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Abstract 

On the whole real axis, we demonstrate sufficient conditions of regular solva-
bility of third order operator-differential equations with complicated charac-
teristics. These conditions were formulated only by the operator coefficients 
of the equation. In addition, by the principal part of the equation, the norms 
of the operators of intermediate derivative were estimated. 
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1. Introduction 

In a separable Hilbert space H, we have the following equation: 
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A is a self-adjoint positive-definite operator, and , 1, 2sA s =  are generally linear 
unbounded operators. All derivatives are understood in the sense of distribu-
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tions theory. 
We consider ( ) ( )2 ;f x L R H∈ , where 
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(see [1] [2]), and ( ) ( )3
2 ;u x W R H∈ , which are determined as follows: 
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See [2]. 
Notice that the principal part of the investigated equation possesses compli-

cated characteristic, not multiple characteristics as in [3]. 
Definition 1. If for any ( ) ( )2 ;f x L R H∈  there exists a vector function 
( ) ( )2

2 ;u x W R H∈  that satisfies Equation (1) almost everywhere in R, then it is 
called a regular solution of Equation (1)  

Definition 2. If for any ( ) ( )2 ;f x L R H∈  there exists a regular solution of 
Equation (1), and satisfies the inequality 

( ) ( )3
2 2; ; ,W R H L R Hu const f≤                    (2) 

then Equation (1) is called regularly solvable.  

It is known that if ( ) ( )3
1 2 2: ; ;p W R H L R H→ , then 
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And the following inequalities are valid (see [2]). 
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Definition 3. Parseval’s equality  

( ) ( )
22 1d d

2π
f x x f ζ ζ
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=∫ ∫   

where,  

( ) ( )e d .ixf f x xζζ
+∞ −
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2. Main Results 

Theorem 1. The operator 0P  is an isomorphism from the space ( )3
2 ;W R H  to 

the space ( )2 ;L R H .  
Proof. From (2), it is easy to prove that the operator 0P  acts from 
( )3

2 ;W R H  to ( )2 ;L R H  be bounded. Using Fourier transforms for the equa-
tion ( ) ( )0P u x f x= , we obtain 
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( )( ) ( ) ( )2 .i E A i E A u fξ ξ ξ ξ− − − + =               (4) 

(E is the unit operator), where ( ) ( ),u fξ ξ  are Fourier transform for the func-
tions ( ) ( ),u x f x , respectively. The operator pencil ( )( )2i E A i E Aξ ξ− − − +  is 
invertible and moreover 

( ) ( ) ( ) ( )1 2= ,u i E A i E A fξ ξ ξ ξ− −− − − + 

              (5) 

Hence, 
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= − − − +∫          (6) 

We show that ( ) ( )3
2 ;u x W R H∈ . By using the Parseval equality and (3), we 

obtain: 
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If ( )Aσ  is a spectrum of the operator A, then we consider 
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Taking into account (5) and (6) into (4) we obtain: 

( ) ( )
( )

( ) ( )3
2 22

2 22
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Consequently, ( ) ( )3
2 ;u x W R H∈ . 

Applying Banach theorem on the inverse operator, we get that the operator 

0P  is an isomorphism from ( )3
2 ;W R H  to ( )2 ;L R H .  

Now, we estimate the norms of intermediate derivative operators participating 
in the main part of the Equation (1) for finding exact conditions on regular sol-
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vability of the given equation, expressed only by its operator coefficients. 
From theorem 1, we have that the norms ( )20 ;L R Hp u  and ( )3

2 ;W R Hu  are 

equivalent in the space ( )3
2 ;W R H . Therefore by the norm ( )20 ;L R Hp u  the 

theorem on intermediate derivatives is valid as well. 
Theorem 2. Let ( ) ( )3

2 ;u x W R H∈ . Then there hold the following inequali-
ties: 
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3 3
a a= = .  

Proof. To establish the validity of inequality (11) we make change 

( ) ( )0p u x f x=  and apply the Fourier transformation. We get 
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For Rζ ∈  we estimate the following norms: 
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Finally, from (12), we have 
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Lemma. The operator 1P  continuously acts from ( )3
2 ;W R H  to ( )2 ;L R H  

provided that the operators , 1, 2s
sA A s− =  are bounded in H.  

Taking into account the results found up [4] to now we get possibility to es-
tablish regular solvability conditions of Equation (1). 

Theorem 3. Let the operators , 1, 2s
sA A s− =  be bounded in H and it holds 
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termined in theorem 2. Then the Equation (1) is regularly solvable.  
Proof. By theorem 1, provided that the operator 0P  has a bounded inverse 

operator 1
0P−  acting from ( )2 ;L R H  to ( )3

2 ;W R H , then after replacing 
( ) ( )0p u x v x=  in Equation (1) can be written as ( ) ( ) ( )1

1 0E p p v x f x−+ = . 
Now we prove under the theorem conditions (see [5]), that the norm 
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By theorem (2), we have:  
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Consequently, 
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Thus, the operator 1
1 0E p p−+  is invertible in ( )2 ;L R H  and hence ( )u x  
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The theorem is proved.  

3. Conclusion  

We formulated exact conditions on regular solvability of Equation (1), expressed 
only by its operator coefficients. We estimated the norms of intermediate deriv-
ative operators participating in the principle part of the given equation. In the 
case when in the perturbed part of Equation (1), the participant variable opera-
tor coefficients, i.e. ( ) , 1, 2sA x s =  are linear operators, which determined for 
all x R∈ , are investigated in a similar way. 
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