,, —16aq,1;b, = 4ar,, —16a(qn) —16aqr, +64aqir —16ar’s,,
¢ =4a [sm_ +4(q1s1 )X +4q,s,, +16gs, —4r1s12J,

a; =a(ns,, —sn,)-32aq,s5;d, =0,

e, =4au, +4ﬁ(r1 +u1),fl =4av, +4[)’(s1 +v1);

e, = 4a[u1x —4u, (p1 +q1)—4p1r1}+4,8[(r1 +u1)x —4(r1 +u1)(p1 +q1)],

S = _4a|:le +4v, (p1 +Q1)+4P151}_4IB|:(31 v )x +4(S1 +V1)(p1 +q )]’
d, = —4a(u1v1 +u,S, +vlr1)—4ﬁ(r1 +u1)(s1 +v1);

ey = 4a(uy,, —4q,.1i +8q5, +41’s, ~ 161, )
—32(a+ﬁ)[(u, +r,)(p, +q, )]x +4,B(r1 +ul)ﬁ
#16(a+ )i+ (p+a), ~ (i) (s +v) +4(p o+, ) |,
£y =4a(v,, —4q,5 —8q,s, +4s7,~16q;s,)
+32(0{+ﬂ)[(s1+v1)(p1+q1)]x+4ﬂ(sl+vl)n
~16(a+ ) (s +w)| (pr+ )~ (5 +9) (i) +4(p +0) |,

d, :4(a+ﬂ)[(r, +u1)(s1 +v )X —(r, +u, )X (s, +v )J—4a(r,s1x _”usl)
+32aq,1s, +32(0H—ﬂ)(pl +ql)(r, +u,)(s1 +v,).

(49)

Note that

7o) (/1”V171)+ = ;}(amgl (n—-m)+b,g,(n—m)+c,g,(n—m) (50)

+d, g (n - m) +e,g; (n - m) + f.,8s (n - m))
A direct calculation reads
_I7I£’;) + I:Ul 7I71£n)j| == n+1§3 (0) + cn+1§4 (0) - en+1§7 (0) + fn+1§8 (0)

Taking V") =" +A A, =a,,,g (0)+4d,.,g5(0), the zero curvature equa-

tion
Ult = 17181) - |:U1 7171(’1)]’ (51)
leads to the following integrable hierarchy
rl _bn+1 + 4rlan+1
sl Cn+1 + 4S1an+1
ql an+l X
u, = = ’ . 52
! U —e,, +4ua,, +4nd,, +4ud,, 52
4 Jon —4va,,, —4sd,., —4vd,,
pl t dn+l,x

If uy=v,=p =0, (52) is reduced to (28), and (52) is a nonlinear integrable
coupling of (28).
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3.3. Bi-Hamiltonian Structures of Nonlinear Integrable Couplings

3.3.1. Bilinear Forms

In this section, the bi-Hamiltonian structures of the nonlinear integrable coupl-
ings of the generalized NLS-MKdV hierarchy (23) and the new integrable hie-
rarchy (28) can be established. In order to achieve this target, two
non-degenerate, symmetric and ad-invariant bilinear forms on two Lie algebras
H and G are introduced. First of all, an isomorphic mapping ¢ between

the Lie algebra H and a vector space R is established that

p— 8 —
o:H-> R A (a,a,,,a5), A=) ah,
i

(53)

which imports a Lie algebraic system on R°. The corresponding commutator

[...] on R'isgiven by

[a,b] « =o[4.B], =a"R (b), (54)
where a,beR®, A4,B eH,
0 0  4b, 4b, 0 0 4b, 4b.
0 0 25 2b, 0 0  2b 2b,
-2b, 0 0 —4b —2b,  =2b, 0 0 —4b, —2b,
2b, 0 —4b —2b, 0 26, 0 —4b, —2b, 0
0 0 0 0 0 0 4b,+4b,  4b, +4b, %)
0 0 0 0 0 0 2b,+2b,  2b,+2b,
0 0 0 0 ~2b, —2b, 0 0 bog
0 0 0 0 2b,+2b, 0 b, 0

is a square matrix and b, =—4b —2b, —4b; —2b;, by, =—4b —2b, —4b; —2b; .
The bilinear form (a,b) =a'Fb on R is determined. Simultaneously, F' =F,
and

(R(b)F) =-R (b)F, forall be R* (56)

are ascertained in accordance with the symmetric property (a,b)=(b,a), and
the ad-invariance property <a,[b,c]>:<[a,b],c>, where F, is an 8x8 con-
stant matrix. Solving the matrix Equation (56) yields

200 0 0 29, 3, 0 O
m 0 0 O n, 0 0 O
0 0 n O 0 0 n O
F = o 0 0 -, 0 0 0 -n , 57)
2n, m 0 0 27, n, 0 O
n, 0 0 O n, 0 0 O
0 0 7 O 0 0 n O

0 0 0 - 0 0 0 -p

where 7, and 7, are arbitrary constants, and (7, —7,)n, #0. Thus, a bili-
near form is defined on the Lie algebra H by
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(4,.8,); = <071 (4).07 (Bl)>R8 =a'Fb
=n[ (24, +a,) b + ab, +ab,—ab, |+n,(2ash, (53)
+agh, +asb, + a,b, —ab, +(2a, + a, +2as + a, ) by
+ (a, + aS)b6 —i—(a3 + a7)b7 —(a4 + ag)bg).
Similarly, an isomorphic mapping p is established between the Lie algebra

G and a vector space R

— 8
PG> R A (a,a,,,a5),A=) ag,. (59)

The corresponding commutator [.,.] on R is given by

[a.b],,s = P[4,,B,]=a"R, (b), (60)
where a,beR*, 4,,B,eG and R,(b) isasquare matrix
0 0 4b,  —4b, O 0 4b _ap,
0 0 b b, 0o 0 b b,
by 0 —4b—-b, 0 by 0 —4b.—b, 0
o)< > 0 0 W b 0 0 borby |
0 0 0 0 0 0 4b +4b, —4b, —4b,
0 0 o0 0 0 0 b+b  —b—b,
0 0 o0 0  b+h 0 b, 0
0 0 0 0  —b-b 0 0 by

and b,, =—4b —b, —4b; — b, b, =4b +b, +4b, +b, . According to F,' =F,,
solving the matrix equation (R, (b)F, )T =—R,(b)F, resultsin
26,6 0 0 25, 6 0 0
& 0 0 0 & 0 0 0
0 0 0 ¢ 0 0 0 ¢
0 0 & 0 0 0 & 0

= ; (62)
26, ¢, 00 25, 5 0 0

L 0 0 0 & 0 0 0
0 0 0 ¢ 0 0 0 ¢
0 0 ¢& 0 0 0 & 0

where ¢, and ¢, are arbitrary constants, and (&) —¢,)¢, #0. Therefore, a
bilinear form
(4,B,); = </’_I (4).p" (Bz)>Rx =a'Fb
=<, [(4a1 +a,)b +ab, +ab, + a3b4J +¢, (4ash, 63)
+agh, + asb, + ab, + a.b, + (4a1 +a, +4a; +a )b5

+(a, +as)bs +(a, +ag) b, +(a, +a7)b8)
— 8 8 —
is defined on the Lie algebra G, where 4,=)4,g,.B,=)bg.a,beG.
i=1 i=1

Obviously, the bilinear forms (58) and (63) are non-degenerate, symmetric and

ad-invariant associated with the Lie product.
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3.3.2. Bi-Hamiltonian Structures of the Integrable Hierarchies (46) and
(52)
Let

V:(V e }d:}ﬁﬁhe=ZQIQf=Zﬁﬁﬁ (64)

0 V+v, >0 =0 720
d e+ f —d
where V,=|e—f -2d —e+ f |, Vis defined by (30). The bilinear forms
-d —e—f d
can be calculated according to (58), as follows:
<I7,[7,1> =na +772d,<17,(7,_> = n]b+7yze,<l7,l7s> =-mc—1n,f,
(7.0,)=2ma+2n,d,(7,0,)=n, (b+e), (65)
<I7,17v> =-7, (c+f),<17,17,,> =2n,(a+d),
where U is defined by (41). Substituting (65) into the Variational identity [27],
and comparing the coefficients of A" yields
mb, +1e,
~(me, +m.1,)

S 2ma, +2n,d,
5_'.(771%“ +772dn+1)dx=(—n+}/) ,712 (b +ez) . (66)
-1, (Cn + f;l )
2772 (an + dn )
Itis easy to see y =0. The adjoint symmetrical function of system (46) reads
nlbn + ’726'1
_(nlcn + ’72f;l )
2771a" + 27]2d" — Hn 5 _77 an+ _77 dn+
mb,+e) |~ on ,WhereHHZEJ 1 1n 290t g (67)
_772 (cn + f;‘l )
21, (a, +d,)

Therefore, the bi-Hamiltonian structure of the nonlinear integrable coupling
of the hierarchy (23) can be established as follows:
-0H,,, =0 H

u =(r,s,q, (68)
! ( 4 ou
where
—_ 1 J -J) - (L L.
J = ,L = B (69)
=1 -J Jc 0 L+ Lc
0 21, o, T
up m m
JC — _2771 O 2ri 2 771 772 ,
772 772 772
26 40, h —Th _2;,_1 2u - ﬂa (70)
m, m m Up Up
-2p 0 u
L.=| 0 2p -=2v|,
Ly Ly L
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L, =—20"'u6-80"'vg—80"'sp—186"wp

L, =—20"v0—80""uqg -85 rp—807up, I, =40"vr—40 'sr

Jand L are defined in (23) and (24), respectively, and J is a Hamiltonian op-
erator.

Similarly, let

'od I/l I/la
V= d=>Yd A .e= A" — YL
l [0 V1+VMJ’ N

n>0 n>0 n=0

(71)
d e —d
where V. =| f -2d

la

—f |, V, is defined by (34). Then, the bilinear forms
-d -e d

are computed according to (63), as follows:

<I719(71/1>:§1a+§2d><17’(71r>: §1C+§2ca<171’(71s>:§1b+§2ea
(7.0,,)=4¢a+4,d.(7.0,,) = &, (c+ f),

(72)
(7.0, =~¢, (b+e).{7.T,, ) = 4¢, (a +d),

where U | is defined by (47). Substituting (72) into the Variational identity, and
comparing the coefficients of 4™ vyields

glcn +§2fn
é’]bn +§2€n

5 4é/lan +4§2dn

g!(é’lanﬂ +§2d)1+1)dx = (—n+)/ Z, (C,, +f,,) . (73)
¢, (bﬂ + en)

44, (an + dn)

It is easy to see y =0, the adjoint symmetrical function of the integrable sys-

tem (53) has

é’]cn + é’Z-f;l
gb, +¢se,
4¢a, +44,d, H _ _
' 0 here n, =i_j—§1“"“ Shiige ()
¢, (Cn +fn) ou ou n
§2 (bn + en )
442 (an + dn )
Therefore, the bi-Hamiltonian structure of the hierarchy (58) is obtained
7 T T 5HV[+ T7T 5Hn
u“:(rl,sl,ql,ul,vl,pl)t =J| 5171 =JiL S (75)
where
_ 1 J =J)\ = (L L
_ ( | IJ,LF[ L, j 76)
gl_gz _‘]l ch 0 L1+Llc
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0 _& PO 01
- ¢ -
Jk_: é 0 —s£+v§2_§l ,
52 §2 §2
L bmd L, 608 40 (77)
¢ - - - €2
-4p 0 v
Llc = O _4p u |,
L31 L32 0

L, = —407'uo —168_1uq - 168_1rp - 168_1up ,
L, =—40"'v0+160"'vg +160 'sp +160"'vp.

J, and L, are defined in the former system (29), and J, is a Hamiltonian

operator.

4. Conclusion

The generalized NLS-MKdAV hierarchy and its bi-Hamiltonian structure, re-
duced to the NLS-MKdV hierarchy [25], are derived from a new Lax pair. Based
on the loop algebra of a new Lie algebra G, a spectral matrix is devised, and an
integrable hierarchy and its bi-Hamiltonian structure are established; this is a
new integrable system and not found in the related literature. Making use of ex-
tension forms of two Lie algebras, two nonlinear integrable couplings are
achieved, and their Hamiltonian structures are constructed by using the Varia-
tional identity. Darboux transformations of the two integrable hierarchies can be

embarked and constructed for exact solutions in the future.
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